1
|
Wang R, Wang F, Lu Y, Zhang S, Cai M, Guo D, Zheng H. Spatial distribution and risk assessment of pyrethroid insecticides in surface waters of East China Sea estuaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123302. [PMID: 38190875 DOI: 10.1016/j.envpol.2024.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Pyrethroid insecticides are the most commonly used household insecticides and pose substantial risks to marine aquatic organisms. many studies have detected pyrethroid insecticides in the waters and estuaries of the western United States, but their distributions within western Pacific estuaries have not been reported. Accordingly, we used high-throughput organic analyses combined with high volume solid-phase extraction to comprehensively assess 13 pyrethroid insecticides in East China Sea estuaries and the Huangpu River. The results demonstrated the presence of various ∑13pyrethroid insecticides in East China Sea estuaries (mean and median values of 8.45 ± 5.57 and 7.78 ng L-1, respectively), among which cypermethrin was the primary contaminant. The concentrations of ∑12pyrethroid insecticide detected in the surface waters at the Huangpu River (mean 6.7 ng L-1, outlet 16.4 ng L-1) were higher than those in the Shanghai estuary (4.7 ng L-1), suggesting that runoff from inland areas is a notable source of insecticides. Wetlands reduced the amount of runoff containing pyrethroid insecticides that reached the ocean. Several factors influenced pesticide distributions in East China Sea estuaries, and higher proportions were derived from agricultural sources than from urban sources, with a higher proportion of agricultural sources than urban sources, influenced by anthropogenic use in the region. Permethrin and cypermethrin were the main compounds contributing to the high ecological risk in the estuaries. Consequently, to prevent risks to marine aquatic life, policymakers should aim to reduce insecticide contaminants derived from urban and agricultural sources.
Collapse
Affiliation(s)
- Rui Wang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yintao Lu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Dongdong Guo
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| |
Collapse
|
2
|
Vidal LG, De Oliveira-Ferreira N, Torres JPM, Azevedo AF, Meirelles ACO, Flach L, Domit C, Fragoso ABL, Lima Silva FJ, Carvalho VL, Marcondes M, Barbosa LA, Cremer MJ, Malm O, Lailson-Brito J, Eljarrat E. Brominated flame retardants and natural organobrominated compounds in a vulnerable delphinid species along the Brazilian coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167704. [PMID: 37820801 DOI: 10.1016/j.scitotenv.2023.167704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Guiana dolphins, Sotalia guianensis, are vulnerable to extinction along their distribution on the Brazilian coast and assessing chemical pollution is of utmost importance for their conservation. For this study, 51 carcasses of Guiana dolphins were sampled across the Brazilian coast to investigate legacy and emerging brominated flame retardants (BFRs) as well as the naturally-produced MeO-BDEs. PBDEs and MeO-BDEs were detected in all samples analyzed, whereas emerging BFRs were detected in 16 % of the samples, all in Rio de Janeiro state. PBDE concentrations varied between 2.24 and 799 ng.g-1 lipid weight (lw), emerging BFRs between 0.12 and 1.51 ng.g-1 lw and MeO-BDEs between 3.82 and 10,247 ng.g-1 lw. Concentrations of legacy and emerging BFRs and natural compounds varied considerably according to the sampling site and reflected both the local anthropogenic impact of the region and the diversity/mass of biosynthesizers. The PBDE concentrations are lower than what was found for delphinids in the Northern Hemisphere around the same sampling period and most sampling sites presented mean concentrations lower than the limits for endocrine disruption known to date for marine mammals of 460 ng.g-1 lw, except for sampled from Santa Catarina state, in Southern Brazil. Conversely, MeO-BDE concentrations are higher than those of the Northern Hemisphere, particularly close to the Abrolhos Bans and Royal Charlotte formation, that are hotspots for biodiversity. Despite the elevated concentrations reported for this group, there is not much information regarding the effects of such elevated concentrations for these marine mammals. The distinct patterns observed along the Brazilian coast show that organobrominated compounds can be used to identify the ecological segregation of delphinids and that conservation actions should be planned considering the local threats.
Collapse
Affiliation(s)
- Lara G Vidal
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil; Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil; Pós-graduação em Sistemas Costeiros e Oceânicos, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, PR, Brazil; Ecology and Conservation Laboratory, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Nara De Oliveira-Ferreira
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - João Paulo M Torres
- Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Alexandre F Azevedo
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Ana Carolina O Meirelles
- Marine Mammal Conservation Program, Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, Ceará, Brazil; Tropical Marine Sciences Graduate Program, Marine Sciences Institute, Ceará Federal University, Fortaleza, Ceará, Brazil
| | - Leonardo Flach
- Instituto Boto Cinza, Mangaratiba, Rio de Janeiro 23860-000, Brazil
| | - Camila Domit
- Ecology and Conservation Laboratory, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Ana Bernadete L Fragoso
- Programa de Pós-Graduação em Ciências Naturais/Projeto Cetáceos da Costa Branca-Universidade do Estado do Rio Grande do Norte (UERN)/Projeto Golfinho Rotador, Mossoró, Rio Grande do Norte, Brazil
| | - Flávio J Lima Silva
- Programa de Pós-Graduação em Ciências Naturais/Projeto Cetáceos da Costa Branca-Universidade do Estado do Rio Grande do Norte (UERN)/Projeto Golfinho Rotador, Mossoró, Rio Grande do Norte, Brazil
| | - Vítor Luz Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos (AQUASIS), Caucaia, Ceará, Brazil
| | | | - Lupércio A Barbosa
- Environmental Awareness Organization (ORCA), Rua São Paulo, 23, Praia da Costa, Vila Velha, ES 29101-315, Brazil
| | - Marta J Cremer
- Ecology and Conservation Laboratory for Marine and Coastal Tetrapods, University of Joinville Region (UNIVILLE), São Francisco do Sul, Rod. Duque de Caxias, 6365, Iperoba, São Francisco do Sul 89240-000, SC, Brazil
| | - Olaf Malm
- Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - José Lailson-Brito
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Ethel Eljarrat
- Environmental and Water Chemistry for Human Health, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Spain.
| |
Collapse
|
4
|
Solé M, Figueres E, Mañanós E, Rojo-Solís C, García-Párraga D. Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120149. [PMID: 36115493 DOI: 10.1016/j.envpol.2022.120149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Collapse
Affiliation(s)
- M Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain.
| | - E Figueres
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain
| | - E Mañanós
- Institute of Aquaculture Torre La Sal (IATS),-CSIC, 12595, Cabanes, Castellón, Spain
| | - C Rojo-Solís
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| | - D García-Párraga
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| |
Collapse
|
5
|
Soares ED, Cantor M, Bracarense APFRL, Groch KR, Domit C. Health conditions of Guiana dolphins facing cumulative anthropogenic impacts. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractCoastal areas are associated with anthropogenic activities and stressors that can expose the marine fauna to negative cumulative impacts. Apex predators, such as dolphins, can flag the quality of their environment through health parameters such as cutaneous and body conditions. We examined the potential relationship between environmental conditions and health parameters of Guiana dolphins around a port and a conservation unit within the Paranaguá Estuarine Complex, southern Brazil. During boat surveys between July 2018 and April 2019 covering both areas, we measured environmental parameters, photographed dolphins to infer their health condition and the frequency of use of the estuary. In total, 204 individual Guiana dolphins were photo-identified, 52 of which were seen in both years. In general, dolphins showed poor body condition (76% classified as emaciated or thin in 2018, and 79% in 2019), diverse cutaneous conditions (four types of lesions suggestive of an infectious aetiology, two conditions suggestive of traumatic events of anthropogenic origin, and two anomalous pigmentation) and a high prevalence of such cutaneous conditions (85% in 2018, 70% in 2019). Most individuals maintained their body and cutaneous conditions between the two years. There were no clear differences between the port and the conservation areas in terms of environmental conditions, frequency of use and health conditions of individual dolphins, suggesting that dolphins inhabiting this estuarine complex are exposed to potential cumulative impacts, such as pollutants, noise and habitat degradation. This study provides baseline information on some health parameters of Guiana dolphins in southern Brazil and highlights the need for systematic, long-term health assessment of Guiana dolphin populations to guide conservation actions to safeguard this vulnerable species.
Collapse
|
6
|
Urbano BF, Bustamante S, Palacio DA, Vera M, Rivas BL. Polymer‐based chromogenic sensors for the detection of compounds of environmental interest. POLYM INT 2021. [DOI: 10.1002/pi.6223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bruno F Urbano
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Saúl Bustamante
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Daniel A Palacio
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Myleidi Vera
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Bernabé L Rivas
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| |
Collapse
|