1
|
Du L, Luo Y, Zhang J, Shen Y, Zhang J, Tian R, Shao W, Xu Z. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172276. [PMID: 38583634 DOI: 10.1016/j.scitotenv.2024.172276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.
Collapse
Affiliation(s)
- Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenqian Shao
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Han L, Nan G, He X, Wang J, Zhao J, Zhang X. Soil moisture and soil organic carbon coupled effects in apple orchards on the Loess Plateau, China. Sci Rep 2024; 14:12281. [PMID: 38811638 PMCID: PMC11136960 DOI: 10.1038/s41598-024-63039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
A large number of economic forests, especially apple orchards (AOs) in the Loess Plateau region of China, have been planted to develop the local economy and increase the income of farmers. The two main constraints preventing AOs on the Loess Plateau from developing sustainably and producing a high and steady yield are soil moisture content (SMC) and soil organic carbon (SOC). Nevertheless, little is currently known about the contributions of roots to these changes in the soil profile and the temporal modes of the SMC-SOC coupled effects. In our research, we analyzed the dynamic changes in SMC and SOC in AOs of various years in northern Shaanxi Province, as well as the coupled relationship between the two, and attempted to describe the function of roots in these changes. Research have shown: (1) As the age of the AOs increased, the SMC continued to decline throughout the 0-500 cm profile, especially at depths of 100-500 cm. SMC depletion mainly occurred in AOs aged 20 years (30.02%/year) and 30 years (31.18%/year). (2) Compared with abandoned land (AL), all the AOs except for the 6-year-old AO showed a carbon sequestration effect, and the carbon sequestration effect increased with age. The carbon sequestration rate of the 12-year-old AO was the highest and then decreased with age. Both surface and deeper soils showed better carbon sequestration, with a large amount of SOC being sequestered in deeper soil layers (> 100 cm). (3) The coupled effects of SMC and SOC varied with age and depth. The SMC in the deeper layers was significantly negatively correlated with SOC. Root dry weight density (RDWD) was significantly negatively correlated with SMC and significantly positively correlated with SOC. Path analysis suggested that SMC directly affects SOC at different soil depths, and regulates SOC by affecting RDWD, but these effects are significantly different at different depths. Therefore, we propose that management of AO should focus on the moisture deficit and carbon sequestration capabilities of deeper soils to ensure the sustainability of water use in AOs and the stability of agricultural carbon sequestration on the Loess Plateau.
Collapse
Affiliation(s)
- Lei Han
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Guowei Nan
- School of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China.
| | - Xinyu He
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Jinghui Wang
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Jirong Zhao
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Xiangqian Zhang
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| |
Collapse
|
3
|
Chen Y, Liu X, Zheng C, Ma Y, Gao W, He J, Hao L, Liu Z, Shi C, Cao Q. Estimation of water budget components and its driving factors analysis in arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167654. [PMID: 37813251 DOI: 10.1016/j.scitotenv.2023.167654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Clarifying the dependence of the grassland water budget change and its components on environmental factors is significant for the sustainable development of dryland ecosystems. Here, the Hydrus-1D model was used to simulate the water budget of natural grassland for 42 years (1980-2021). The standardized precipitation evapotranspiration index (SPEI) and soil moisture deficit index (SMDI) were used to analyze the soil drought evolution characteristics and the water use dynamic of the grassland in dry and wet years. Here, the calibrated Hydrus-1D model accurately identified the dynamic of grassland soil moisture in 2020 and 2021. The simulated data showed that evaporation (E) and transpiration (Tc) were the main pathways of soil water consumption, accounting for 96.5 % and 86.1 % of rainfall in dry and wet years, respectively. The soil water storage did not present a difference in precipitation proportion in dry (2.4 %) and wet (1.2 %) years, and the deep percolation accounted for a maximum of 12.8 % in wet years. Rainfall from 380 to 400 mm was the threshold, as it not only corresponds to the maximum water use efficiency (Tc/ET = 0.52, ET = E + Tc) but also serves as an important turning point for drought and deep percolation (below 150 cm) within the soil. The structural equation model further indicated that the dependence of E and Tc on meteorological factors was the main reason for the change of their proportions in dry and wet years. Tc was more sensitive to meteorological factors (R2 = 0.63), while E was not (R2 = 0.27). The SMDI had a greater impact on determining the threshold for water budget components than the SPEI. These results deepen the understanding of the hydrological process of grasslands in sandy areas, including the interaction between water budget components and environmental factors in wet and dry scenarios.
Collapse
Affiliation(s)
- Yunfei Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water resources, Chang'an University, Xi'an 710054, China
| | - Xiuhua Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water resources, Chang'an University, Xi'an 710054, China.
| | - Ce Zheng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water resources, Chang'an University, Xi'an 710054, China
| | - Yandong Ma
- Key Laboratory of State Forest Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry, Xi'an 710082, China
| | - Wande Gao
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water resources, Chang'an University, Xi'an 710054, China
| | - Junqi He
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water resources, Chang'an University, Xi'an 710054, China
| | - Lianyi Hao
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water resources, Chang'an University, Xi'an 710054, China
| | - Zuyu Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water resources, Chang'an University, Xi'an 710054, China
| | - Changchun Shi
- Key Laboratory of State Forest Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry, Xi'an 710082, China
| | - Qingxi Cao
- Key Laboratory of State Forest Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry, Xi'an 710082, China
| |
Collapse
|
4
|
Nam Y, Jeong K, Kim W, Choi H, Lee T. Evaluation on Early Strength Development of Concrete Mixed with Non-Sintered Hwangto Using Ultrasonic Pulse Velocity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6850. [PMID: 37959447 PMCID: PMC10647380 DOI: 10.3390/ma16216850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Currently, in order to reduce the greenhouse gases of global warming, research on alternative cement materials is being actively conducted in the construction industry to reduce cement use, and it is judged to be important to evaluate the timing of form removal for the initial age. Therefore, in this study, we evaluated the initial mechanical properties of concrete in which cement was partially replaced with non-sintered hwangto (NHT). Specimens without NHT (namely, normal mortar (NM) and normal concrete (NC)) and specimens with NHT (namely, non-sintered hwangto mortar (HTM) and non-sintered hwangto concrete (HTC)) were prepared. NHT was substituted for 15% and 30% of cement. Two water-to-binder (W/B) ratios, 41% and 33%, were used to analyze the variation in the mechanical properties according to the cement and NHT content per unit volume of concrete. The compressive strength and ultrasonic pulse velocity (UPV) were measured. Experimental results indicated that compressive strength decreased with an increase in NHT content. The mortar with NHT substitution rates of 15% and 30% exhibited higher UPV than NM at a W/B ratio of 41%, in contrast to the behavior observed for concrete. The UPVs of most specimens were similar regardless of the NHT substitution rate. The correlation between the compressive strength and UPV of HTC was analyzed, and therefrom, exponential equations with a high correlation coefficient (R2) were proposed for strength prediction; the resulting predictions were compared with the results of previous compressive strength prediction models.
Collapse
Affiliation(s)
- Youngjin Nam
- Department of Fire and Disaster Prevention, Semyung University, Jecheon 27136, Republic of Korea; (Y.N.); (K.J.); (W.K.)
| | - Keesin Jeong
- Department of Fire and Disaster Prevention, Semyung University, Jecheon 27136, Republic of Korea; (Y.N.); (K.J.); (W.K.)
| | - Wonchang Kim
- Department of Fire and Disaster Prevention, Semyung University, Jecheon 27136, Republic of Korea; (Y.N.); (K.J.); (W.K.)
| | - Hyeonggil Choi
- School of Architecture and Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taegyu Lee
- Department of Fire and Disaster Prevention, Semyung University, Jecheon 27136, Republic of Korea; (Y.N.); (K.J.); (W.K.)
| |
Collapse
|
5
|
Xiao S, Wang C, Yu K, Liu G, Wu S, Wang J, Niu S, Zou J, Liu S. Enhanced CO 2 uptake is marginally offset by altered fluxes of non-CO 2 greenhouse gases in global forests and grasslands under N deposition. GLOBAL CHANGE BIOLOGY 2023; 29:5829-5849. [PMID: 37485988 DOI: 10.1111/gcb.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2 O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2 O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH ) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS , soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2 O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4 , suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2 -eq year-1 vs. grassland, 0.58 Pg CO2 -eq year-1 ) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2 -eq year-1 vs. grassland, 0.18 Pg CO2 -eq year-1 ) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%-4.8%) by the combined effects of its stimulation of N2 O emissions together with the reduced soil uptake of CH4 .
Collapse
Affiliation(s)
- Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Chao Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Genyuan Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Diao H, Yang J, Hao J, Yan X, Dong K, Wang C. Seasonal precipitation regulates magnitude and direction of the effect of nitrogen addition on net ecosystem CO 2 exchange in saline-alkaline grassland of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162907. [PMID: 36934924 DOI: 10.1016/j.scitotenv.2023.162907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Increased nitrogen (N) deposition and altered precipitation regimes have profound effects on carbon (C) flux in semi-arid grasslands. However, the interactive effects between N enrichment and precipitation alterations (both increasing and decreasing) on ecosystem CO2 fluxes and ecosystem resource use efficiency (water use efficiency (WUE) and carbon use efficiency (CUE)) remain unclear, particularly in saline-alkaline grasslands. A four-year (2018-2021) field manipulation experiment was conducted to investigate N enrichment and precipitation alterations (decreased and increased by 50 % of ambient precipitation) and their interactions on ecosystem CO2 fluxes (gross- ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE)), as well as their underlying regulatory mechanisms under severe salinity stress in northern China. Our results showed that N addition and precipitation alteration alone did not significantly affect the GEP, ER and NEE. While the interaction of N addition and increased precipitation over the four years significantly improved the mean GEP and NEE by 24.9 % and 15.9 %, respectively. The interactive effects of N addition and increased precipitation treatment significantly stimulated the mean value of WUE by 39.1 % compared with control, but had no significant effects on CUE over the four years. Based on the four-year experiment, the magnitude and direction of the effects of N addition on the NEE were related to seasonal precipitation. Nitrogen addition increased the NEE under increased precipitation and decreased it during extreme drought. Soil salinization (pH and base cations) could directly or indirectly affect GEP and NEE via plants productivity, plant communities, as well as ecosystem resource use efficiency (WUE and CUE) based on structural equation model. Our results address lacking investigations of ecosystem C flux in saline-alkaline grasslands, and highlight that precipitation regulates the magnitude and direction of N addition on NEE in saline-alkaline grasslands.
Collapse
Affiliation(s)
- Huajie Diao
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Jianqiang Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Jie Hao
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Xuedong Yan
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Kuanhu Dong
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China.
| | - Changhui Wang
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
7
|
Zhang K, Qiu Y, Zhao Y, Wang S, Deng J, Chen M, Xu X, Wang H, Bai T, He T, Zhang Y, Chen H, Wang Y, Hu S. Moderate precipitation reduction enhances nitrogen cycling and soil nitrous oxide emissions in a semi-arid grassland. GLOBAL CHANGE BIOLOGY 2023; 29:3114-3129. [PMID: 36892227 DOI: 10.1111/gcb.16672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
The ongoing climate change is predicted to induce more weather extremes such as frequent drought and high-intensity precipitation events, causing more severe drying-rewetting cycles in soil. However, it remains largely unknown how these changes will affect soil nitrogen (N)-cycling microbes and the emissions of potent greenhouse gas nitrous oxide (N2 O). Utilizing a field precipitation manipulation in a semi-arid grassland on the Loess Plateau, we examined how precipitation reduction (ca. -30%) influenced soil N2 O and carbon dioxide (CO2 ) emissions in field, and in a complementary lab-incubation with simulated drying-rewetting cycles. Results obtained showed that precipitation reduction stimulated plant root turnover and N-cycling processes, enhancing soil N2 O and CO2 emissions in field, particularly after each rainfall event. Also, high-resolution isotopic analyses revealed that field soil N2 O emissions primarily originated from nitrification process. The incubation experiment further showed that in field soils under precipitation reduction, drying-rewetting stimulated N mineralization and ammonia-oxidizing bacteria in favor of genera Nitrosospira and Nitrosovibrio, increasing nitrification and N2 O emissions. These findings suggest that moderate precipitation reduction, accompanied with changes in drying-rewetting cycles under future precipitation scenarios, may enhance N cycling processes and soil N2 O emissions in semi-arid ecosystems, feeding positively back to the ongoing climate change.
Collapse
Affiliation(s)
- Kangcheng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunfeng Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhong Wang
- Ningxia Yunwu Mountains Grassland Natural Reserve Administration, Guyuan, 756000, China
| | - Jun Deng
- Ningxia Yunwu Mountains Grassland Natural Reserve Administration, Guyuan, 756000, China
| | - Mengfei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongshuo Bai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tangqing He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaihai Chen
- School of Ecology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| |
Collapse
|
8
|
Zong N, Hou G, Shi P, Song M. Winter warming alleviates the severely negative effects of nitrogen addition on ecosystem stability in a Tibetan alpine grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158923. [PMID: 36165909 DOI: 10.1016/j.scitotenv.2022.158923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many recent studies have explored how global warming and increased nitrogen (N) deposition affect the structure and function of natural ecosystems. However, how ecosystems respond to the combination of warming and N enrichment remains unexplored, especially under asymmetric seasonal warming scenarios. We conducted a decade-long field experiment in an alpine grassland to investigate the effects of warming (ambient condition (NW), winter-only (WW), and year-round (YW) warming) and N addition on the temporal stability of communities. Although N addition significantly reduced community temporal stability in NW, WW, and YW, WW relieved the severely negative effects of N addition compared to NW and YW (from 47.7 % in NW and 76.1 % in YW to 18.6 % in WW under 80 kg N hm-2 year-1). The most remarkable finding is that the main factors driving community stability shifted with warming patterns. The increase in community dominance under NW was a significant driver of the decreased temporal stability in the community. However, the decrease in community stability caused by N addition was ascribed to the decreased stability of both dominant and common species under WW. In contrast, N addition decreased community temporal stability mainly via a decrease in species asynchrony under YW. Our results suggested that warming patterns can modulate the effects of N enhancement on community stability. To predict the effects of climate change on alpine grasslands accurately, the idiosyncratic effects of asymmetric seasonal warming under future climate change scenarios should be considered.
Collapse
Affiliation(s)
- Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Song
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Yu J, Zhang Y, Wang Y, Luo X, Liang X, Huang X, Zhao Y, Zhou X, Li J. Ecosystem photosynthesis depends on increased water availability to enhance carbon assimilation in semiarid desert steppe in northern China. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Xu D, Mou W, Wang X, Zhang R, Gao T, Ai D, Yuan J, Zhang R, Fang X. Consistent responses of ecosystem CO2 exchange to grassland degradation in alpine meadow of the Qinghai-Tibetan Plateau. ECOLOGICAL INDICATORS 2022; 141:109036. [DOI: 10.1016/j.ecolind.2022.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
11
|
Sensitive Groups of Bacteria Dictate Microbial Functional Responses to Short-term Warming and N Input in a Semiarid Grassland. Ecosystems 2021. [DOI: 10.1007/s10021-021-00719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Du Y, Wang YP, Su F, Jiang J, Wang C, Yu M, Yan J. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. GLOBAL CHANGE BIOLOGY 2020; 26:6015-6024. [PMID: 32652817 DOI: 10.1111/gcb.15270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Intensification of the Earth's hydrological cycle amplifies the interannual variability of precipitation, which will significantly impact the terrestrial carbon (C) cycle. However, it is still unknown whether previously observed relationship between soil respiration (Rs ) and precipitation remains applicable under extreme precipitation change. By analyzing the observations from a much larger dataset of field experiments (248 published papers including 151 grassland studies and 97 forest studies) across a wider range of precipitation manipulation than previous studies, we found that the relationship of Rs response with precipitation change was highly nonlinear or asymmetric, and differed significantly between grasslands and forests, between moderate and extreme precipitation changes. Response of Rs to precipitation change was negatively asymmetric (concave-down) in grasslands, and double-asymmetric in forests with a positive asymmetry (concave-up) under moderate precipitation changes and a negative asymmetry (concave-down) under extreme precipitation changes. In grasslands, the negative asymmetry in Rs response was attributed to the higher sensitivities of soil moisture, microbial and root activities to decreased precipitation (DPPT) than to increased precipitation (IPPT). In forests, the positive asymmetry was predominantly driven by the significant increase in microbial respiration under moderate IPPT, while the negative asymmetry was caused by the reductions in root biomass and respiration under extreme DPPT. The different asymmetric responses of Rs between grasslands and forests will greatly improve our ability to forecast the C cycle consequences of increased precipitation variability. Specifically, the negative asymmetry of Rs response under extreme precipitation change suggests that the soil C efflux will decrease across grasslands and forests under future precipitation regime with more wet and dry extremes.
Collapse
Affiliation(s)
- Yue Du
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Fanglong Su
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Jiang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chen Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mengxiao Yu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|