1
|
Guimarães-Ervilha LO, Assis MQ, Iasbik-Lima T, da Silva Bento IP, Machado-Neves M. Could the Effect of Arsenic on the Testis be Reversed after Removing the Insult? A Meta-analysis Study. Biol Trace Elem Res 2025:10.1007/s12011-025-04513-4. [PMID: 39786535 DOI: 10.1007/s12011-025-04513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Arsenic in drinking water has been associated with an increased risk of health concerns. This metalloid is ingested and distributed throughout the body, accumulating in several organs, including the testis. In this organ, arsenic disturbs steroidogenesis and spermatogenesis and affects male fertility. Although testicular impairment induced by arsenic is well documented, it is still controversial whether such disturbance remains days after the removal of arsenic insult. Therefore, we used a meta-analytical approach to evaluate the magnitude of arsenic effects on testicular parameters and verify whether a withdrawal period can mitigate these alterations. The search terms 'testis" and 'arsenic' were used in PubMed/Medline, Scopus, and Web of Science databases. A total of 1,217 articles were obtained from the literature search, and 73 articles were included in this meta-analysis. Our results showed that arsenic negatively affected hormone synthesis and secretion, testicular weight, tubular and intertubular morphometry, and daily sperm production 24 h after ending exposure. Arsenic inhibited antioxidant enzyme activity, culminating in high oxidative metabolite production and apoptosis occurrence. Most of these effects were not observed in the testis between eight and fifty days after arsenic withdrawal, remaining endocrine dysregulation and oxidative metabolite production. Sodium arsenite was the most toxic compound to the testis at subchronic exposure. These findings shed light on the plasticity and regenerative capacity of testicular interstitium and spermatogonial stem cell niche. However, sexual hormone imbalance remained after arsenic removal. This review evidenced the importance of understanding its toxicity's short- and long-term effects on male reproductive competence.
Collapse
Affiliation(s)
| | - Mírian Quintão Assis
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Thainá Iasbik-Lima
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.
| |
Collapse
|
2
|
Behairy A, Hashem MMM, Abo-El-Sooud K, El-Metwally AE, Soliman AM, Mouneir SM, Hassan BA, Abd-Elhakim YM. Mitigating effect of gallic acid on zinc oxide nanoparticles and arsenic trioxide-induced spermatogenesis suppression, testicular injury, hormonal imbalance, and immunohistochemical changes in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9859-9875. [PMID: 38935127 PMCID: PMC11582332 DOI: 10.1007/s00210-024-03228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The current study compared the effects of incorporated exposure to arsenic trioxide (As) and zinc oxide nanoparticles (ZnONPs) on male reproductive hormones, oxidative stress, and inflammatory biomarkers in adult rats to each metal alone. A defensive trial with gallic acid (GA) has also been studied. A total of 60 adult male Sprague Dawley rats were categorized into six groups: control, GA (20 mg/kg), ZnONPs (100 mg/kg), As (8 mg/kg), ZnONPs with As, and GA concurrently with ZnONPs and As at the same previous doses. The regimens were applied for 60 days in sequence. Current findings showed significant weight loss in all study groups, with testicular weights significantly decreased in the As and combined groups. Testosterone, follicular stimulating hormone, and luteinizing hormone serum levels were also considerably reduced, while serum levels of estradiol increased. Inducible nitric oxide synthase (iNOS) immunoexpression was significantly upregulated while proliferating cell nuclear antigen (PCNA) was downregulated. Moreover, there was a significant elevation of testicular malondialdehyde, reduction of testicular superoxide dismutase, and glutathione peroxidase with disruptive testes, prostate glands, and seminal vesicle alterations in all experimental groups with marked changes in the combined group. Additionally, the present results revealed the protective effects of GA on ZnONPs and As adverse alterations in rats. GA enhanced sperm picture, oxidant status, and hormonal profile. Also, it modulates iNOS and PCNA immunoexpression and recovers the histoarchitecture of the testes, prostate glands, and seminal vesicles. Ultimately, GA may be a promising safeguarding agent against ZnONPs and As-induced disturbances to reproductive parameters.
Collapse
Affiliation(s)
- Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Abeer E El-Metwally
- Pathology Department, Animal Reproduction Research Institute, Giza, 3514805, Egypt
| | - Ahmed M Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo, 11835, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Wang C, Wang B, Wei Y, Li S, Ren J, Dai Y, Liu G. Effect of Gentianella acuta (Michx.) Hulten against the arsenic-induced development hindrance of mouse oocytes. Biometals 2024; 37:1411-1430. [PMID: 38814492 DOI: 10.1007/s10534-024-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The current study was designed to investigate the alleviative effect of Gentianella acuta (Michx.) Hulten (G. acuta) against the sodium arsenite (NaAsO2)-induced development hindrance of mouse oocytes. For this purpose, the in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs) was conducted in the presence of NaAsO2 and G. acuta, followed by the assessments of IVM efficiency including oocyte maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, redox regulation, epigenetic modification, DNA damage, and apoptosis. Subsequently, the alleviative effect of G. acuta intervention on the fertilization impairments of NaAsO2-exposed oocytes was confirmed by the assessment of in vitro fertilization (IVF). The results showed that the G. acuta intervention effectively ameliorated the decreased maturation potentials and fertilization deficiency of NaAsO2-exposed oocytes but also significantly inhibited the DNA damages, apoptosis, and altered H3K27me3 expression level in the NaAsO2-exposed oocytes. The effective effects of G. acuta intervention against redox dysregulation including mitochondrial dysfunctions, accumulated reactive oxygen species (ROS) generation, glutathione (GSH) deficiency, and decreased adenosine triphosphate (ATP) further confirmed that the ameliorative effects of G. acuta intervention against the development hindrance of mouse oocytes were positively related to the antioxidant capacity of G. acuta. Evidenced by these abovementioned results, the present study provided fundamental bases for the ameliorative effect of G. acuta intervention against the meiotic defects caused by the NaAsO2 exposure, benefiting the future application potentials of G. acuta intervention in these nutritional and therapeutic research for attenuating the outcomes of arseniasis.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
- Department of Environmental Science and Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ying Wei
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, Hohhot, 010010, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China.
| |
Collapse
|
4
|
Zhang T, Niu J, Ren T, Lin H, He M, Sheng Z, Tong Y, Jin B, Wu Y, Pan J, Xiao Z, Guo B, Wang Z, Chen T, Pan W. METTL3 prevents granulosa cells mitophagy by regulating YTHDF2-mediated BNIP3 mRNA degradation due to arsenic exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117233. [PMID: 39490100 DOI: 10.1016/j.ecoenv.2024.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The ovary is an important reproductive and endocrine organ for the continuation of the species and the homeostasis of the body's internal environment. Arsenic exposure is a global public health problem. However, the damage to the ovaries caused by exposure to arsenic-contaminated drinking water from neonatal mice period remains unclear. Here, we showed that arsenic exposure resulted in reduced granulosa cell proliferation, diminished ovarian reserve, decreased oogenesis, and endocrine disruption in mice. Mechanistically, arsenic exposure decreased the protein level of METTL3 in granulosa cells. The m6A modification levels of mitophagy regulated gene BNIP3 in 3'UTR region was decreased in arsenic exposed granulosa cells. Meanwhile, YTHDF2, which decays mRNA, bound to the 3'UTR region of BNIP3 was also decreased in arsenic exposed ovarian granulosa cells. Thus, BNIP3 mRNA becames more stable, and mitophagy was increased. The excessive mitophagy in granulosa cells led to endocrine disruption, follicular atresia and diminished ovarian reserve. In summary, our study reveals that METTL3-dependent m6A modification regulates granulosa cell mitophagy and follicular atresia by targeting BNIP3 which are induced by arsenic exposure.
Collapse
Affiliation(s)
- Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China; Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China; Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Jin Niu
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tianhe Ren
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Huan Lin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Meina He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Zhiyi Sheng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Bangming Jin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yingmin Wu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Zhengrong Wang
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China.
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
5
|
Eslami H, Askari FR, Mahdavi M, Taghavi M, Ghaseminasab-Parizi M. Environmental arsenic exposure and reproductive system toxicity in male and female and mitigatory strategies: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:420. [PMID: 39269655 DOI: 10.1007/s10653-024-02197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Environmental Arsenic (As) exposure is one of the main health challenges in different area of the world. As is a significant factor responsible to the reproductive system toxicity in both male and female. In this study, the most important effects mechanisms and biomarkers related to environmental exposure to As and the reproductive system toxicity, and infertility risk are reviewed in male and female. The results showed that the most important As-induced reproductive system toxicity in the male were alteration in the quantity and quality of semen, testicular toxicity, oxidative stress, testosterone reduction, and sperm apoptosis. For female were oxidative stress, spontaneous miscarriage, reproductive cycle disruption, decrease in the estradiol, progesterone, and testosterone levels and impair fecundity. The main mechanisms of reproductive system toxicity caused by As exposure in male were, genotoxic effects, reduction of glutathione, disruption of sex hormones, sperm flagellum formation impairment, inhibition of spermatogenesis, disruption of cell signaling pathways, and metabolites disruption. For female were abnormal signaling in gene expression, hormonal homeostasis, As-accumulation in placental tissue and creation of reactive oxygen, disruption in the neurotransmitters balance, and sex hormones disruption. The suitable biomarkers for As-induced reproductive toxicity in male were changes in testosterone, one-carbon and lipid metabolism, noncoding RNAs, and steroid hormone homeostasis, and for female was human chorionic gonadotropin (hCG) changes. Finaly, taking selenium, zinc, silymarin, vitamins (C and E) and phytonutrients can be effective in reducing the As-induced reproductive system toxicity and infertility risk.
Collapse
Affiliation(s)
- Hadi Eslami
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Environmental Health Engineering, School of Health, Occupational Safety and Health Research Center, NICICO, World Safety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Foad Ranjbar Askari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoumeh Mahdavi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmoud Taghavi
- Department of Environment Health Engineering, School of Health, Social Determinates of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Ghaseminasab-Parizi
- Department of Health Education and Health Promotion, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
6
|
Li X, Shen K, Yuan D, Li X, Quan J, Tian F, Yang Y, Zhang L, Wang J. Sodium arsenite impairs sperm quality via downregulating the ZMYND15 and ZMYND10. ENVIRONMENTAL TOXICOLOGY 2024; 39:4385-4396. [PMID: 38798119 DOI: 10.1002/tox.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Zinc finger MYND-type containing 15 (ZMYND15) has been documented to play important roles in spermatogenesis, and mutants contribute to recessive azoospermia, severe oligozoospermia, non-obstructive azoospermia, teratozoospermia, even male infertility. ZMYND10 is involved in sperm motility. Whether environmental pollutants impair male fertility via regulating the expression of ZMYND15 and ZMYND10 has not been studied. Arsenic exposure results in poor sperm quality and male infertility. In order to investigate whether arsenic-induced male reproductive toxicity is related to the expression of ZMYND15, ZMYND10 and their target genes, we established a male rat model of sodium arsenite exposure-induced reproductive injury, measured sperm quality, serum hormone levels, mRNA and protein expressions of intratesticular ZMYND15 and ZMYND10 as well as their target genes. The results showed that, in addition to the increased mRNA expression of Tnp1, sodium arsenite exposure reduced sperm quality, serum hormone levels, and mRNA and protein expression of intratesticular ZMYND15 and ZMYND10 and their target genes in male rats compared with the control group (p < .05). Therefore, our study first showed that the environmental pollutant arsenic impairs sperm quality in male rats by reducing the expression of ZMYND10 and ZMYND15 and their regulatory genes, which provides a possible diagnostic marker for environmental pollutants-induced male infertility.
Collapse
Affiliation(s)
- Xiangli Li
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Kaina Shen
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Dunxuan Yuan
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Xi Li
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Jinrou Quan
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Fangzhou Tian
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Yan Yang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Li Zhang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Junling Wang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| |
Collapse
|
7
|
Mukherjee AG, Valsala Gopalakrishnan A. Rosolic acid as a novel activator of the Nrf2/ARE pathway in arsenic-induced male reproductive toxicity: An in silico study. Biochem Biophys Rep 2024; 39:101801. [PMID: 39175663 PMCID: PMC11340599 DOI: 10.1016/j.bbrep.2024.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Male reproductive toxicity as a result of arsenic exposure is linked with oxidative stress and excessive generation of reactive oxygen species (ROS). It leads to an imbalance between ROS production and antioxidant defense mechanisms ultimately resulting in male infertility. The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor that responds to cellular stressors controlling the oxidative state, mitochondrial dysfunction, inflammation, and proteostasis. This study aims to investigate the potential of Rosolic acid (ROA) to act as a novel Nrf2 activator by mitigating oxidative stress to combat arsenic-induced male reproductive toxicity. The protein and ligands were prepared in the BIOVIA Discovery Studio, followed by protein-ligand docking using auto dock vina integrated with the PyRx-Virtual Screening Tool. Then the ADME properties were analyzed using the SwissADME tool to get a clear idea about the physicochemical properties, lipophilicity, water solubility, pharmacokinetics, and drug likeliness of ROA. It was followed by molecular dynamics simulation (MDS) studies using GROMACS. The 3D and 2D interaction maps revealed the interactions of Keap 1 with ROA. Keap1-ROA complex was found to have a binding energy of -7.8 kcal/mol. ROA showed 0 violations for Lipinski and 0 alerts each for PAINS and Brenk and a bioavailability score of 0.55. The BOILED-Egg representation showcases that ROA is predicted as passively crossing the blood-brain barrier (BBB). The MDS described 2FLU-ROA as a stable system. This work portrays that ROA can be a potent Nrf2 activator by exhibiting an inhibitory activity against the Keap1 protein and thus mitigating oxidative stress in arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
8
|
Li H, Wang XR, Hu YF, Xiong YW, Zhu HL, Huang YC, Wang H. Advances in immunology of male reproductive toxicity induced by common environmental pollutants. ENVIRONMENT INTERNATIONAL 2024; 190:108898. [PMID: 39047547 DOI: 10.1016/j.envint.2024.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been identified as major risk factors for male reproductive health, even associated with male infertility. Male infertility is usually due to the reproductive system damage, which may be influenced by the exposure to contaminants such as heavy metals, plasticizers, along with genetics and lifestyle. Testicular immune microenvironment (TIM) is important in maintaining normal physiological functions of the testis, whether disturbed TIM after exposure to environmental toxicants could induce reproductive toxicity remains to be explored. Therefore, the current review aims to contribute to the further understanding of exposure and male infertility by characterizing environmental exposures and the effect on TIM. We first summarized the male reproductive toxicity phenotypes induced by common environmental pollutants. Contaminants including heavy metals and plastic additives and fine particulate matter (PM2.5), have been repetitively associated with male infertility, whereas emerging contaminants such as perfluoroalkyl substances and micro(nano)plastics have also been found to disrupt TIM and lead to male reproductive toxicity. We further reviewed the importance of TIM and its homeostasis in maintaining the normal physiological functions of the testis. Most importantly, we discussed the advances in immunology of male reproductive toxicity induced by metals and metalloids, plastic additives, persistent organic pollutants (POPs), micro(nano)plastic and PM2.5 to suggest the importance of reproductive immunotoxicology in the future study of environmental toxicants, but also contribute to the development of effective prevention and treatment strategies for mitigating adverse effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Hao Li
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Xin-Run Wang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yi-Fan Hu
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yong-Wei Xiong
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Hua-Long Zhu
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yi-Chao Huang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230000, China.
| | - Hua Wang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230000, China.
| |
Collapse
|
9
|
Yang Y, Hong Y, Han J, Yang Z, Huang N, Xu B, Ma Z, Wang Q. Nerve growth factor alleviates arsenic-induced testicular injury by enhancing the function of Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116578. [PMID: 38861803 DOI: 10.1016/j.ecoenv.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Sertoli cells (SCs) maintain testicular homeostasis and promote spermatogenesis by forming the blood-testis barrier (BTB) and secreting growth factors. The pro-proliferative and anti-apoptotic effects of nerve growth factor (NGF) on SCs have been proved previously. It is still unclear whether the damage effect of arsenic on testis is related to the inhibition of NGF expression, and whether NGF can mitigate arsenic-induced testicular damage by decreasing the damage of SCs induced by arsenic. Here, the lower expression of NGF in testes of arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) was observed through detection of Western blot and Real-time PCR. Subsequently, hematoxylin and eosin (HE) staining, Evans blue staining and transmission electron microscopy were used to evaluate the pathology, BTB permeability and tight junction integrity in testes of control mice, arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) and arsenic + NGF treated mice (freely drinking water containing 15 mg/l of NaAsO2 + intraperitoneal injection with 30 μg/kg of NGF), respectively. Evidently, spermatogenic tubule epithelial cells in testis of arsenic exposed mice were disordered and the number of cell layers was reduced, accompanied by increased permeability and damaged integrity of the tight junction in BTB, but these changes were less obvious in testes of mice treated with arsenic + NGF. In addition, the sperm count, motility and malformation rate of mice treated with arsenic + NGF were also improved. On the basis of the above experiments, the viability and apoptosis of primary cultured SCs treated with arsenic (10 μM NaAsO2) or arsenic + NGF (10 μM NaAsO2 + 100 ng/mL NGF) were detected by Cell counting kit-8 (CCK8) and transferase-mediated DUTP-biotin nick end labeling (TUNEL) staining, respectively. It is found that NGF ameliorated the decline of growth activity and the increase of apoptosis in arsenic-induced SCs. This remarkable biological effect that NGF inhibited the increase of Bax expression and the decrease of Bcl-2 expression in arsenic-induced SCs was also determined by western blot and Real-time PCR. Moreover, the decrease in transmembrane resistance (TEER) and the expression of tight junction proteins ZO-1 and occludin was mitigated in SCs induced by arsenic due to NGF treatment. In conclusion, the above results confirmed that NGF could ameliorate the injury effects of arsenic on testis, which might be related to the function of NGF to inhibit arsenic-induced SCs injury.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China
| | - Nanmin Huang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China
| | - Binwei Xu
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China
| | - Zhaolei Ma
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China.
| |
Collapse
|
10
|
Zhang XY, Zhang YH, Guo YY, Luo Y, Xu SS, Lu X, Liang NN, Wu HY, Huang YC, Xu DX. Arsenic exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124060. [PMID: 38685555 DOI: 10.1016/j.envpol.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Arsenic (As) is a notorious environmental toxicant widely present in various natural environments. As exposure has been correlated with the decline in sperm motility. Yet, the mechanism has not been fully elucidated. Adult male C57 mice were given 0, 1, or 15 mg/L NaAsO2 for 10 weeks. The mature seminiferous tubules and sperm count were decreased in As-exposed mice. Sperm motility and several sperm motility parameters, including average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), beat-cross frequency (BCF), linearity (LIN), straightness (STR), and amplitude of lateral head displacement (ALH), were declined in As-exposed mice. RNA sequencing and transcriptomics analyses revealed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways. Untargeted metabolomics analyses indicated that energy metabolism was disrupted in As-exposed mouse testes. Gene set enrichment analysis showed that glycolysis and oxidative phosphorylation were disturbed in As-exposed mouse testes. As-induced disruption of testicular glucose metabolism and oxidative phosphorylation was further validated by RT-PCR and Western blotting. In conclusion, As exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes.
Collapse
Affiliation(s)
- Xiao-Yi Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Hao Zhang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yue-Yue Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yan Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shan-Shan Xu
- Department of Public Health and General Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Nan-Nan Liang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hong-Yan Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Ma Y, Hu C, Cai G, Xia Q, Fan D, Cao Y, Pan F. Associations of exposure to ambient fine particulate matter constituents from different pollution sources with semen quality: Evidence from a prospective cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123200. [PMID: 38135136 DOI: 10.1016/j.envpol.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The association between ambient fine particulate matter (PM2.5) exposure and semen quality remains inconclusive, possibly due to variations in pollution sources and PM2.5 compositions. Studies investigating the constituents of PM2.5 have been hindered by small sample sizes, and research exploring the relationships between PM2.5 pollution sources and semen quality is lacking. To address this gap, we conducted a comprehensive study based on the Anhui prospective assisted reproduction cohort to evaluate the associations between semen quality and the constituents and pollution sources of PM2.5. This study included 9013 semen samples from 4417 males in the urban districts of Hefei. The median concentrations of PM2.5 constituents, including eight metals and four water-soluble ions (WSIs), were measured for seven days per month at two monitoring stations during the 0-90-day exposure window. A linear mixed-effects model, weighted quantile sum regression, and positive matrix factorisation were used to evaluate the associations of the constituents and pollution sources of PM2.5 with semen quality. The results showed that exposure to PM2.5-bound metals (antimony, arsenic, cadmium, lead, and thallium) and WSIs (sulphate and chloride) were negatively associated with semen quality parameters. Moreover, mixtures of PM2.5-bound metals and WSIs were negatively associated with semen quality. Additionally, PM2.5 derived from traffic emissions was negatively associated with semen quality. In summary, our study revealed that ambient PM2.5 and its constituents, especially metals, were negatively associated with semen quality. Antimony, lead, and thallium emerged as the primary contributors to toxicity, and PM2.5 from traffic emissions was associated with decreased semen quality. These findings have important public health implications for the management of PM2.5 pollution in the context of male reproductive health.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Qing Xia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Li J, Nan B, Xu Z, Chang H, Xu S, Ren M, Zhang Y, Wu Y, Chen Y, Guo D, Shen H. Arsenic exposure caused male infertility indicated by testis and sperm metabolic dysfunction in SD rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166838. [PMID: 37689206 DOI: 10.1016/j.scitotenv.2023.166838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Arsenic containment is one of the most severe environmental problems. It has been reported that arsenic exposure could cause male reproductive damage. However, the evidence chain from sodium arsenite (NaAsO2) exposure to adverse male fertility outcomes has not been completed by molecular events. In this study, adult male rats were exposed to NaAsO2 for eight weeks via drinking water for verifying their reproductive capacity by checking the phenotypes of testis damage, sperm quality, and female pregnancy rate. H&E staining indicated testicular cells had atrophied, and necrosis was observed under transmission electron microscopy. Sperm viability tended to decrease, and sperm malformation increased. Notably, metabolites in the testes and sperm showed substantial disruption, especially sperm metabolites. The pregnancy rate tests showed that arsenic decreased male rats' reproduction, with some adverse outcomes of the increased numbers of unpregnant females. However, the fetal crown-rump length remained unaltered, indicating that the pregnancy rate was impacted by arsenic exposure but not fetal growth. On arsenic toxicometabolomics analysis, docosahexaenoic acid (DHA) in sperm was the clearest metabolic sign to correlate with the unpregnant rate. In summary, arsenic exposure can cause male infertility via the injured sperm, which results in decreased female pregnancy. The DHA information may imply the dietary intervention for improving sperm quality. Although the fetal growth of the successful pregnancy has not been affected, the changes in epigenetic phenotypes carried by sperms still need to be verified.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Zehua Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Song Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Miaomiao Ren
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yike Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yaru Wu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yujie Chen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Dongbei Guo
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, PR China.
| |
Collapse
|
13
|
Yousuf R, Verma PK, Sharma P, Sood S, Pankaj NK, Agarwal S. Testicular Toxicity following Subacute Exposure of Arsenic and Mancozeb alone and in Combination: Ameliorative Efficacy of Quercetin and Catechin. Toxicol Int 2023:255-267. [DOI: 10.18311/ti/2023/v30i3/32276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/30/2023] [Indexed: 03/29/2025] Open
Abstract
Mancozeb (MZ) is a contact fungicide having low toxicity in non-target species, but its continuous exposure can be harmful. The aim of the present study was to determine the impact of the toxic interaction between MZ and arsenic on the testicular tissue of rats and to compare the amelioration potential of quercetin and catechin against the induced toxicity. Sixty adult rats were randomly allocated into 10 groups with 6 animals in each. A significant (p<0.05) decline in TAS, TTH, SOD, CAT, GPx, GR and TTH and a rise (p<0.05) in MDA and AOPP-were recorded in testicular tissue of MZ-treated rats in comparison to control. Exposure to different doses of arsenic (10, 50, 100 ppb) also produced a dose-dependent effect on these oxidative biomarkers. Arsenic exposure produces potentiating MZ-induced testicular toxicity in Wistar rats. Testicular damage was further corroborated by extremely severe histopathological changes viz., interstitial as well as sub-capsular congestion, oedema aside from degeneration, necrosis and loss of seminiferous tubules and a drastic deterioration in sperm motility in this group. In contrast, administration of toxicants along with quercetin or catechin markedly attenuated the alterations in oxidative as well as cellular damage biomarkers and testicular histopathological alterations. Our results suggested that simultaneous low dose exposure to arsenic potentiated testicular toxicity induced by MZ. Furthermore, catechin was more potent as compared to quercetin in ameliorating testicular changes induced by concurrent arsenic and MZ exposure.
Collapse
|
14
|
Recio-Vega R, Facio-Campos RA, Hernández-González SI, Olivas-Calderón E. State of the Art of Genomic Technology in Toxicology: A Review. Int J Mol Sci 2023; 24:ijms24119618. [PMID: 37298568 DOI: 10.3390/ijms24119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid growth of genomics techniques has revolutionized and impacted, greatly and positively, the knowledge of toxicology, ushering it into a "new era": the era of genomic technology (GT). This great advance permits us to analyze the whole genome, to know the gene response to toxicants and environmental stressors, and to determine the specific profiles of gene expression, among many other approaches. The aim of this work was to compile and narrate the recent research on GT during the last 2 years (2020-2022). A literature search was managed using the PubMed and Medscape interfaces on the Medline database. Relevant articles published in peer-reviewed journals were retrieved and their main results and conclusions are mentioned briefly. It is quite important to form a multidisciplinary taskforce on GT with the aim of designing and implementing a comprehensive, collaborative, and a strategic work plan, prioritizing and assessing the most relevant diseases, so as to decrease human morbimortality due to exposure to environmental chemicals and stressors.
Collapse
Affiliation(s)
| | - Rolando Adair Facio-Campos
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| | - Sandra Isabel Hernández-González
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| | - Edgar Olivas-Calderón
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| |
Collapse
|
15
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
16
|
Ye F, Wu L, Li H, Peng X, Xu Y, Li W, Wei Y, Chen F, Zhang J, Liu Q. SIRT1/PGC-1α is involved in arsenic-induced male reproductive damage through mitochondrial dysfunction, which is blocked by the antioxidative effect of zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121084. [PMID: 36681380 DOI: 10.1016/j.envpol.2023.121084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Exposure to arsenic poses threats to male reproductive system, including impairing the testes and sperm quality. Although an association regarding arsenic exposure and male reproductive damage has been reported, the undergoing molecular mechanisms and interventions for prevention remain unclear. For the present work, male mice were exposed to 0, 2.5, 5, or 10 ppm sodium arsenite (NaAsO2) for 8 months. The results showed that arsenic-exposed mice had reduced fertility with abnormalities in the testes, epididymides, and sperm. Exposure of mice to arsenic caused a redox imbalance, decreased SIRT1 and PGC-1α levels, and affected mitochondrial biogenesis and proteins related to mitochondrial dynamics. For immortalized spermatogenic (GC-2) cells, arsenic caused apoptosis and oxidative stress, reduced SIRT1/PGC-1α levels and ATP production, inhibited mitochondrial respiration, and changed the mitochondrial membrane potential (MMP). Mitochondrial biogenesis and dynamics were also impaired. However, by reducing mitochondrial damage in GC-2 cells, upregulation of SIRT1 or zinc (Zn) supplementation reversed the apoptosis induced by arsenic. For mice, Zn supplementation blocked arsenic-induced oxidative stress, the decreases of SIRT1 and PGC-1α levels, and the impairment of mitochondrial function, and it reversed the damage to testes, low sperm quality, and low litter size. Collectively, these results suggest that arsenic causes excessive production of ROS, inhibits the SIRT1/PGC-1α pathway, and causing mitochondrial dysfunction by mediating impairment of mitochondrial biogenesis and dynamics, which results in germ cells apoptosis and male reproductive damage, processes that are blocked by Zn via an antioxidative effect. Our study contributes to understanding of the mechanisms for arsenic-induced male reproductive damage and points to the therapeutic significance of Zn.
Collapse
Affiliation(s)
- Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
18
|
Kamel A, Saberiyan M, Mirfakhraie R, Teimori H. Reduced expression of CFAP44 and CFAP44-AS1 may affect sperm motility and morphology. Andrologia 2022; 54:e14447. [PMID: 35470451 DOI: 10.1111/and.14447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Motility and morphology are two important characteristics of a fertile spermatozoon. CFAP44 gene encodes flagellar protein 44 involved in the formation and function of the flagella and cilia. Long non-coding RNAs are regulatory elements involved in several processes, including reproduction. We aimed to study the alterations in the expressions of CFAP44 and CFAP44-AS1 genes in infertile men with asthenozoospermia and terato-asthenozoospermia. In this case-control study, a total of 105 subjects, including 35 TAZ patients, 34 AZ patients and 35 normozoospermic men, were enrolled. After RNA extraction from spermatozoa samples, quantitative real-time PCR was performed to compare the expression of CFAP44 and CFAP44-AS1 between the studied groups. A meaningful reduction in CFAP44 expression and a significant reduction in the expression of CFAP44-AS1 were observed. Moreover, a positive correlation between both genes' expressions and normal sperm morphology was detected in NZ, AZ and TAZ groups. Also, there was a positive relation between CFAP44 gene expression and sperm motility in AZ and TAZ groups. The expression of CFAP44-AS1 was positively correlated with sperm motility and morphology. Present results confirm the role of CFAP44 and CFAP44-AS1 in the motility and morphology of spermatozoon, and deregulation of these genes may contribute to male infertility.
Collapse
Affiliation(s)
- Ali Kamel
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
19
|
Peng Z, Yang Q, Yeerken R, Chen J, Liu X, Li X. Multi-omics analyses reveal the mechanisms of Arsenic-induced male reproductive toxicity in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127548. [PMID: 34741939 DOI: 10.1016/j.jhazmat.2021.127548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As), a widespread environmental contaminant, can induce serious male reproductive injury; however, the underlying mechanisms remain unclear. Multi-omics analyses, including transcriptome, proteome, and phosphoproteome could promote our understanding of As-induced male reproductive toxicity. Here, we established the reproductive injured mice model by intraperitoneal injection of NaAsO2 (8 mg/kg body weight), which was validated by reduced reproductive cells, sperm motility, and litter size. The followed multi-omics analyses of mice revealed that As exposure inhibited ATP production by decreasing the expression of proteins HK1, and GAPDHS, and the enzymatic activities of PDH and SDH. The inhibition of mitochondrial activity and increase in HDAC2 and MTA3 dysregulated the lysine acetylation levels of histone and global proteins. Specifically, the downregulated histones H4K5ac and H4K12ac and upregulated histone H3K9ac disordered the distribution of TP1 to interfere with spermatogenesis. Moreover, As could reduce the expression of COL1A1, RAB13, and LSR to disrupt the junctions between seminiferous tubules, and thereinto, the inhibition of RAB13 increased PKA-dependent phosphorylation. Our study reveals that As causes male reproductive toxicity through decreasing energy production, altering histone acetylation, and impairing cell junctions. Our findings provide basic data for further studies on As reproductive toxicity.
Collapse
Affiliation(s)
- Zijun Peng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiangzhen Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ranna Yeerken
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Chen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xurui Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinhong Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Xu Y, Lin S, Tao J, Liu X, Zhou R, Chen S, Vyas P, Yang C, Chen B, Qian A, Wang M. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front Psychiatry 2022; 13:1003542. [PMID: 36213906 PMCID: PMC9538111 DOI: 10.3389/fpsyt.2022.1003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To analyze the correlation between susceptibility single nucleotide polymorphisms (SNPs) and the severity of clinical symptoms in children with attention deficit hyperactivity disorder (ADHD), so as to supplement the clinical significance of gene polymorphism and increase our understanding of the association between genetic mutations and ADHD phenotypes. METHODS 193 children with ADHD were included in our study from February 2017 to February 2020 in the Children's ADHD Clinic of the author's medical institution. 23 ADHD susceptibility SNPs were selected based on the literature, and multiple polymerase chain reaction (PCR) targeted capture sequencing technology was used for gene analysis. A series of ADHD-related questionnaires were used to reflect the severity of the disease, and the correlation between the SNPs of specific sites and the severity of clinical symptoms was evaluated. R software was used to search for independent risk factors by multivariate logistic regression and the "corplot" package was used for correlation analysis. RESULTS Among the 23 SNP loci of ADHD children, no mutation was detected in 6 loci, and 2 loci did not conform to Hardy-Weinberg equilibrium. Of the remaining 15 loci, there were 9 SNPs, rs2652511 (SLC6A3 locus), rs1410739 (OBI1-AS1 locus), rs3768046 (TIE1 locus), rs223508 (MANBA locus), rs2906457 (ST3GAL3 locus), rs4916723 (LINC00461 locus), rs9677504 (SPAG16 locus), rs1427829 (intron) and rs11210892 (intron), correlated with the severity of clinical symptoms of ADHD. Specifically, rs1410739 (OBI1-AS1 locus) was found to simultaneously affect conduct problems, control ability and abstract thinking ability of children with ADHD. CONCLUSION There were 9 SNPs significantly correlated with the severity of clinical symptoms in children with ADHD, and the rs1410739 (OBI1-AS1 locus) may provide a new direction for ADHD research. Our study builds on previous susceptibility research and further investigates the impact of a single SNP on the severity of clinical symptoms of ADHD. This can help improve the diagnosis, prognosis and treatment of ADHD.
Collapse
Affiliation(s)
- Yunyu Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Punit Vyas
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Yang Y, Zuo Z, Yang Z, Yin H, Wei L, Fang J, Guo H, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y, Liu W. Nickel chloride induces spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112718. [PMID: 34478984 DOI: 10.1016/j.ecoenv.2021.112718] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
As a common environmental pollutant, nickel chloride (NiCl2) poses serious threat to human and animals health. NiCl2 has adverse effects on reproductive function in male, however, the underlying mechanisms are not fully illuminated. In this study, 64 male ICR mice were divided into four groups (8 mice per each period/ group), in which mice orally administrated with 0, 7.5, 15 or 30 mg/kg body weight for 14 or 28 consecutive days, respectively. The results showed that the sperm concentration (12.95%, 29.78% and 37.63% -) and sperm motility (19.79%, 34.88% and 43.10%) were dose-dependent significantly reduced, and the total sperm malformation rates (110.15%, 206.84% and 292.27%) were dose-dependent significantly elevated in the 7.5, 15 and 30 mg/kg NiCl2 treatment groups (vs control at 28 days), respectively (P < 0.05). Meanwhile, NiCl2 also decreased the relative weights of testis and epididymis and caused histopathological lesions of testis and epididymis. Furthermore, serum testosterone levels were significantly decreased after NiCl2 treatment. And the findings showed that NiCl2 down-regulated the expression of LH-R, StAR, P450scc, 3β-HSD, 17β-HSD, ABP and INHβB in the testis, however, the relative genes in the hypothalamus (Kiss-1, GPR54 and GnRH) and pituitary (GnRH-R, LHβ and FSHβ) did not exhibit noticeable change. In summary, NiCl2 induced spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice, and only impaired the genes on the testis of HPT axis.
Collapse
Affiliation(s)
- Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
22
|
Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R, Yin C, Li J, Xie Y, Hu S, Wang Q. Genome-Wide Association Study-Based Identification of SNPs and Haplotypes Associated With Goose Reproductive Performance and Egg Quality. Front Genet 2021; 12:602583. [PMID: 33777090 PMCID: PMC7994508 DOI: 10.3389/fgene.2021.602583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Geese are one of the most economically important waterfowl. However, the low reproductive performance and egg quality of geese hinder the development of the goose industry. The identification and application of genetic markers may improve the accuracy of beneficial trait selection. To identify the genetic markers associated with goose reproductive performance and egg quality traits, we performed a genome-wide association study (GWAS) for body weight at birth (BBW), the number of eggs at 48 weeks of age (EN48), the number of eggs at 60 weeks of age (EN60) and egg yolk color (EYC). The GWAS acquired 2.896 Tb of raw sequencing data with an average depth of 12.44× and identified 9,279,339 SNPs. The results of GWAS showed that 26 SNPs were significantly associated with BBW, EN48, EN60, and EYC. Moreover, five of these SNPs significantly associated with EN48 and EN60 were in a haplotype block on chromosome 35 from 4,512,855 to 4,541,709 bp, oriented to TMEM161A and another five SNPs significantly correlated to EYC were constructed in haplotype block on chromosome 5 from 21,069,009 to 21,363,580, which annotated by TMEM161A, CALCR, TFPI2, and GLP1R. Those genes were enriched in epidermal growth factor-activated receptor activity, regulation of epidermal growth factor receptor signaling pathway. The SNPs, haplotype markers, and candidate genes identified in this study can be used to improve the accuracy of marker-assisted selection for the reproductive performance and egg quality traits of geese. In addition, the candidate genes significantly associated with these traits may provide a foundation for better understanding the mechanisms underlying reproduction and egg quality in geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xianzhi Zhao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | | | - Keshan Zhang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Chunhui Yin
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Jing Li
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qigui Wang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| |
Collapse
|