1
|
Jiang Y, Zhu Y, Lin W, Luo J. Urea Fertilization Significantly Promotes Nitrous Oxide Emissions from Agricultural Soils and Is Attributed to the Short-Term Suppression of Nitrite-Oxidizing Bacteria during Urea Hydrolysis. Microorganisms 2024; 12:685. [PMID: 38674629 PMCID: PMC11052285 DOI: 10.3390/microorganisms12040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The application of urea in agricultural soil significantly boosts nitrous oxide (N2O) emissions. However, the reason for nitrite accumulation, the period of nitrite-oxidizing bacteria (NOB) suppression, and the main NOB species for nitrite removal behind urea fertilization have not been thoroughly investigated. In this study, four laboratory microcosm experiments were conducted to simulate urea fertilization in agricultural soils. We found that within 36 h of urea application, nitrite oxidation lagged behind ammonia oxidation, leading to nitrite accumulation and increased N2O emissions. However, after 36 h, NOB activity recovered and then removed nitrite, leading to reduced N2O emissions. Urea use resulted in an N2O emission rate tenfold higher than ammonium. During incubation, Nitrobacter-affiliated NOB growth decreased initially but increased later with urea use, while Nitrospira-affiliated NOB appeared unaffected. Chlorate suppression of NOB lasted longer, increasing N2O emissions. Urease inhibitors effectively reduced N2O emissions by slowing urea hydrolysis and limiting free ammonia production, preventing short-term NOB suppression. In summary, short-term NOB suppression during urea hydrolysis played a crucial role in increasing N2O emissions from agricultural soils. These findings revealed the reasons behind the surge in N2O emissions caused by extensive urea application and provided guidance for reducing N2O emissions in agricultural production processes.
Collapse
Affiliation(s)
- Yiming Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.J.); (Y.Z.)
| | - Yueyue Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.J.); (Y.Z.)
| | - Weitie Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.J.); (Y.Z.)
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jianfei Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.J.); (Y.Z.)
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Cui X, Yuan J, Yang X, Wei C, Bi Y, Sun Q, Meng J, Han X. Biochar application alters soil metabolites and nitrogen cycle-related microorganisms in a soybean continuous cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170522. [PMID: 38309356 DOI: 10.1016/j.scitotenv.2024.170522] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Biochar application is a promising practice to enhance soil fertility. However, it is unclear how field-aged biochar affects the soil metabolites and microbial communities in soybean fields. Here, the rhizosphere soil performance after amending with biochar addition rates at 0 (CK), 20 (B20), 40 (B40), and 60 t ha-1 (B60) was examined via a five-year in-situ field experiment based on a soybean continuous cropping system. Untargeted metabolomics and metagenomics analysis techniques were applied to study the regulatory mechanism of biochar on soybean growth from metabolomics and N cycle microbiology perspectives. We found that the contents of soil total N (TN), available N (Ava N), NH4+-N, and NO3--N were significantly increased with biochar addition amounts by 20.0-65.7 %, 3.6-10.7 %, 29.5-57.1 %, and 24.4-46.7 %, respectively. The B20, B40, and B60 triggered 259 (236 were up-regulated and 23 were down-regulated), 236 (220 were up-regulated and 16 were down-regulated), and 299 (264 were up-regulated and 35 were down-regulated) differential metabolites, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and topology analysis demonstrated that differential metabolites were highly enriched in seven metabolic pathways such as Oxidative phosphorylation and Benzoxazinoid biosynthesis. Moreover, ten differential metabolites were up-regulated in all three treatments with biochar. Biochar treatments decreased the Nitrospira abundance in soybean rhizosphere soil while increasing Bradyrhizobium abundance significantly in B60. Mantel test revealed that as the biochar addition rate grows, the correlation between Nitrospira and soil properties other than NO3--N became stronger. In conclusion, the co-application of biochar with fertilizers is a feasible and effective way to improve soil N supply, even though biochar has undergone field aging. This work offers new insights into the variations in soil metabolites and microbial communities associated with N metabolism processes under biochar addition in soybean continuous cropping soils.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Yuan
- Liaodong University, Dandong 118001, China
| | - Xu Yang
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China.
| | - Chaoqun Wei
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinghui Bi
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Sun
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Meng
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaori Han
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Wang XF, Li J, Li G, Zhang GL, Wang ZW, Zhi YC, Wu ML, Lai X, Yang DL, Ren TZ. Biochar application affects Nitrobacter rather than Nitrospira in plastic greenhouse vegetable soil. APPLIED SOIL ECOLOGY 2022; 175:104449. [DOI: 10.1016/j.apsoil.2022.104449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
4
|
Aziz A, Asif M, Ashraf G, Iftikhar T, Hu J, Xiao F, Wang S. Boosting electrocatalytic activity of carbon fiber@fusiform-like copper-nickel LDHs: Sensing of nitrate as biomarker for NOB detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126907. [PMID: 34418835 DOI: 10.1016/j.jhazmat.2021.126907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Morphological evolution of layered double hydroxides (LDHs) with preferential crystal facets has appealed gigantic attention of research community. Herein, we prepare hierarchical hybrid material by structurally integrating fusiform-like CuNiAl LDHs petals on conductive backbone of CF (CF@CuNiAl LDHs) and investigate electrocatalytic behavior in nitrate reduction over a potential window of -0.7 V to +0.7 V. The CF@CuNiAl LDHs electrode exhibits remarkable electrocatalytic aptitude in nitrate sensing including broad linear ranges of 5 nM to 40 µM and 75 µM to 2.4 mM with lowest detection limit of 0.02 nM (S/N = 3). The sensor shows sensitivity of 830.5 ± 1.84 µA mM1- cm2- and response time within 3 s. Owing to synergistic collaboration of improved electron transfer kinetics, specific fusiform-like morphology, presence of more catalytically active {111} facets and superb catalytic activity of LDHs, CF@CuNiAl LDHs electrode has outperformed as electrochemical sensor. Encouraged from incredible performance, CF@CuNiAl LDHs flexible electrode has been applied in real-time in-vitro detection of nitrite oxidizing bacteria (NOB) through the sensing of nitrate because NOB convert nitrite into nitrate by characteristic metabolic process to obtain their energy. Further, CF@CuNiAl LDHs based sensing podium has also been employed in in-vitro detection of nitrates from mineral water, tap water and Pepsi drink.
Collapse
Affiliation(s)
- Ayesha Aziz
- Advanced Biomaterials and Tissue Engineering Centre, School of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ghazala Ashraf
- Advanced Biomaterials and Tissue Engineering Centre, School of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tayyaba Iftikhar
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jinlong Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fei Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Shenqi Wang
- Advanced Biomaterials and Tissue Engineering Centre, School of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
5
|
Wang W, Qu K, Zhang X, Teng M, Huang Z. Integrated Instillation Technology for the Synthesis of a pH-Responsive Sodium Alginate/Biomass Charcoal Soil Conditioner for Controlled Release of Humic Acid and Soil Remediation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13386-13397. [PMID: 34730340 DOI: 10.1021/acs.jafc.1c04121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, pH-responsive gel spheres for controlled release of humic acid (CSGCHs) were prepared by an integrated instillation technology using a composite material of sodium alginate (SA) and charcoal activated carbon (CAC) as a carrier, and their slow-release performance, pH-responsive performance, and soil amendment performance were investigated. The results showed that the prepared CSGCH was uniform in size with obvious base responsiveness. Soil remediation experiments revealed that CSGCH could play a good role in the remediation of different types of soils. After 50 days of remediation, the content of nutrients and organic matter in the soil increased significantly and the pH and salt content of saline soils decreased by 15.2 and 29.8%, respectively. The plant experiment showed that CSGCH could effectively promote the growth of crops. Therefore, the prepared soil conditioner has a great potential value for improving soil conditions and promoting crop growth in agricultural applications.
Collapse
Affiliation(s)
- Weicong Wang
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xinrui Zhang
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Min Teng
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Zhao M, Tang X, Sun D, Hou L, Liu M, Zhao Q, Klümper U, Quan Z, Gu JD, Han P. Salinity gradients shape the nitrifier community composition in Nanliu River Estuary sediments and the ecophysiology of comammox Nitrospira inopinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148768. [PMID: 34247082 DOI: 10.1016/j.scitotenv.2021.148768] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The recent discovery of complete ammonia oxidizers (comammox), which convert ammonia to nitrate in a single organism, revolutionized the conventional understanding that two types of nitrifying microorganisms have to be involved in the nitrification process for more than 100 years. However, how different types of nitrifiers in response to salinity change remains largely unclear. This study not only investigated nitrifier community (including ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), comammox and nitrite-oxidizing Nitrospira) in the Nanliu estuary to find the ecological relationship between salinity and functional communities and also studied the physiology of a typical comammox Nitrospira inopinata in response to a salinity gradient. Based on sequences retrieved with four sets of functional gene primes, comammox Nitrospira was in general, mainly composed of clade A, with a clear separation of clade A1 subgroup in all samples and clade A2 subgroup in low salinity ones. As expected, group I.1b and group I.1a AOA dominated the AOA community in low- and high-salinity samples, respectively. Nitrosomonas-AOB were detected in all samples while Nitrosospira-AOB were mainly found in relatively high-salinity samples. Regarding general Nitrospira, lineages II and IV were the major groups in most of the samples, while lineage I Nitrospira was only detected in low-salinity samples. Furthermore, the comammox pure culture of N. inopinata showed an optimal salinity at 0.5‰ and ceased to grow at 12.8‰ for ammonia oxidation, but remained active for nitrite oxidation. These results show new evidence regarding niche specificity of different nitrifying microorganisms modulated mainly by salinity, and also a clear response by comammox N. inopinata to a wide range of simulated salinity levels.
Collapse
Affiliation(s)
- Mengyue Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qiang Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhexue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|