1
|
Peng J, Lan T, Wang J, Xia P, Zheng H. Integrating river transport processes and seasonal dynamics to assess watershed nitrogen export risk. ENVIRONMENT INTERNATIONAL 2025; 195:109194. [PMID: 39700685 DOI: 10.1016/j.envint.2024.109194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Excessive nitrogen exported to water bodies affects the balance of ecosystem and poses a threat to human health. Although the concept of water purification service helps quantify nitrogen export, the impact of river transport remains unclear. This study focused on nitrogen as a pollutant by utilizing the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to assess nitrogen export in the Dongting Lake Basin, taking into account both the processes of sub-basin nitrogen export and river transport. Additionally, the monthly variations within the year were further explored, together with the identification of the priority area of returning cropland to forest land. The results showed that in 2021, the total nitrogen load outside the Dongting Lake was 11.34 × 108 kg·year-1, with the sub-basins retaining a total of 9.02 × 108 kg·year-1, accounting for 79.57 % of the total nitrogen load. Notably, the total nitrogen retention by the river made up 16.87 % of the total nitrogen retention, up to 1.83 × 108 kg·year-1. In view of monthly variation, water purification service based on the entire process was higher in winter and late autumn, and lower in summer and early autumn. The priority areas for ecological project were mainly distributed around the Dongting Lake, achieving an improvement of 58.15 % in water purification service with approximately 7.02 % of the total returnable cropland. This study proposed a new approach of water purification service assessment through integrating river transport processes and seasonal dynamics, aiming to assess watershed nitrogen export risk more accurately.
Collapse
Affiliation(s)
- Jian Peng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Tianhan Lan
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jiabin Wang
- Key Laboratory of Earth Surface System and Human-Earth Relations, Ministry of Natural Resources, School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Pei Xia
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huining Zheng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Tigli M, Bak MP, Janse JH, Strokal M, Janssen ABG. The future of algal blooms in lakes globally is in our hands. WATER RESEARCH 2024; 268:122533. [PMID: 39395366 DOI: 10.1016/j.watres.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Lakes are fundamental to society and nature, yet they are currently exposed to excessive nutrients and climate change, resulting in algal blooms. In the future, this may change, but how and where still needs more scientific attention. Here, we explore future trends in algal blooms in lakes globally for >3500 'representative lakes' for the year 2050, considering the attribution of both nutrient and climate factors. We soft-coupled a process-based lake ecosystem model (PCLake+) with a watershed nutrient model (MARINA-Multi) to assess trends in algal blooms in terms of the Trophic State Index for chlorophyll-a (TSI-Chla). Globally between 2010 and 2050, we show a rising trend in algal blooms under fossil-fuelled development (TSI-Chla increase in 91 % of lakes) and a declining trend under sustainable development (TSI-Chla decrease in 63 % of lakes). These changes are significantly attributed to nutrients. While not always significant, climate change attributions point to being unfavourable for lakes in 2050, exacerbating lake water quality. Our study stresses prioritising responsible nutrient and climate management on policy agendas. This implies that the future of algal blooms in lakes is in our hands.
Collapse
Affiliation(s)
- Maddalena Tigli
- UK Centre for Ecology & Hydrology, Penicuik, United Kingdom; Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands.
| | - Mirjam P Bak
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands.
| | - Jan H Janse
- Netherlands Institute of Ecology NIOO-KNAW, P.O. Box 50, 6700AA Wageningen, the Netherlands
| | - Maryna Strokal
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
| | - Annette B G Janssen
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
3
|
Baccour S, Goelema G, Kahil T, Albiac J, van Vliet MTH, Zhu X, Strokal M. Water quality management could halve future water scarcity cost-effectively in the Pearl River Basin. Nat Commun 2024; 15:5669. [PMID: 38971836 PMCID: PMC11227540 DOI: 10.1038/s41467-024-49929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/24/2024] [Indexed: 07/08/2024] Open
Abstract
Reducing water scarcity requires both mitigation of the increasing water pollution and adaptation to the changing availability and demand of water resources under global change. However, state-of-the-art water scarcity modeling efforts often ignore water quality and associated biogeochemical processes in the design of water scarcity reduction measures. Here, we identify cost-effective options for reducing future water scarcity by accounting for water quantity and quality in the highly water stressed and polluted Pearl River Basin in China under various socio-economic and climatic change scenarios based on the Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Our modeling approach integrates a nutrient model (MARINA-Nutrients) with a cost-optimization procedure, considering biogeochemistry and human activities on land in a spatially explicit way. Results indicate that future water scarcity is expected to increase by a factor of four in most parts of the Pearl River Basin by 2050 under the RCP8.5-SSP5 scenario. Results also show that water quality management options could half future water scarcity in a cost-effective way. Our analysis could serve as an example of water scarcity assessment for other highly water stressed and polluted river basins around the world and inform the design of cost-effective measures to reduce water scarcity.
Collapse
Affiliation(s)
- Safa Baccour
- Department of Agricultural Economics, Finance and Accounting, University of Cordoba, 14071, Cordoba, Spain
| | | | - Taher Kahil
- Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), 2361, Laxenburg, Austria.
| | - Jose Albiac
- Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), 2361, Laxenburg, Austria
- Department of Economic Analysis, University of Zaragoza, 50009, Zaragoza, Spain
| | - Michelle T H van Vliet
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3584CS, Utrecht, The Netherlands
| | - Xueqin Zhu
- Environmental Economics and Natural Resources, Wageningen University, 6708PB, Wageningen, The Netherlands
| | - Maryna Strokal
- Earth Systems and Global Change, Wageningen University, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Bayable G, Cai J, Mekonnen M, Legesse SA, Ishikawa K, Sato S, Kuwahara VS. Spatiotemporal variability of lake surface water temperature and water quality parameters and its interrelationship with water hyacinth biomass in Lake Tana, Ethiopia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45929-45953. [PMID: 38980490 DOI: 10.1007/s11356-024-34212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Urbanization, agriculture, and climate change affect water quality and water hyacinth growth in lakes. This study examines the spatiotemporal variability of lake surface water temperature, turbidity, and chlorophyll-a (Chl-a) and their association with water hyacinth biomass in Lake Tana. MODIS Land/ Lake surface water temperature (LSWT), Sentinel 2 MSI Imagery, and in-situ water quality data were used. Validation results revealed strong positive correlations between MODIS LSWT and on-site measured water temperature (R = 0.90), in-situ turbidity and normalized difference turbidity index (NDTI) (R = 0.92), and in-situ Chl-a and normalized difference chlorophyll index (NDCI) (R = 0.84). LSWT trends varied across the lake, with increasing trends in the northeastern, northwestern, and southwestern regions and decreasing trends in the western, southern, and central areas (2001-2022). The spatial average LSWT trend decreased significantly in pre-rainy (0.01 ℃/year), rainy (0.02 ℃/year), and post-rainy seasons (0.01℃/year) but increased non-significantly in the dry season (0.00 ℃/year) (2001-2022, P < 0.05). Spatial average turbidity decreased significantly in all seasons, except in the pre-rainy season (2016-2022). Likewise, spatial average Chl-a decreased significantly in pre-rainy and rainy seasons, whereas it showed a non-significant increasing trend in the dry and post-rainy seasons (2016-2022). Water hyacinth biomass was positively correlated with LSWT (R = 0.18) but negatively with turbidity (R = -0.33) and Chl-a (R = -0.35). High spatiotemporal variability was observed in LSWT, turbidity, and Chl-a, along with overall decreasing trends. The findings suggest integrated management strategies to balance water hyacinth eradication and its role in water purification. The results will be vital in decision support systems and preparing strategic plans for sustainable water resource management, environmental protection, and pollution prevention.
Collapse
Affiliation(s)
- Getachew Bayable
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan.
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Ji Cai
- Lake Biwa Environmental Research Institute, Otsu, Shiga, Japan
| | - Mulatie Mekonnen
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Solomon Addisu Legesse
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Kanako Ishikawa
- Lake Biwa Environmental Research Institute, Otsu, Shiga, Japan
| | - Shinjiro Sato
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Victor S Kuwahara
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
5
|
Liu F, Zhang H, Wang Y, Yu J, He Y, Wang D. Hysteresis analysis reveals how phytoplankton assemblage shifts with the nutrient dynamics during and between precipitation patterns. WATER RESEARCH 2024; 251:121099. [PMID: 38184914 DOI: 10.1016/j.watres.2023.121099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
The escalation of global eutrophication has significantly increased due to the impact of climate change, particularly the increased frequency of extreme rainfall events. Predicting and managing eutrophication requires understanding the consequences of precipitation events on algal dynamics. Here, we assessed the influence of precipitation events throughout the year on nutrient and phytoplankton dynamics in a drinking water reservoir from January 2020 to January 2022. Four distinct precipitation patterns, namely early spring flood rain (THX), Plum rain (MY), Typhoon rain (TF), and Dry season (DS), were identified based on rainfall intensity, duration time, and cumulative rainfall. The study findings indicate that rainfall is the primary driver of algal dynamics by altering nutrient levels and TN:TP ratios during wet seasons, while water temperature becomes more critical during the Dry season. Combining precipitation characteristics with the lag periods between algal proliferation and rainfall occurrence is essential for accurately assessing the impact of rainfall on algal blooms. The highest algae proliferation occurred approximately 20 and 30 days after the peak rainfall during the MY and DS periods, respectively. This was influenced by the intensity and cumulative precipitation. The reservoir exhibited two distinct TN/TP ratio stages, with average values of 52 and 19, respectively. These stages were determined by various forms of nitrogen and phosphorus in rainfall-driven inflows and were associated with shifts from Bacillariophyta-dominated to Cyanophyta-dominated blooms during the MY and DS seasons. Our findings underscore the interconnected effects of nutrients, temperature, and hydrological conditions driven by diverse rainfall patterns in shaping algal dynamics. This study provides valuable insights into forecasting algal bloom risks in the context of climate change and developing sustainable strategies for lake or reservoir restoration.
Collapse
Affiliation(s)
- Fan Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, China University of Geoscience (Wuhan), Wuhan 430074, China
| | - Honggang Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, China.
| | - Yabo Wang
- College of Civil Engineering, Kashi University, Kashi 844008, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi He
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
6
|
Yang J, Liu X, Strokal M, Kroeze C, Hao P, Bai Z, Ma L. Sources of nitrogen in reservoirs of the Haihe basin (China) 2012-2017. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118667. [PMID: 37515883 DOI: 10.1016/j.jenvman.2023.118667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
Nitrogen (N) is essential for agricultural production. However, too much N can pollute waters. The Chinese government published several policies to reduce N losses from agricultural production to waters since 2015, which may influence river export of N to reservoirs and lakes and their pollution sources. This study aimed to quantify the trends of river export of N to five reservoirs in the Haihe basin and analyze the main sources of this N pollution from 2012 to 2017. This was done by upscaling the MARINA-Lakes (Model to Assess River Inputs of Nutrients to lAkes) model to the Haihe basin, including 22 sub-basins. From 2012 to 2017, river export of total dissolved nitrogen (TDN) to the Haihe reservoirs decreased by 11-51%, associated with a decreased contribution of point sources and an increased contribution of diffuse sources for the whole study area Sub-basins draining into Reservoir Pan-Da contributed over one-third to the total TDN export by rivers in 2012 and 2017. The share of diffuse sources in river export of TDN to the Guanting reservoir reached 63% in 2017. Among the TDN diffuse sources, the contribution of animal manure (a diffuse source) to river export of diffuse TDN increased to 28%, 25%, and 23% for the sub-basins of Reservoir Miyun, Pan-da, and Guanting from 2012 to 2017, respectively. Among the TDN point sources, direct manure discharges were the main contributors to the river export of point TDN to the Haihe reservoirs in 2012. By 2017, direct discharges of untreated human waste became another important point source, especially for the Lake Baiyangdian and Reservoir Gang-Huang. This study concludes the need for specific agricultural N management options for different reservoirs of the Haihe basin.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | - Xia Liu
- School of Mathematics and Science, Hebei GEO University, 136 Huai'an Road, Shijiazhuang, 050031, Hebei, China
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen, 6780, PB, the Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen, 6780, PB, the Netherlands
| | - Peixian Hao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China.
| |
Collapse
|
7
|
de Jesus Delmiro Rocha M, Neto IEL. Nitrogen mass balance and uptake velocity for eutrophic reservoirs in the Brazilian semiarid region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95621-95633. [PMID: 37556054 DOI: 10.1007/s11356-023-29136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
The nitrogen (N) cycle from the catchment to the downstream reservoir is complex, particularly the quantification of N losses. However, in order to assess the nitrogen impact in a reservoir ecosystem, simplified models may be applicable regarding the TN load production and the magnitude of lake TN removal. This study presented a methodology to perform and validate a TN mass balance to further calibrate a simplified coefficient for TN losses (vf.) in 29 tropical semiarid reservoirs. The study reservoirs were highly productive ecosystems with an average total nitrogen (TN) concentration, accounting for all measurements in all reservoirs, ranging from 0.59 to 3.84 mg L-1. Regarding the production of TN load, the median values ranged from 4.35 to 2,499.43 t year-1 with median of 80.34 t year-1. The TN loads were estimated through an annual mass balance over a 24-year period. The median of the estimates was compared with reference values obtained by using the export modelling coefficient. The correlation between the median estimated and reference loads resulted in satisfactory agreement (r2 0.88) and reinforced the reliability of the mass balance alternative. From the validated TN loads, the TN uptake velocity (vf) was estimated for all reservoirs (44.9 ± 20.1 m year-1) and could be described as a general function of the water residence time. The reservoirs of the study region have demonstrated higher vf than temperate lakes and reservoirs and similar vf with Latin America/Caribbean ones. As expected, reservoirs of warmer climates tend to present intensified N loss processes compared to lakes and reservoirs of temperate regions. The methodology proposed in the present study can be used to potentially improve water quality management in tropical semiarid reservoirs.
Collapse
Affiliation(s)
- Maria de Jesus Delmiro Rocha
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará - UFC, Bl. 713, Center of Technology, Fortaleza, Ceará, Brazil
| | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará - UFC, Bl. 713, Center of Technology, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
Fadum JM, Hall EK. Nitrogen is unlikely to consistently limit primary productivity in most tropical lakes. Ecosphere 2023. [DOI: 10.1002/ecs2.4451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
9
|
Chen X, Wang M, Kroeze C, Chen X, Ma L, Chen X, Shi X, Strokal M. Nitrogen in the Yangtze River Basin: Pollution Reduction through Coupling Crop and Livestock Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17591-17603. [PMID: 36445871 DOI: 10.1021/acs.est.1c08808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Livestock production poses a threat to water quality worldwide. A better understanding of the contribution of individual livestock species to nitrogen (N) pollution in rivers is essential to improve water quality. This paper aims to quantify inputs of dissolved inorganic nitrogen (DIN) to the Yangtze River from different livestock species at multiple scales and explore ways for reducing these inputs through coupling crop and livestock production. We extended the previously developed model MARINA (Model to Assess River Input of Nutrient to seAs) with the NUFER (Nutrient flows in Food chains, Environment, and Resource use) approach for livestock. Results show that DIN inputs to the Yangtze River vary across basins, sub-basins, and 0.5° grids, as well as across livestock species. In 2012, livestock production resulted in 2000 Gg of DIN inputs to the Yangtze River. Pig production was responsible for 55-85% of manure-related DIN inputs. Rivers in the downstream sub-basin received higher manure-related DIN inputs than rivers in the other sub-basins. Around 20% of the Yangtze basin is considered as a manure-related hotspot of river pollution. Recycling manure on cropland can avoid direct discharges of manure from pig production and thus reduce river pollution. The potential for recycling manure is larger in cereal production than in other crop species. Our results can help to identify effective solutions for coupling crop and livestock production in the Yangtze basin.
Collapse
Affiliation(s)
- Xuanjing Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 2 Yuanmingyuan West Road, Beijing100193, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Tiansheng Road 02, Chongqing400715, China
| | - Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PBWageningen, The Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PBWageningen, The Netherlands
| | - Xi Chen
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PBWageningen, The Netherlands
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang050021, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Tiansheng Road 02, Chongqing400715, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Tiansheng Road 02, Chongqing400715, China
- Field Scientific Observation and Research Station for Purple Soil Quality and Eco-Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing400715, China
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PBWageningen, The Netherlands
| |
Collapse
|
10
|
Hao M, Chen H, He Y, Wang X, Zhang Y, Lao H, Song H, Chen W, Xue G. Recycling sludge-derived hydrochar to facilitate advanced denitrification of secondary effluent: Role of extracellular electron transfer. CHEMOSPHERE 2022; 291:132683. [PMID: 34710461 DOI: 10.1016/j.chemosphere.2021.132683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Sludge-derived hydrochar (SDHC) was recycled to enhance the denitrification of secondary effluent. Under different carbon to nitrogen (C/N) ratios, the nitrogen removal efficiency (NRE) and carbon source efficiency (CSE) of denitrification coupled with SDHC (DN-SDHC) were distinctly higher than that of denitrification alone (DN). Moreover, at the C/N ratios of 3.0-3.2 and 5.8-5.9, the nitrogen removal rate (NRR) of DN-SDHC was 3.6- and 1.5-fold that of DN, respectively. The characterization of SDHC before and after used in denitrification indicated that the metal ions and functional groups did not participate in denitrification. Although SDHC has no redox capacity to donate electron for denitrification, its higher conductivity enabled the acceleration of extracellular electron transfer from carbon source to denitrifiers. The abundance of denitrifying community and functional genes was synchronously promoted by SDHC. Especially, the significant increase of nosZ gene encoding nitrous oxide reductase was conducive to mitigating the emission of N2O greenhouse gas.
Collapse
Affiliation(s)
- Mingxin Hao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hongbiao Lao
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Hualong Song
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Wei Chen
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai, 201620, China.
| |
Collapse
|
11
|
Li Y, Wang M, Chen X, Cui S, Hofstra N, Kroeze C, Ma L, Xu W, Zhang Q, Zhang F, Strokal M. Multi-pollutant assessment of river pollution from livestock production worldwide. WATER RESEARCH 2022; 209:117906. [PMID: 34896811 DOI: 10.1016/j.watres.2021.117906] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Livestock production is often a source of multiple pollutants in rivers. However, current assessments of water pollution seldomly take a multi-pollutant perspective, while this is essential for improving water quality. This study quantifies inputs of multiple pollutants to rivers from livestock production worldwide, by animal types and spatially explicit. We focus on nitrogen (N), phosphorus (P), and Cryptosporidium (pathogen). We developed the MARINA-Global-L (Model to Assess River Inputs of pollutaNts to seAs for Livetsock) model for 10,226 sub-basins and eleven livestock species. Global inputs to land from livestock are around 94 Tg N, 19 Tg P, and 2.9 × 1021 oocysts from Cryptosporidium in 2010. Over 57% of these amounts are from grazed animals. Asia, South America, and Africa account for over 68% of these amounts on land. The inputs to rivers are around 22 Tg Total Dissolved Nitrogen (TDN), 1.8 Tg Total Dissolved P (TDP), and 1.3 × 1021 oocysts in 2010. Cattle, pigs, and chickens are responsible for 74-88% of these pollutants in rivers. One-fourth of the global sub-basins can be considered pollution hotspots and contribute 71-95% to the TDN, TDP, and oocysts in rivers. Our study could contribute to effective manure management for individual livestock species in sub-basins to reduce multiple pollutants in rivers.
Collapse
Affiliation(s)
- Yanan Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China; Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands.
| | - Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Xuanjing Chen
- College of Resources and Environment, Southwest University, Tiansheng Road 02, Chongqing, 400715, PR China
| | - Shilei Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Nynke Hofstra
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, PR China
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China.
| | - Qi Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China; Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| |
Collapse
|
12
|
Goshu G, Koelmans AA, de Klein JJM. Performance of faecal indicator bacteria, microbial source tracking, and pollution risk mapping in tropical water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116693. [PMID: 33631685 DOI: 10.1016/j.envpol.2021.116693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Faecal indicator bacteria (FIB) are used for the assessment of faecal pollution and possible water quality deterioration. There is growing evidence that FIB used in temperate regions are not adequate and reliable to detect faecal pollution in tropical regions. Hence, this study evaluated the adequacy of FIB, including total coliforms (TC), Escherichia coli (EC), Enterococci (IEC), and Clostridium perfringens (CP) in the high-altitude, tropical country of Ethiopia. In addition to FIB, for microbial source tracking (MST), a ruminant-associated molecular marker was applied at different water types and altitudes, and faecal pollution risk mapping was conducted based on consensus FIB. The performances of the indicators were evaluated at 22 sites from different water types. The results indicate that EC cell enumeration and CP spore determination perform well for faecal contamination monitoring. Most of the sub-basins of Lake Tana were found to be moderately to highly polluted, and the levels of pollution were demonstrated to be higher in the rainy season than in the post-rainy season. Markers associated with ruminants (BacR) were identified in more than three quarters of the sites. A bacterial pollution risk map was developed for sub-basins of Lake Tana, including the un-gauged sub-basins. We demonstrate how bacterial pollution risk mapping can aid in improvements to water quality testing and reduce risk to the general population from stream bacteria.
Collapse
Affiliation(s)
- Goraw Goshu
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands; College of Agriculture and Environmental Sciences and Blue Nile Water Institute, Bahir Dar University, P.O. Box 1701, Bahir Dar, Ethiopia.
| | - A A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| | - J J M de Klein
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| |
Collapse
|
13
|
Bereded NK, Abebe GB, Fanta SW, Curto M, Waidbacher H, Meimberg H, Domig KJ. The Impact of Sampling Season and Catching Site (Wild and Aquaculture) on Gut Microbiota Composition and Diversity of Nile Tilapia ( Oreochromis niloticus). BIOLOGY 2021; 10:biology10030180. [PMID: 33804538 PMCID: PMC8001861 DOI: 10.3390/biology10030180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary The gut microbiota (all microbes in the intestine) of fishes is known to play an essential role in diverse aspects of their life. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. This study characterised the microbial composition in gut samples of Nile Tilapia collected from Lake Tana and the Bahir Dar aquaculture facility centre applying modern molecular techniques. The results show clear differences in the gut microbiota in fish from the Lake Tana and the ones from aquaculture. Further, also significant differences were observed on the composition of the gut microbiota across sampling months. Samples from the aquaculture centre displayed a higher diversity than the wild catch Nile tilapia from Lake Tana even though there is also an overlapping of the detected microbial groups. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work will help to precisely explain the causes of these changes and their influence of the health and growth of Nile tilapia in Ethiopian lakes as well as under aquaculture conditions. Abstract The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.
Collapse
Affiliation(s)
- Negash Kabtimer Bereded
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria;
- Department of Biology, Bahir Dar University, Bahir Dar, Post Code 79, Ethiopia;
- Correspondence:
| | | | - Solomon Workneh Fanta
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Post Code 26, Ethiopia;
| | - Manuel Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendle-Straße 33, 1180 Vienna, Austria; (M.C.); (H.M.)
- MARE−Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-001 Lisboa, Portugal
| | - Herwig Waidbacher
- Institute for Hydrobiology and Aquatic Ecosystems Management, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendle-Straße 33/DG, 1180 Vienna, Austria;
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendle-Straße 33, 1180 Vienna, Austria; (M.C.); (H.M.)
| | - Konrad J. Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria;
| |
Collapse
|