1
|
Huo Q, Ma Y, Hu L, Liu Q, Wang C, Liu J, Ren D, Wang Z, Wang B, Zeng H, Song Y, Chen S. A Study on the Community and Ecological Characteristics of Benthic Invertebrates in the Ulungu River, Xinjiang, via eDNA Metabarcoding and Morphological Methods. BIOLOGY 2025; 14:410. [PMID: 40282275 PMCID: PMC12025021 DOI: 10.3390/biology14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
eDNA metabarcoding has been used for the biomonitoring of benthic invertebrates, but the correct steps to achieve its effectiveness, the stability of the results, and comparisons with morphological methods are still understudied. In this study, morphology and eDNA were studied for benthic invertebrate samples collected at six sites in the Ulungu River Basin. A Mantel test and NMDS analyses were used to test the correlations of the communities obtained via the two methods, the Shannon index was calculated to evaluate the ecological status, and the correlation of the evaluation results was analyzed. The results revealed that eDNA metabarcoding did not detect a greater number of species than the morphological method, that the results from the two methods shared fewer taxa at the family level and below, and that only five taxa were shared at the genus level. The Mantel test and NMDS analyses revealed very significant differences between the communities monitored by the two methods (PERMANOVA, p = 0.0056), but eDNA metabarcoding provided richness and abundance data for species that are difficult to identify morphologically, and these findings can be used to supplement the morphological data. The cor.test revealed that there was no significant correlation between the diversity and ecological assessment results of the two methods, and the ecological assessment results of eDNA metabarcoding cannot represent accurate and true ecological conditions. The water sample eDNA-based method and morphological method exhibited low consistency and high complementarity in monitoring benthic invertebrate communities and diversity. More research is still needed on the key links of eDNA sampling, the control of the degradation rate, data utilization, and index development to provide more environmentally friendly and effective monitoring methods for ecological protection, more reliable support for ecological decision-making, and to more adequately respond to the challenges of global environmental change.
Collapse
Affiliation(s)
- Qiang Huo
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
- Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| | - Yuying Ma
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
| | - Linghui Hu
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
- Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| | - Qi Liu
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
- Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| | - Chengxin Wang
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
- Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| | - Jiaxuan Liu
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
- Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| | - Daoquan Ren
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
| | - Zhichao Wang
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
| | - Baoqiang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (B.W.); (H.Z.)
| | - Honghui Zeng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (B.W.); (H.Z.)
| | - Yong Song
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
- Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| | - Sheng’ao Chen
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (Q.H.); (Y.M.); (L.H.); (Q.L.); (C.W.); (J.L.); (D.R.); (Z.W.)
- Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| |
Collapse
|
2
|
Boyse E, Robinson KP, Carr IM, Valsecchi E, Beger M, Goodman SJ. Inferring Species Interactions From Co-occurrence Networks With Environmental DNA Metabarcoding Data in a Coastal Marine Food Web. Mol Ecol 2025; 34:e17701. [PMID: 40035351 PMCID: PMC11934085 DOI: 10.1111/mec.17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
A good understanding of biotic interactions is necessary to accurately predict the vulnerability of ecosystems to climate change. Recently, co-occurrence networks built from environmental DNA (eDNA) metabarcoding data have arisen as a tool to explore interspecific interactions in ecological communities exposed to different human and environmental pressures. Such networks can identify environmentally driven relationships in microbial and eukaryotic communities, but whether inferred co-occurrences robustly represent biotic interactions remains unclear. Here, we tackle this challenge and compare spatio-temporal variability in the structure and complexity of inferred co-occurrence networks and food webs, using 60 eDNA samples covering vertebrates and other eukaryotes in a North Sea coastal ecosystem. We compare topological characteristics and identify highly connected species across spatial and temporal subsets to evaluate variance in community composition and structure. We find consistent trends in topological characteristics across eDNA-derived co-occurrence networks and food webs that support some ability for the co-occurrence networks to detect real ecological processes, despite trophic interactions forming a minority of significant co-occurrences. The lack of significant trophic interactions detected in co-occurrence networks may result from ecological complexities, such as generalist predators having flexible interactions or behavioural partitioning, the inability to distinguish age class with eDNA or co-occurrences being driven by non-trophic or abiotic interactions. We find support for using eDNA-derived co-occurrence networks to infer ecological interactions, but further work is needed to assess their power to reliably detect and differentiate different interaction types and overcome methodological limitations, such as species detection uncertainties, which could influence inferred ecosystem complexity.
Collapse
Affiliation(s)
- Elizabeth Boyse
- School of BiologyUniversity of LeedsLeedsUK
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUnited Kingdom
| | | | - Ian M. Carr
- Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Elena Valsecchi
- Department of Environmental and Earth SciencesUniversity of Milano‐BicoccaMilanItaly
| | - Maria Beger
- School of BiologyUniversity of LeedsLeedsUK
- Centre for Biodiversity and Conservation Science, School of the EnvironmentThe University of QueenslandQueenslandAustralia
| | | |
Collapse
|
3
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Perry WB, Seymour M, Orsini L, Jâms IB, Milner N, Edwards F, Harvey R, de Bruyn M, Bista I, Walsh K, Emmett B, Blackman R, Altermatt F, Lawson Handley L, Mächler E, Deiner K, Bik HM, Carvalho G, Colbourne J, Cosby BJ, Durance I, Creer S. An integrated spatio-temporal view of riverine biodiversity using environmental DNA metabarcoding. Nat Commun 2024; 15:4372. [PMID: 38782932 PMCID: PMC11116482 DOI: 10.1038/s41467-024-48640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Anthropogenically forced changes in global freshwater biodiversity demand more efficient monitoring approaches. Consequently, environmental DNA (eDNA) analysis is enabling ecosystem-scale biodiversity assessment, yet the appropriate spatio-temporal resolution of robust biodiversity assessment remains ambiguous. Here, using intensive, spatio-temporal eDNA sampling across space (five rivers in Europe and North America, with an upper range of 20-35 km between samples), time (19 timepoints between 2017 and 2018) and environmental conditions (river flow, pH, conductivity, temperature and rainfall), we characterise the resolution at which information on diversity across the animal kingdom can be gathered from rivers using eDNA. In space, beta diversity was mainly dictated by turnover, on a scale of tens of kilometres, highlighting that diversity measures are not confounded by eDNA from upstream. Fish communities showed nested assemblages along some rivers, coinciding with habitat use. Across time, seasonal life history events, including salmon and eel migration, were detected. Finally, effects of environmental conditions were taxon-specific, reflecting habitat filtering of communities rather than effects on DNA molecules. We conclude that riverine eDNA metabarcoding can measure biodiversity at spatio-temporal scales relevant to species and community ecology, demonstrating its utility in delivering insights into river community ecology during a time of environmental change.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
- Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK.
| | | | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ifan Bryn Jâms
- Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Nigel Milner
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - François Edwards
- APEM Ltd, A17 Embankment Business Park, Heaton Mersey, Manchester, SK4 3GN, UK
| | - Rachel Harvey
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
| | - Mark de Bruyn
- Australian Research Centre for Human Evolution, School of Environment and Science, Griffith University, Queensland, 4111, Australia
| | - Iliana Bista
- LOEWE Centre for Translational Biodiversity Genomics, 60325, Frankfurt, Germany
- Senckenberg Research Institute, 60325, Frankfurt, Germany
- Naturalis Biodiversity Center, Darwinweg 2, 2333, Leiden, Netherlands
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Kerry Walsh
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - Bridget Emmett
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
| | - Rosetta Blackman
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Evolutionary Biology Group (@EvoHull), Department of Biological and Marine Sciences, University of Hull (UoH), Cottingham Road, Hull, HU6 7RX, UK
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Lori Lawson Handley
- Evolutionary Biology Group (@EvoHull), Department of Biological and Marine Sciences, University of Hull (UoH), Cottingham Road, Hull, HU6 7RX, UK
| | - Elvira Mächler
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Kristy Deiner
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland
| | - Holly M Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Georgia, USA
| | - Gary Carvalho
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - John Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bernard Jack Cosby
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
| | - Isabelle Durance
- Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Simon Creer
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
5
|
Cakin I, Morrissey B, Gordon M, Gaffney PPJ, Marcello L, Macgregor K, Taggart MA. Comparing DNA isolation and sequencing strategies for 16S rRNA gene amplicon analysis in biofilm containing environments. J Microbiol Methods 2024; 220:106921. [PMID: 38494090 DOI: 10.1016/j.mimet.2024.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/10/2023] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Bacteria are primarily responsible for biological water treatment processes in constructed wetland systems. Gravel in constructed wetlands serves as an essential substrate onto which complex bacterial biofilms may successfully grow and evolve. To fully understand the bacterial community in these systems it is crucial to properly isolate biofilms and process DNA from such substrates. This study looked at how best to isolate bacterial biofilms from gravel substrates in terms of bacterial richness. It considered factors including the duration of agitation during extraction, extraction temperature, and enzyme usage. Further, the 16S taxonomy data subsequently produced from Illumina MiSeq reads (using the SILVA 132 ribosomal RNA (rRNA) database on the DADA2 pipeline) were compared with the 16S data produced from Oxford Nanopore Technologies (ONT) MinION reads (using the NCBI 16S database on the EPI2ME pipeline). Finally, performance was tested by comparing the taxonomy data generated from the Illumina MiSeq and ONT MinION reads using the same (SILVA 132) database. We found no significant differences in the effective number of species observed when using different bacterial biofilm detachment techniques. However, enzyme treatment enhanced the total concentration of DNA. In terms of wetland community profiles, relative abundance differences within each sample type were clearer at the genus level. For genus-level taxonomic classification, MinION sequencing with the EPI2ME pipeline (NCBI database) produced bacterial abundance information that was poorly correlated with that from the Illumina MiSeq and DADA2 pipelines (SILVA132 database). When using the same database for each sequencing technology (SILVA132), the correlation between relative abundances at genus-level improved from negligible to moderate. This study provides detailed information of value to researchers working on constructed wetlands regarding efficient biofilm detachment techniques for DNA isolation and 16 s metabarcoding platforms for sequencing and data analysis.
Collapse
Affiliation(s)
- Ilgaz Cakin
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK.
| | - Barbara Morrissey
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, Scotland IV2 5NA, UK
| | - Matthew Gordon
- The Scotch Whisky Research Institute, The Robertson Trust Building, Research Avenue North, Edinburgh, Scotland EH14 4AP, UK
| | - Paul P J Gaffney
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lucio Marcello
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, Scotland IV2 5NA, UK
| | - Kenneth Macgregor
- The Scotch Whisky Research Institute, The Robertson Trust Building, Research Avenue North, Edinburgh, Scotland EH14 4AP, UK
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| |
Collapse
|
6
|
Zhang J, Huang L, Wang Y. Changes in the level of biofilm development significantly affect the persistence of environmental DNA in flowing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170162. [PMID: 38244634 DOI: 10.1016/j.scitotenv.2024.170162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As one of the powerful tools of species biomonitoring, the utilization of environmental DNA (eDNA) technology is progressively expanding in both scope and frequency within the field of ecology. Nonetheless, the growing dissemination of this technology has brought to light a multitude of intricate issues. The complex effects of environmental factors on the persistence of eDNA in water have brought many challenges to the interpretation of eDNA information. In this study, the primary objective was to examine how variations in the presence and development of biofilms impact the persistence of grass carp eDNA under different sediment types and flow conditions. This investigation encompassed the processes of eDNA removal and resuspension in water, shedding light on the complex interactions involved. The findings reveal that with an elevated biofilm development level, the total removal rate of eDNA gradually rose, resulting in a corresponding decrease in its residence time within the mesocosms. The influence of biofilms on the persistence of grass carp eDNA is more pronounced under flowing water conditions. However, changes in bottom sediment types did not significantly interact with biofilms. Lastly, in treatments involving alternating flow conditions between flowing and still water, significant resuspension of grass carp eDNA was not observed due to interference from multiple factors, including the effect of biofilms. Our study offers preliminary insights into the biofilm-mediated mechanisms of aquatic eDNA removal, emphasizing the need for careful consideration of environmental factors in the practical application of eDNA technology for biomonitoring in natural aquatic environments.
Collapse
Affiliation(s)
- Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| | - Lei Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| | - Yurong Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| |
Collapse
|
7
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
8
|
Qin S, Li F, Zou Y, Xue J, Zhang Y, Yang Z. eDNA-based diversity and multitrophic network reveal the effects of land use and pollutants on the subtropical Dongjiang River systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122157. [PMID: 37454713 DOI: 10.1016/j.envpol.2023.122157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Biodiversity and its constituted multitrophic network in rivers are accelerating change under human land use and pollutants. However, due to the lack of complete datasets across taxa limited by traditional morphological biomonitoring, the change patterns of biodiversity and multitrophic networks are still unclear. Here, we used the eDNA approach to capture multitrophic communities (including fish, aquatic insects, protozoa, diatom and bacteria) in the Dongjiang River, a typical subtropical river in southeast China, and analyzed the changing patterns of biodiversity and multitrophic networks in relation to land use and water pollution. First, our data showed that the eDNA approach provided a snapshot of the multitrophic communities in the Dongjiang River, and the monitored 5833 OTUs were annotated to 55 phyla, 144 classes, 329 orders, 521 families, 945 genera and 406 species. Second, the multitrophic diversity index had similar patterns on the longitudinal scale of rivers, with significant decreases from the upstream to the downstream, while individual taxonomic groups exhibited variable spatial patterns. While there were similar spatial patterns between network metrics and diversity index, the former had stronger relationships with the spatial distance. Third, the multitrophic diversity and networks were significantly negatively correlated with land use and water pollution (e.g., CODMn), and network structures often had stronger and non-linear responses. Overall, this study highlights that eDNA biomonitoring of multitrophic communities and networks can provide deeper insights into ecosystem changes and help develop more targeted management strategies.
Collapse
Affiliation(s)
- Shan Qin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanting Zou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
9
|
Reji Chacko M, Altermatt F, Fopp F, Guisan A, Keggin T, Lyet A, Rey PL, Richards E, Valentini A, Waldock C, Pellissier L. Catchment-based sampling of river eDNA integrates terrestrial and aquatic biodiversity of alpine landscapes. Oecologia 2023; 202:699-713. [PMID: 37558733 PMCID: PMC10475001 DOI: 10.1007/s00442-023-05428-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Monitoring of terrestrial and aquatic species assemblages at large spatial scales based on environmental DNA (eDNA) has the potential to enable evidence-based environmental policymaking. The spatial coverage of eDNA-based studies varies substantially, and the ability of eDNA metabarcoding to capture regional biodiversity remains to be assessed; thus, questions about best practices in the sampling design of entire landscapes remain open. We tested the extent to which eDNA sampling can capture the diversity of a region with highly heterogeneous habitat patches across a wide elevation gradient for five days through multiple hydrological catchments of the Swiss Alps. Using peristaltic pumps, we filtered 60 L of water at five sites per catchment for a total volume of 1800 L. Using an eDNA metabarcoding approach focusing on vertebrates and plants, we detected 86 vertebrate taxa spanning 41 families and 263 plant taxa spanning 79 families across ten catchments. For mammals, fishes, amphibians and plants, the detected taxa covered some of the most common species in the region according to long-term records while including a few more rare taxa. We found marked turnover among samples from distinct elevational classes indicating that the biological signal in alpine rivers remains relatively localised and is not aggregated downstream. Accordingly, species compositions differed between catchments and correlated with catchment-level forest and grassland cover. Biomonitoring schemes based on capturing eDNA across rivers within biologically integrated catchments may pave the way toward a spatially comprehensive estimation of biodiversity.
Collapse
Affiliation(s)
- Merin Reji Chacko
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland.
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Fabian Fopp
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Geopolis, Lausanne, Switzerland
| | - Thomas Keggin
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Arnaud Lyet
- World Wildlife Fund, Wildlife Conservation Team, Washington, DC, USA
| | - Pierre-Louis Rey
- Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, Lausanne, Switzerland
| | - Eilísh Richards
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | | | - Conor Waldock
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Loïc Pellissier
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Kezlya E, Tseplik N, Kulikovskiy M. Genetic Markers for Metabarcoding of Freshwater Microalgae: Review. BIOLOGY 2023; 12:1038. [PMID: 37508467 PMCID: PMC10376359 DOI: 10.3390/biology12071038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The metabarcoding methods for studying the diversity of freshwater microalgae and routine biomonitoring are actively used in modern research. A lot of experience has been accumulated already, and many methodological questions have been solved (such as the influence of the methods and time of sample conservation, DNA extraction and bioinformatical processing). The reproducibility of the method has been tested and confirmed. However, one of the main problems-choosing a genetic marker for the study-still lacks a clear answer. We analyzed 70 publications and found out that studies on eukaryotic freshwater microalgae use 12 markers (different nuclear regions 18S and ITS and plastids rbcL, 23S and 16S). Each marker has its peculiarities; they amplify differently and have various levels of efficiency (variability) in different groups of algae. The V4 and V9 18S and rbcL regions are used most often. We concentrated especially on the studies that compare the results of using different markers and microscopy. We summarize the data on the primers for each region and on how the choice of a marker affects the taxonomic composition of a community.
Collapse
Affiliation(s)
- Elena Kezlya
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Natalia Tseplik
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| |
Collapse
|
11
|
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, Heydenrych MJ, Juszkiewicz DJ, Nevill P, Dawkins KL, Bessey C, Fernandes K, Miller H, Power M, Mousavi-Derazmahalleh M, Newton JP, White NE, Richards ZT, Allentoft ME. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162322. [PMID: 36801404 DOI: 10.1016/j.scitotenv.2023.162322] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.
Collapse
Affiliation(s)
- Miwa Takahashi
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia.
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia.
| | - Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Georgia Nester
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mieke van der Heyde
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew J Heydenrych
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Jarman Laboratory, Indian Ocean Marine Research Centre, School of Biological Sciences, University of Western Australia, Australia
| | - David J Juszkiewicz
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Kathryn L Dawkins
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Cindy Bessey
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, Western Australia, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia
| | - Matthew Power
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Joshua P Newton
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Akcaalan R, Ozbayram EG, Kaleli A, Cam AO, Koker L, Albay M. Does environmental DNA reflect the actual phytoplankton diversity in the aquatic environment? Case study of marine mucilage in the Sea of Marmara. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27528-7. [PMID: 37178301 DOI: 10.1007/s11356-023-27528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The present study was designed to assess the effectiveness of the eDNA metabarcoding approach to determine the phytoplankton composition in the marine environment with a special focus on mucilage episodes in the Sea of Marmara. For this purpose, the samples were collected from 5 different sites located in the Sea of Marmara and the northern Aegean Sea during the mucilage episode in June 2021. The phytoplankton diversity was analyzed morphologically and by 18S rRNA gene amplicon sequencing, and the dataset of both methods was compared, accordingly. The results showed significant differences between methods in terms of composition and the abundance of the phytoplankton groups. While Miozoa was the most abundant group by metabarcoding, light microscopy (LM) indicated a dominance of Bacillariophyta. Katablepharidophyta was found at lower abundances by the metabarcoding (representing < 1% of the community); the members of this phylum were not observed by a microscope. At the lower taxonomic levels, Chaetoceros was the only genus detected in all samples by both methods. Additionally, while mucilage-forming Gonyaulax fragilis, Cylindrotheca closterium, and Thalassiosira rotula were detected to species-level by LM, metabarcoding was able to determine these organisms at the genus level. On the other hand, the genus Arcocellulus was found in all metabarcoding datasets and not detected by microscopy. The results indicated that metabarcoding can detect a greater number of genera and reveal taxa that were overlooked by light microscopy but to develop a complete picture of phytoplankton diversity in the sample, microscopical observations still are in need.
Collapse
Affiliation(s)
- Reyhan Akcaalan
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey.
| | - Emine Gozde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Aydın Kaleli
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Ayca Oguz Cam
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Latife Koker
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Meric Albay
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| |
Collapse
|
13
|
Lu Q, Zhang SY, Du J, Liu Q, Dong C, Zhao J, Wang Y, Yao M. Multi-group biodiversity distributions and drivers of metacommunity organization along a glacial-fluvial-limnic pathway on the Tibetan plateau. ENVIRONMENTAL RESEARCH 2023; 220:115236. [PMID: 36621545 DOI: 10.1016/j.envres.2023.115236] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Extensive global glacial retreats are threatening cryosphere ecosystem functioning and the associated biota in glacier-fed water systems. Understanding multi-group biodiversity distributions and compositional variation across diverse but hydrologically linked habitats under varying glacial influences will help explain the mechanisms underlying glacial community organization and ecosystem processes. However, such data are generally lacking due to the difficulty of obtaining biodiversity information across wide taxonomic ranges. Here, we used a multi-marker environmental DNA metabarcoding approach to simultaneously investigate the spatial patterns of community compositions and assembly mechanisms of four taxonomic groups (cyanobacteria, diatoms, invertebrates, and vertebrates) along the flowpaths of a tributary of Lake Nam Co on the Tibetan Plateau-from its glacier headwaters, through its downstream river and wetlands, to its estuary. We detected 869 operational taxonomic units: 119 cyanobacterial, 395 diatom, 269 invertebrate, and 86 vertebrate. Taxonomic richnesses consistently increased from upstream to downstream, and although all groups showed community similarity distance decay patterns, the trend for vertebrates was the weakest. Cyanobacteria, diatom, and invertebrate community compositions were significantly correlated with several environmental factors, while the vertebrate community was only correlated with waterway width. Variation partitioning analysis indicated that varying extents of environmental conditions and spatial factors affected community organizations for different groups. Furthermore, stochastic processes contributed prominently to the microorganisms' community assembly (Sloan's neutral model R2 = 0.77 for cyanobacteria and 0.73 for diatoms) but were less important for macroorganisms (R2 = 0.21 for invertebrates and 0.15 for vertebrates). That trend was further substantiated by modified stochasticity ratio analyses. This study provides the first holistic picture of the diverse biotic communities residing in a series of hydrologically connected glacier-influenced habitats. Our results both uncovered the distinct mechanisms that underlie the metacommunity organizations of different glacial organisms and helped comprehensively predict the ecological impacts of the world's melting glaciers.
Collapse
Affiliation(s)
- Qi Lu
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Si-Yu Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianqing Du
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Chinese Academy of Sciences, Beijing, 100101, China.
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Weber S, Junk I, Brink L, Wörner M, Künzel S, Veith M, Teubner D, Klein R, Paulus M, Krehenwinkel H, Krehenwinkel H. Molecular diet analysis in mussels and other metazoan filter feeders and an assessment of their utility as natural eDNA samplers. Mol Ecol Resour 2023; 23:471-485. [PMID: 36056614 DOI: 10.1111/1755-0998.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Molecular gut content analysis is a popular tool to study food web interactions and has recently been suggested as an alternative source for DNA-based biomonitoring. However, the overabundant consumer's DNA often outcompetes that of its diet during PCR. Lineage-specific primers are an efficient means to reduce consumer amplification while retaining broad specificity for dietary taxa. Here, we designed an amplicon sequencing assay to monitor the eukaryotic diet of mussels and other metazoan filter feeders and explore the utility of mussels as natural eDNA samplers to monitor planktonic communities. We designed several lineage-specific rDNA primers with broad taxonomic suitability for eukaryotes. The primers were tested using DNA extracts of different limnic and marine mussel species and the results compared to eDNA water samples collected next to the mussel colonies. In addition, we analysed several 25-year time series samples of mussels from German rivers. Our primer sets efficiently prevent the amplification of mussels and other metazoans. The recovered DNA reflects a broad dietary preference across the eukaryotic tree of life and considerable taxonomic overlap with filtered water samples. We also show the utility of a reversed version of our primers, which prevents amplification of nonmetazoan taxa from complex eukaryote community samples, by enriching fauna associated with the marine brown algae Fucus vesiculosus. Our protocol will enable large-scale dietary analysis in metazoan filter feeders, facilitate aquatic food web analysis and allow surveying of aquacultures for pathogens. Moreover, we show that mussels and other aquatic filter feeders can serve as complementary DNA source for biomonitoring.
Collapse
Affiliation(s)
| | | | | | | | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Salmaso N, Vasselon V, Rimet F, Vautier M, Elersek T, Boscaini A, Donati C, Moretto M, Pindo M, Riccioni G, Stefani E, Capelli C, Lepori F, Kurmayer R, Mischke U, Klemenčič AK, Novak K, Greco C, Franzini G, Fusato G, Giacomazzi F, Lea A, Menegon S, Zampieri C, Macor A, Virgilio D, Zanut E, Zorza R, Buzzi F, Domaizon I. DNA sequence and taxonomic gap analyses to quantify the coverage of aquatic cyanobacteria and eukaryotic microalgae in reference databases: Results of a survey in the Alpine region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155175. [PMID: 35421505 DOI: 10.1016/j.scitotenv.2022.155175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The taxonomic identification of organisms based on the amplification of specific genetic markers (metabarcoding) implicitly requires adequate discriminatory information and taxonomic coverage of environmental DNA sequences in taxonomic databases. These requirements were quantitatively examined by comparing the determination of cyanobacteria and microalgae obtained by metabarcoding and light microscopy. We used planktic and biofilm samples collected in 37 lakes and 22 rivers across the Alpine region. We focused on two of the most used and best represented genetic markers in the reference databases, namely the 16S rRNA and 18S rRNA genes. A sequence gap analysis using blastn showed that, in the identity range of 99-100%, approximately 30% (plankton) and 60% (biofilm) of the sequences did not find any close counterpart in the reference databases (NCBI GenBank). Similarly, a taxonomic gap analysis showed that approximately 50% of the cyanobacterial and eukaryotic microalgal species identified by light microscopy were not represented in the reference databases. In both cases, the magnitude of the gaps differed between the major taxonomic groups. Even considering the species determined under the microscope and represented in the reference databases, 22% and 26% were still not included in the results obtained by the blastn at percentage levels of identity ≥95% and ≥97%, respectively. The main causes were the absence of matching sequences due to amplification and/or sequencing failure and potential misidentification in the microscopy step. Our results quantitatively demonstrated that in metabarcoding the main obstacles in the classification of 16S rRNA and 18S rRNA sequences and interpretation of high-throughput sequencing biomonitoring data were due to the existence of important gaps in the taxonomic completeness of the reference databases and the short length of reads. The study focused on the Alpine region, but the extent of the gaps could be much greater in other less investigated geographic areas.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Valentin Vasselon
- OFB, Pôle R&D ECLA, Site INRAE CARRTEL, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Frédéric Rimet
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Marine Vautier
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Tina Elersek
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Giulia Riccioni
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Erika Stefani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Camilla Capelli
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland.
| | - Fabio Lepori
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland.
| | - Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria.
| | - Ute Mischke
- Bavarian Environment Agency, Ref. 83, Wielenbach, Germany.
| | | | - Katarina Novak
- Slovenian Environment Agency, Vojkova 1b, 1000 Ljubljana, Slovenia.
| | - Claudia Greco
- Italian National Institute for Environmental Protection and Research (ISPRA), Ozzano, Italy.
| | - Giorgio Franzini
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Giampaolo Fusato
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Federica Giacomazzi
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Alessia Lea
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via Ospedale Civile 24, 35121 Padova, Italy.
| | - Silvia Menegon
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via Santa Barbara 5/a, 31100 Treviso, Italy.
| | - Chiara Zampieri
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Arianna Macor
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Damiano Virgilio
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Elisa Zanut
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Raffaella Zorza
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Fabio Buzzi
- ARPA Lombardia, Sede di Lecco, U.O. Laghi e Monitoraggio Biologico Fiumi, Italy.
| | - Isabelle Domaizon
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| |
Collapse
|
16
|
Golpour A, Šmejkal M, Čech M, dos Santos RA, Souza AT, Jůza T, Martínez C, Bartoň D, Vašek M, Draštík V, Kolařík T, Kočvara L, Říha M, Peterka J, Blabolil P. Similarities and Differences in Fish Community Composition Accessed by Electrofishing, Gill Netting, Seining, Trawling, and Water eDNA Metabarcoding in Temperate Reservoirs. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.913279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is difficult to understand the composition and diversity of biological communities in complex and heterogeneous environments using traditional sampling methods. Recently, developments in environmental DNA metabarcoding have emerged as a powerful, non-invasive method for comprehensive community characterization and biodiversity monitoring in different types of aquatic ecosystems. In this study, water eDNA targeting fish (wf-eDNA) and four traditional fish sampling methods (electrofishing, gill netting, seining, trawling) were compared to evaluate the reliability and efficiency of wf-eDNA (vertebrate mitochondrial 12S ribosomal RNA (rRNA) as an alternative approach to assess the diversity and composition of freshwater fish communities. The results of wf-eDNA showed a consistency between the traditional sampling methods regarding species detection. However, some fish species detected using wf-eDNA assay were not detected using traditional sampling methods and vice versa. Comparison of wf-eDNA and traditional sampling methods revealed spatial homogeneity in fish community composition in all reservoirs. Ordination analysis showed that the wf-eDNA approach covers all traditional sampling methods and occupies an intermediate position. In addition, based on the Shannon diversity index, we found that in one reservoir the wf-eDNA method yielded similar fish community diversity to traditional sampling methods. However, in other reservoirs, the calculated Shannon diversity index of the wf-eDNA method was significantly higher than traditional sampling methods. In general, significant positive correlations were found between the wf-eDNA method and almost all traditional sampling methods. We conclude that wf-eDNA seems to be a reliable and complementary approach for biomonitoring and ecosystem management of freshwater ichthyofauna.
Collapse
|
17
|
Bohmann K, Elbrecht V, Carøe C, Bista I, Leese F, Bunce M, Yu DW, Seymour M, Dumbrell AJ, Creer S. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol Ecol Resour 2022; 22:1231-1246. [PMID: 34551203 PMCID: PMC9293284 DOI: 10.1111/1755-0998.13512] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to profile biota in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. The latter enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and during "library preparation", that is, when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, ensuring that data generation is robust and fit for the chosen purpose is critically important for practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms; one-step PCR, two-step PCR, and tagged PCR. Further, we distill the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.
Collapse
Affiliation(s)
- Kristine Bohmann
- Faculty of Health and Medical SciencesSection for Evolutionary GenomicsGlobe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Vasco Elbrecht
- Department of Environmental Systems ScienceETH ZurichZürichSwitzerland
| | - Christian Carøe
- Faculty of Health and Medical SciencesSection for Evolutionary GenomicsGlobe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Iliana Bista
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Tree of LifeWellcome Sanger InstituteHinxtonUK
| | - Florian Leese
- Aquatic Ecosystem ResearchFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) LaboratorySchool of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
- School of Biological SciencesNorwich Research ParkUniversity of East AngliaNorwichUK
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunming YunnanChina
| | - Mathew Seymour
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Simon Creer
- Molecular Ecology and Evolution GroupSchool of Natural SciencesBangor UniversityGwyneddUK
| |
Collapse
|
18
|
Rahman MM, Burian A, Creedy TJ, Vogler AP. DNA
‐based assessment of environmental degradation in an unknown fauna: the freshwater macroinvertebrates of the
Indo‐Burmese
hotspot. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Md. Mizanur Rahman
- Department of Life Sciences, Natural History Museum London UK
- Department of Life Sciences, Silwood Park Campus Imperial College London Ascot UK
- Department of Zoology University of Dhaka Dhaka Bangladesh
| | - Alfred Burian
- Marine Ecology Department Lurio University Nampula Mozambique
- Department of Computational Landscape Ecology, UFZ–Helmholtz Centre for Environmental Research Leipzig Germany
| | - Thomas J. Creedy
- Department of Life Sciences, Natural History Museum London UK
- Department of Life Sciences, Silwood Park Campus Imperial College London Ascot UK
| | - Alfried P. Vogler
- Department of Life Sciences, Natural History Museum London UK
- Department of Life Sciences, Silwood Park Campus Imperial College London Ascot UK
| |
Collapse
|
19
|
Spatio-temporal patterns of multi-trophic biodiversity and food-web characteristics uncovered across a river catchment using environmental DNA. Commun Biol 2022; 5:259. [PMID: 35322190 PMCID: PMC8943070 DOI: 10.1038/s42003-022-03216-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Accurate characterisation of ecological communities with respect to their biodiversity and food-web structure is essential for conservation. However, combined empirical study of biodiversity and multi-trophic food webs at a large spatial and temporal resolution has been prohibited by the lack of appropriate access to such data from natural systems. Here, we assessed biodiversity and food-web characteristics across a 700 km2 riverine network over seasons using environmental DNA. We found contrasting biodiversity patterns between major taxonomic groups. Local richness showed statistically significant, season-dependent increases and decreases towards downstream location within the catchment for fish and bacteria, respectively. Meanwhile, invertebrate richness remained spatially unchanged but varied across seasons. The structure of local food webs, such as link density and nestedness, also varied across space and time. However, these patterns did not necessarily mirror those observed for biodiversity and functional feeding characteristics. Our results suggest that biodiversity patterns and food-web dynamics are not directly scalable to each other even at the same spatial and temporal scales. In order to conserve species diversity as well as the functional trophic integrity of communities, patterns of biodiversity and food-web characteristics must thus be jointly studied. By sampling environmental DNA across a large riverine network over multiple seasons, the varied dynamics between biodiversity and food-web dynamics are revealed.
Collapse
|
20
|
Evaluating eDNA for Use within Marine Environmental Impact Assessments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the use of environmental DNA (eDNA) within Environmental Impact Assessment (EIA) is evaluated. EIA documents provide information required by regulators to evaluate the potential impact of a development project. Currently eDNA is being incorporated into biodiversity assessments as a complementary method for detecting rare, endangered or invasive species. However, questions have been raised regarding the maturity of the field and the suitability of eDNA information as evidence for EIA. Several key issues are identified for eDNA information within a generic EIA framework for marine environments. First, it is challenging to define the sampling unit and optimal sampling strategy for eDNA with respect to the project area and potential impact receptor. Second, eDNA assay validation protocols are preliminary at this time. Third, there are statistical issues around the probability of obtaining both false positives (identification of taxa that are not present) and false negatives (non-detection of taxa that are present) in results. At a minimum, an EIA must quantify the uncertainty in presence/absence estimates by combining series of Bernoulli trials with ad hoc occupancy models. Finally, the fate and transport of DNA fragments is largely unknown in environmental systems. Shedding dynamics, biogeochemical and physical processes that influence DNA fragments must be better understood to be able to link an eDNA signal with the receptor’s state. The biggest challenge is that eDNA is a proxy for the receptor and not a direct measure of presence. Nonetheless, as more actors enter the field, technological solutions are likely to emerge for these issues. Environmental DNA already shows great promise for baseline descriptions of the presence of species surrounding a project and can aid in the identification of potential receptors for EIA monitoring using other methods.
Collapse
|
21
|
Ji F, Han D, Yan L, Yan S, Zha J, Shen J. Assessment of benthic invertebrate diversity and river ecological status along an urbanized gradient using environmental DNA metabarcoding and a traditional survey method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150587. [PMID: 34582852 DOI: 10.1016/j.scitotenv.2021.150587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Benthic invertebrate diversity is one of the most commonly used bioindicators for assessing aquatic ecosystem health in river systems. Although an increasing number of studies have focused on assessing benthic invertebrate diversity using environmental DNA metabarcoding and traditional survey methods, benthic invertebrate diversity and ecological status assessments performed across different landscapes within river systems have not been well documented. Here, the diversity and ecological status of benthic invertebrates and the influence of water quality on the invertebrate assemblage distribution along an urbanization gradient in rivers from the Jingjinji (JJJ) region, China, were investigated using eDNA metabarcoding and the traditional method. With the combination of the two methods, 395 benthic invertebrates from 6 phyla, 27 orders, 94 families, and 222 genera were identified. The species richness of the benthic invertebrate community in the mountain area was significantly higher than that in the urban and agricultural areas. Compared to the traditional results, eDNA metabarcoding obtained a significantly greater number of species from every sampling site (P = 0.000) and detected a notably higher abundance in Annelida (P = 0.000). Furthermore, the nonmetric multidimensional scaling (NMDS) and permutational multivariate analysis of variance (PERMANOVA) based on the Bray-Curtis dissimilarity index indicated that the benthic invertebrate communities from the different habitats were discriminated more accurately and easily using eDNA metabarcoding (P = 0.038) than with the traditional method (P = 0.829). Additionally, the assemblages identified by eDNA metabarcoding were more closely linked to water quality and could be realistically used to assess the ecological status of rivers. Our findings highlight that eDNA metabarcoding could represent a rapid and reliable method for estimating benthic invertebrate diversity and ecological status in river systems.
Collapse
Affiliation(s)
- Fenfen Ji
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyi Han
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianzhong Shen
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
|
23
|
Pereira CL, Gilbert MTP, Araújo MB, Matias MG. Fine‐tuning biodiversity assessments: A framework to pair eDNA metabarcoding and morphological approaches. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cátia Lúcio Pereira
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Centre for Macroecology, Evolution and Climate Globe Institute University of Copenhagen Copenhagen Denmark
- Rui Nabeiro Biodiversity Chair MED – Mediterranean Institute for Agriculture Environment and Development University of Évora Évora Portugal
| | - M. Thomas P. Gilbert
- Centre for Evolutionary Hologenomics Globe Institute University of Copenhagen Copenhagen Denmark
- University MuseumNTNU Trondheim Norway
| | - Miguel Bastos Araújo
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Rui Nabeiro Biodiversity Chair MED – Mediterranean Institute for Agriculture Environment and Development University of Évora Évora Portugal
| | - Miguel Graça Matias
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Rui Nabeiro Biodiversity Chair MED – Mediterranean Institute for Agriculture Environment and Development University of Évora Évora Portugal
| |
Collapse
|
24
|
Xie R, Zhao G, Yang J, Wang Z, Xu Y, Zhang X, Wang Z. eDNA metabarcoding revealed differential structures of aquatic communities in a dynamic freshwater ecosystem shaped by habitat heterogeneity. ENVIRONMENTAL RESEARCH 2021; 201:111602. [PMID: 34214559 DOI: 10.1016/j.envres.2021.111602] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Freshwater ecosystems have been threatened by complicated disturbances from both natural and anthropogenic variables, especially in dynamic and complex river basins. The environmental DNA (eDNA)-based approach provides a broader spectrum and higher throughput way of biomonitoring for biodiversity assessment compared with traditional morphological survey. Most eDNA metabarcoding studies have been limited to a few specific taxa/groups and habitat scopes. Here we applied the eDNA metabarcoding to characterize the structures and spatial variations of zooplankton and fish communities among different habitat types in a highly dynamic and complex freshwater ecosystem of the Daqing River basin (DRB). The results showed that varied species spectra of zooplankton and fish communities were identified and unique dominant species occurred across habitats. Additionally, markedly spatial distributions of biotic community structures were observed in areas with different habitat characteristics. Natural variables, including geographic distances and gradient ratio, as well as anthropogenic factors of chemical oxygen demand (COD) and organic chemicals demonstrated significant effects but different outcomes on the structures of zooplankton and fish communities. Moreover, the relative abundances of specific aquatic taxa were associated with the gradient of particular environmental variables. This case study verified the distribution patterns and differentiation mechanisms of biotic communities under habitat heterogeneity could be captured by application of eDNA biomonitoring. And habitat-specific and even species-specific environmental stressors would be diagnosed for improving management of complex river basins.
Collapse
Affiliation(s)
- Ruili Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhihao Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
25
|
Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun Biol 2021; 4:512. [PMID: 33941836 PMCID: PMC8093236 DOI: 10.1038/s42003-021-02031-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Rapidly assessing biodiversity is essential for environmental monitoring; however, traditional approaches are limited in the scope needed for most ecological systems. Environmental DNA (eDNA) based assessment offers enhanced scope for assessing biodiversity, while also increasing sampling efficiency and reducing processing time, compared to traditional methods. Here we investigated the effects of landuse and seasonality on headwater community richness and functional diversity, via spatio-temporal dynamics, using both eDNA and traditional sampling. We found that eDNA provided greater resolution in assessing biodiversity dynamics in time and space, compared to traditional sampling. Community richness was seasonally linked, peaking in spring and summer, with temporal turnover having a greater effect on community composition compared to localized nestedness. Overall, our assessment of ecosystem function shows that community formation is driven by regional resource availability, implying regional management requirements should be considered. Our findings show that eDNA based ecological assessment is a powerful, rapid and effective assessment strategy that enables complex spatio-temporal studies of community diversity and ecosystem function, previously infeasible using traditional methods. Mathew Seymour et al. compare eDNA with traditional biodiversity metrics to assess the functional diversity of a river basin in Wales over space and time and variable land use. Their results show that eDNA can generate greater biodiversity resolution and reliably detect spatio-temporal changes in community and functional diversity.
Collapse
|
26
|
Farrell JA, Whitmore L, Duffy DJ. The Promise and Pitfalls of Environmental DNA and RNA Approaches for the Monitoring of Human and Animal Pathogens from Aquatic Sources. Bioscience 2021. [PMCID: PMC8083301 DOI: 10.1093/biosci/biab027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Novel forensics-inspired molecular approaches have revolutionized species detection in the wild and are particularly useful for tracing endangered or invasive species. These new environmental DNA or RNA (eDNA or eRNA)–based techniques are now being applied to human and animal pathogen surveillance, particularly in aquatic environments. They allow better disease monitoring (presence or absence and geographical spread) and understanding of pathogen occurrence and transmission, benefitting species conservation and, more recently, our understanding of the COVID-19 global human pandemic. In the present article, we summarize the benefits of eDNA-based monitoring, highlighted by two case studies: The first is a fibropapillomatosis tumor-associated herpesvirus (chelonid herpesvirus 5) driving a sea turtle panzootic, and the second relates to eRNA-based detection of the SARS-CoV-2 coronavirus driving the COVID-19 human pandemic. The limitations of eDNA- or eRNA-based approaches are also summarized, and future directions and recommendations of the field are discussed. Continuous eDNA- or eRNA-based monitoring programs can potentially improve human and animal health by predicting disease outbreaks in advance, facilitating proactive rather than reactive responses.
Collapse
Affiliation(s)
- Jessica A Farrell
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| | - Liam Whitmore
- University of Limerick's Department of Biological Sciences in the School of Natural Sciences and Faculty of Science and Engineering, Limerick, Ireland
| | - David J Duffy
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| |
Collapse
|
27
|
Bessey C, Neil Jarman S, Simpson T, Miller H, Stewart T, Kenneth Keesing J, Berry O. Passive eDNA collection enhances aquatic biodiversity analysis. Commun Biol 2021; 4:236. [PMID: 33619330 PMCID: PMC7900116 DOI: 10.1038/s42003-021-01760-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/25/2021] [Indexed: 01/28/2023] Open
Abstract
Environmental DNA (eDNA) metabarcoding is a sensitive and widely used approach for species detection and biodiversity assessment. The most common eDNA collection method in aquatic systems is actively filtering water through a membrane, which is time consuming and requires specialized equipment. Ecological studies investigating species abundance or distribution often require more samples than can be practically collected with current filtration methods. Here we demonstrate how eDNA can be passively collected in both tropical and temperate marine systems by directly submerging filter membranes (positively charged nylon and non-charged cellulose ester) in the water column. Using a universal fish metabarcoding assay, we show that passive eDNA collection can detect fish as effectively as active eDNA filtration methods in temperate systems and can also provide similar estimates of total fish biodiversity. Furthermore, passive eDNA collection enables greater levels of biological sampling, which increases the range of ecological questions that eDNA metabarcoding can address. Bessey et al. present a method of passive eDNA collection from marine aquatic systems. This approach enables lower cost, high throughput sampling of aquatic environments and demonstrably collects high levels of eDNA for biodiversity studies.
Collapse
Affiliation(s)
- Cindy Bessey
- Commonwealth Scientific and Industrial Research Organisation, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, WA, Australia. .,Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia. .,UWA Oceans Institute, University of Western Australia, Crawley, WA, Australia.
| | - Simon Neil Jarman
- UWA Oceans Institute, University of Western Australia, Crawley, WA, Australia.,School of Biological Sciences and the UWA Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Tiffany Simpson
- eDNA Frontiers, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia
| | - Todd Stewart
- Bass Marine Pty Ltd, Port Denison, WA, Australia
| | - John Kenneth Keesing
- Commonwealth Scientific and Industrial Research Organisation, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, WA, Australia.,UWA Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Oliver Berry
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia
| |
Collapse
|