1
|
Lin D, Zhang E, Liu E, Sun W, Wang R, Meng X, Ni Z, Wang Y, You Y. Human impacts overwhelmed climate as the dominant factor controlling lacustrine organic matter accumulation in Erhai Lake 2000 years ago, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174182. [PMID: 38925392 DOI: 10.1016/j.scitotenv.2024.174182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Climate and human activity are two important factors in regulating organic matter (OM) accumulation in the lake environment. However, when and how anthropogenic impacts have affected lacustrine OM accumulation in southwest China during the late Holocene have not yet been well defined. Here, a 16.3-kyr n-alkane record derived from Erhai Lake was used to trace OM sources and explore their connections to climate and human activity. The n-alkane distributions indicated that the dominant sediment sources shifted from terrestrial and aquatic plants to algae in the late Holocene. OM accumulation was closely related to catchment soil erosion, sediment transport, and deposition processes regulated by climate conditions before 5.0 cal. kyr B.P., following the patterns that stronger monsoon precipitation favoured more terrestrial and less aquatic OM input, and vice versa. From 5.0 to 2.0 cal. kyr B.P., the synchronous downwards trends in terrestrial OM input and precipitation intensity indicated that climate remained a major driving force for OM accumulation. However, sediment sources experienced large-magnitude and centennial-scale oscillations between allochthonous and autochthonous inputs, reflecting early human impacts appeared and lake ecosystems retained the self-regulated ability to recover from the basin-wide early moderate human disturbances. Afterwards, the increased (decreased) OM contributions from terrestrial (aquatic) plants contradicted the weakening monsoon precipitation since 2.0 cal. kyr B.P., indicating a dominant effect of human activities on OM accumulation. This change was accompanied by highly improved algae productivity and gradually elevated lacustrine trophic status, and the lake ecosystem eventually shifted into another state largely deviating from its climate-driven background due to intensified deforestation and agricultural cultivation. Regional comparison indicated that anthropogenic disturbances have temporal differences in southwest China. This study will further improve our understanding of past climate-human-environment interactions in southwest China.
Collapse
Affiliation(s)
- Durui Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Weiwei Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianqiang Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhenyu Ni
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yao Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang You
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Depositional Environment Changes during the Cenozoic in the Northeastern Margin of the Qinghai–Tibet Plateau. Processes (Basel) 2022. [DOI: 10.3390/pr10051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The uplift of the Tibetan Plateau (TP) during the late Cenozoic is thought to be one of the crucial factors controlling the Asian climate. However, the complex interaction between tectonics and climate change remains unclear. The carbon and oxygen isotopes and elementary geochemistry of rocks from the early Eocene Lulehe Formation to the Miocene Youshashan Formation in the northern margin of Qaidam Basin, shows important variations in the Rb/Sr, MgO/CaO, Sr/Cu, and V/Cr ratios, together with CMI and CIA, which are interpreted as reflecting relevant regional climate and environmental changes. Combining the above mentioned parameters, we reconstructed the evolution of the sedimentary environment in the Qaidam Basin. The climate is roughly divided into four stages: (1) warm and humid; (2) cold and dry; (3) alternations of cold and dry with warm and humid; and (4) cold and arid. At the same time, there are also minor short-term changes of dry, wet, cold, and warm in each stage. The early Eocene to Miocene climate changes in the Qaidam Basin were mainly affected by global climate changes, the uplift of the Qinghai Tibet Plateau, and the long-lasting plate collision, but there was no continuous drought due to the uplift of the Qinghai Tibet Plateau. From the early Eocene to the late Miocene, the climate of the Qaidam Basin became warm and humid.
Collapse
|
3
|
Hao Q, Yang S, Song Z, Li Z, Ding F, Yu C, Hu G, Liu H. Silicon Affects Plant Stoichiometry and Accumulation of C, N, and P in Grasslands. FRONTIERS IN PLANT SCIENCE 2020; 11:1304. [PMID: 33013953 PMCID: PMC7493684 DOI: 10.3389/fpls.2020.01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
Silicon (Si) plays an important role in improving soil nutrient availability and plant carbon (C) accumulation and may therefore impact the biogeochemical cycles of C, nitrogen (N), and phosphorus (P) in terrestrial ecosystems profoundly. However, research on this process in grassland ecosystems is scarce, despite the fact that these ecosystems are one of the most significant accumulators of biogenic Si (BSi). In this study, we collected the aboveground parts of four widespread grasses and soil profile samples in northern China and assessed the correlations between Si concentrations and stoichiometry and accumulation of C, N, and P in grasses at the landscape scale. Our results showed that Si concentrations in plants were significantly negatively correlated (p < 0.01) with associated C concentrations. There was no significant correlation between Si and N concentrations. It is worth noting that since the Si concentration increased, the P concentration increased from less than 0.10% to more than 0.20% and therefore C:P and N:P ratios decreased concomitantly. Besides, the soil noncrystalline Si played more important role in C, N, and P accumulation than other environmental factors (e.g., MAT, MAP, and altitude). These findings indicate that Si may facilitate grasses in adjusting the utilization of nutrients (C, N, and P) and may particularly alleviate P deficiency in grasslands. We conclude that Si positively alters the concentrations and accumulation of C, N, and P likely resulting in the variation of ecological stoichiometry in both vegetation and litter decomposition in soils. This study further suggests that the physiological function of Si is an important but overlooked factor in influencing biogeochemical cycles of C and P in grassland ecosystems.
Collapse
Affiliation(s)
- Qian Hao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Shilei Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Zichuan Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fan Ding
- College of Land and Environment, Shenyang Agriculture University, Shenyang, China
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Peking University, Peking, China
| |
Collapse
|