1
|
Xu D, Wang Y, Wang J. A review of social-ecological system vulnerability in desertified regions: Assessment, simulation, and sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172604. [PMID: 38657819 DOI: 10.1016/j.scitotenv.2024.172604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Desertified regions face considerable vulnerability due to the combined effects of climate change and human activities, which threaten regional ecological security and societal development. It is therefore necessary to assess, simulate, and manage the vulnerability of desertified regions from the perspective of the social-ecological system, to support desertification control and sustainable development. This study is a systematic review of the vulnerability of the social-ecological system in desertified regions (SESDR) based on a bibliometric analysis, and a summary of the research progresses in vulnerability assessment, simulation, and sustainable management is provided. It was found that SESDR vulnerability research started relatively late, but has developed rapidly in recent years, with an emphasis on the coupling between natural systems and human activities, and multi-scale interactions and dynamics. Using various indicators at different scales, SESDR vulnerability could be assessed in terms of exposure, sensitivity, and adaptability. Modeling the complex interactions among natural and human factors across multiple scales is essential to simulate the vulnerability dynamics of the SESDR. The sustainable management of SESDR vulnerability focuses on rational spatial planning to achieve the maximum benefits, with the right measures in the right places. Four priority research directions were proposed to develop a better understanding of the mechanisms of vulnerability and smart restoration of desertified land. The findings of this study will enable researchers, land managers, and policymakers to develop a more comprehensive understanding of SESDR vulnerability, thereby enabling them to better address the challenges posed by complex resource and environmental issues.
Collapse
Affiliation(s)
- Duanyang Xu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuanqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu H, Liu S, Wang F, Zhao Y, Dong Y. How to synergize ecological restoration to co-benefit the beneficial contributions of nature to people on the Qinghai-Tibet Plateau? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119267. [PMID: 37862896 DOI: 10.1016/j.jenvman.2023.119267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Understanding the magnitude and spatial distribution of ecological restoration requires a precise assessment of the beneficial contributions of nature to people. However, where the restoration areas should be located and whether the natural contribution of a compensation area can satisfy people's needs in the context of ecological degradation remain unclear. To address these issues, we selected the Qinghai-Tibet Plateau as the study areas, utilizing the offset portfolio analyzer and locator model to identify the compensation sites that offset the losses of ecosystem services and biodiversity resulting from ecological degradation. These compensation sites were developed through two offset types: restoration and protection. Then, based on the offset sites, we assessed nature's contribution to people (NCP) under the current status and future scenarios in terms of various aspects, including the habitat (NCP1), climate change (NCP4), and water quantity and flow regulation (NCP6). This study found that the area impacted by agricultural development was 7.15 × 105 ha, and the required compensation area was 5.5 × 106 ha under the current status. The ratio of the impacted area to the required area was approximately 7.0 in the future scenarios. The average habitat qualities were 0.14 and 0.30, while the mean NCP1 values were 2.69 and 0.51 in the protection and restoration offset sites, respectively. Moreover, based on the offset sites, the high-value contributions in NCP4 accounted for 18.64%-22.69% and 38.87%-46.17% of the total offset sites in terms of the restoration and protection offset types, respectively. Additionally, the estimated high-value contributions in NCP6 accounted for 58.35%-59.02% and 84.40%-95.86% of the total offset sites in the restoration and protection offset types, respectively. Our findings highlighted the significance of ecological restoration in showcasing the role of NCPs. These results could aid conservation managers in developing more targeted ecological strategies to enhance human well-being.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China.
| | - Fangfang Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Yifei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Yuhong Dong
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
3
|
Wu L, Yue W, Wu J, Cao C, Liu H, Teng Y. Metal-mining-induced sediment pollution presents a potential ecological risk and threat to human health across China: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117058. [PMID: 36528944 DOI: 10.1016/j.jenvman.2022.117058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Aquatic sediment polluted by potentially toxic elements (PTEs) from mining activities represents a potential health "time bomb" for humans and the local ecology, but the integrated analysis of pollution and hazards of PTEs in sediment around typical metal mines in China is limited. Presently, the associated pollution status, spatial distribution, and ecological and health hazards of Cd, Cu, Zn, Pb, Cr, and As were investigated through index evaluation, spatial analysis, health risk assessment models, and Monte Carlo simulation. Overall, the sediment exhibited varying degrees of PTE contamination; notably, the level of Cd was 104.85 times higher than its background value, and it became the most enriched element in the surveyed sediment, followed in descending order by Cu, As, Zn, Pb, and Cr. Nationally, over 64.5% of metal-mining-affected sediment presented a very high ecological risk, contributed mostly by Cd (43.2%-98.7%) followed by As, Pb, and Cu; the risk contributed by both Cr and Zn was found to be negligible. The adverse health risk posed to children by most sediment was 1.72 and 6.46 times higher than that posed to adults for cancerous and noncancerous risks, respectively. The potential noncarcinogenic risks were mainly caused by As, which contributed over 78.9% of the Hazard Index values, then followed by Pb (>9.3%). For both children and adults, the carcinogenic risk of PTEs decreased in the following order: As > Cd > Cr > Pb. The investigated sediment was found seriously affected by nearby metal mines, especially those in regions with long-term and large-scale nonferrous-metal-mining activities. This study could provide a reference for policymakers to develop control strategies for PTE pollution in sediment around mining areas.
Collapse
Affiliation(s)
- Lijun Wu
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Jin Wu
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Changming Cao
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Hong Liu
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| |
Collapse
|
4
|
Guo K, Liu Y, Lan Z, Qin L, Lin T, Gan Q, Jin B, Chen M. A PETAR method for risk assessment of human health and environment on the regional scale. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:239-253. [PMID: 35445528 DOI: 10.1002/ieam.4621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Risk assessments are necessary to effectively reveal the state of the degradation of living environments on a regional scale. However, risk assessments are often limited by time, cost, and technology, which make conducting effective evaluations difficult. Thus, in this study, the procedure for ecological tiered assessment of risk (PETAR) method was used to analyze the human health and environmental risks in Daye, China. This method first used the United States Environmental Protection Agency's risk assessment approach to qualitatively determine the risk sources, pressures, receptors, and effect endpoints and constructed a conceptual model of threats to the human living environment. Each risk-prone subregion was then evaluated using the fuzzy logic method. Next, a quantitative assessment was conducted for the subregions with the most serious environmental degradation. Finally, quantitative analyses were performed to verify the original hypotheses. The results showed that the high-risk areas were distributed in the industrial regions of Daye, wherein mining and processing clusters and mining settlements are widespread and confirmed the locations of the particular subregions with the most serious human health and environmental risks. This study also validated the practicality of the PETAR method for human health risk assessments in mining areas with large-scale, multifactor, and multihazard paths. Integr Environ Assess Manag 2023;19:239-253. © 2022 SETAC.
Collapse
Affiliation(s)
- Kai Guo
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China
| | - Yang Liu
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Zeying Lan
- School of Management, Guangdong University of Technology, Guangzhou, China
| | - Liangjun Qin
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Tong Lin
- Guangdong Zhuo Chuang Township Construction Tourism Development Co., Ltd., Guangzhou, China
| | - Qiao Gan
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China
| | - Bingbing Jin
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Min Chen
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| |
Collapse
|
5
|
de Mendonça GC, Costa RCA, Parras R, de Oliveira LCM, Abdo MTVN, Pacheco FAL, Pissarra TCT. Spatial indicator of priority areas for the implementation of agroforestry systems: An optimization strategy for agricultural landscapes restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156185. [PMID: 35618113 DOI: 10.1016/j.scitotenv.2022.156185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The ecological functions restoration in agricultural areas is a major challenge on a landscape scale. In the specific case of active restoration through Agroforestry Systems (AFS), the absence of a specific direction hinders ecological restoration processes, especially in regions that prefer intensive agriculture. Thus, this study aims to develop a Spatial Indicator of Priority Areas to guide Agroforestry Systems implementation in agricultural landscapes. A spatial multicriteria decision analysis (MDCA) was carried out based on environmental factors: soil, geology and slope (which determine the natural vulnerability of the land) and anthropogenic factors: land use and land cover, forest fragments, potential land use capacity and legal protected areas in rural properties (which reflects human pressure and land use suitability). Subsequently, four priority levels were classified for agroforestry interventions: (1) Low priority; (2) Average priority; (3) High priority; (4) Extreme priority. A final map was made to identify priority areas for landscape recovery in 9 cities located at the mouth of the Mogi Guaçu River Hydrographic Basin, State of São Paulo, Brazil. Considering the natural vulnerability of the land and the multifunctional aspects of the landscape, the scenarios projection allowed a consensus for forest conservation and agricultural suitability perspectives. A final combination of the explored aspects culminated in the spatial indicator, which model foresees 22,300 ha available for urgent actions for restoration, reforestation and sustainable exploitation through agroforestry systems. We emphasize the challenges in reconciling the socioeconomic and ecological functions in the agroecosystem, however, the metric provides a more inclusive and assertive management strategy for natural resources and advances towards the goal of reforestation and implementation of payment for environmental services (PES) schemes.
Collapse
Affiliation(s)
- Gislaine Costa de Mendonça
- UNESP/FCAV - São Paulo State University, Faculty of Agrarian and Veterinary Sciences, Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; POLUS-Land Use Policy Group, Paulista State University (UNESP), Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Renata Cristina Araújo Costa
- Guarulhos University (UNG), Praça Tereza Cristina, 239, 07023-070 Guarulhos, SP, Brazil; POLUS-Land Use Policy Group, Paulista State University (UNESP), Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Rafael Parras
- UNESP/FCAV - São Paulo State University, Faculty of Agrarian and Veterinary Sciences, Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; POLUS-Land Use Policy Group, Paulista State University (UNESP), Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Laís Caroline Marianno de Oliveira
- UNESP/FCAV - São Paulo State University, Faculty of Agrarian and Veterinary Sciences, Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; POLUS-Land Use Policy Group, Paulista State University (UNESP), Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Maria Teresa Vilela Nogueira Abdo
- APTA - São Paulo Agency of Agribusiness Technology, Pindorama Pole, Washington Luis Highway, Km 371, s/n, Pindorama, SP 15830-000, Brazil; POLUS-Land Use Policy Group, Paulista State University (UNESP), Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Fernando António Leal Pacheco
- CQVR-Chemistry Center of Vila Real, University of Trás-os-Montes and Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal; POLUS-Land Use Policy Group, Paulista State University (UNESP), Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Teresa Cristina Tarlé Pissarra
- UNESP/FCAV - São Paulo State University, Faculty of Agrarian and Veterinary Sciences, Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; POLUS-Land Use Policy Group, Paulista State University (UNESP), Access Way Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| |
Collapse
|
6
|
Spatiotemporal Evaluation and Driving Mechanism of Land Ecological Security in Yan’an, a Typical Hill-Gully Region of China’s Loess Plateau, from 2000 to 2018. FORESTS 2021. [DOI: 10.3390/f12121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest landscape restoration and ecosystem of Loess Plateau have enhanced prominently, since the policy implementation (1999) of the Grain for Green Project in China. Land ecological security (LES) performs an extremely critical function for protecting vulnerable land resources and sustaining forest ecosystem stability. Predecessors’ studies substantially concentrate on biophysical and meteorologic variables using numerous grounded methodologies, little research has been launched on systematic natural-socio-economic-ecological relationships and how these contributions and regulations for LES evaluation. Here, pressure-state-response (PSR) model was used to establish the evaluation system of LES in regional-scale, and LES was classified into five levels measured by ecological security index (S), including high (S ≥ 0.75), medium−high (0.65 ≤ S < 0.75), medium (0.55 ≤ S < 0.65), medium−low (0.45 ≤ S < 0.55), and low (S < 0.45) level, for systematically analyzing its spatiotemporal distribution characteristic and response mechanism to explanatory variables in Yan’an, northwest China, from 2000 to 2018. The results demonstrated that: (1) LES status was mainly characterized by medium−high level and medium level, and maintained profound stability. (2) zone with medium−high LES level was mainly concentrated in western and southern regions, continuously expanding to northeast regions, and possessed the largest territorial area, accounting for 37.22–46.27% of the total area in Yan’an. (3) LES was primarily susceptible to normalized differential vegetation index, vegetation coverage, and land surface temperature with their optimal impacting thresholds of 0.20–0.64, 0.20–0.55, and 11.20–13.00 °C, respectively. (4) Normalized differential vegetation index and vegetation coverage had a significant synergistic effect upon LES based on their interactive explanation rate of 31% and had significant variation consistency (positive and negative) with LES, which were powerfully suggested to signal the intensification of the regional eco-security level in the persistent eco-greening process.
Collapse
|
7
|
Identifying Key Sites of Green Infrastructure to Support Ecological Restoration in the Urban Agglomeration. LAND 2021. [DOI: 10.3390/land10111196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The loss and fragmentation of natural space has placed tremendous pressure on green infrastructure (GI), especially in urban agglomeration areas. It is of great importance to identify key sites of GI, which are used to economically and efficiently restore urban ecological network. However, in the existing research, few scholars have explored the identification and application of GI key sites. Taking the Southern Jiangsu Urban Agglomeration as an example, based on the ecosystem service assessment and landscape connectivity analysis, we identified the multi-class key sites of GI in the study area by MSPA, InVEST model, MCR model, and Linkage mapper. The results showed that: (1) a total of 60 GI sources and 130 GI corridors were extracted. The ecological resources of the study area were densely distributed in the north and south and sparsely in the middle. (2) Three-hundred eighty GI key sites were identified, including 53 water ecological points, 251 ecological fracture points, and 76 ecological pinch points. The GI key sites we identified were large in number and widely distributed, yet were hardly included in the existing ecological protection policies. These key sites should be prioritized in GI planning and differentiated for management strategies, ensuring that limited land resources and public funds can be directed to where restoration is really needed. The present study provides land managers and urban planners with additional tools to better understand how to effectively restore and develop the ecosystems of urban agglomerations in the context of scarce land resources.
Collapse
|
8
|
Causal Analysis of Ecological Impairment in Land Ecosystem on a Regional Scale: Applied to a Mining City Daye, China. LAND 2021. [DOI: 10.3390/land10050530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We adopted a weight of evidence approach to establish a causal analysis of an impaired land ecosystem on a regional scale; namely, Daye, a traditional mining city in China. Working processes, including problem statements, a list of candidate causes, and a conceptual model were developed to represent a causal hypothesis for describing land degradation. Causal criteria were applied to integrate multiple lines of evidence. Then, various pieces of evidence were scored to either strengthen or weaken our causal assumptions. Results showed that habitat alteration, heavy metal accumulation, organic pollutants, water eutrophication, and nutrient runoff were the probable causes of land ecosystem impairment in Daye. Meanwhile, noxious gas, toxicants, altered underground runoff, atmospheric deposition, and acid rain were identified as possible causes. The most unlikely causes were altered hydrology, altered earth surface runoff, and soil erosion. Soil salinization, soluble inorganic salts, biological species invasion, and pathogens were deferred as delayed causes due to lack of adequate information. The causal analysis approach was applied to identify the primary causes of land degradation and implement accurate protective measures in an impaired land ecosystem.
Collapse
|
9
|
Regional Land Eco-Security Evaluation for the Mining City of Daye in China Using the GIS-Based Grey TOPSIS Method. LAND 2021. [DOI: 10.3390/land10020118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Regional ecological security assessment is a significant methodology for environmental protection, land utilisation, and human development. This study aims to reveal the regional constraints of ecological resources to overcome the difficulties and complexities in quantification of current models used in land ecosystems. For this purpose, the technique for order preference by similarity to an ideal solution (TOPSIS) was linked to a grey relational analysis and integrated with a geographic information system. The obtained method was used to construct a land eco-security evaluation on a regional scale for application in a traditional mining city, Daye, in central China. Parameter analysis was introduced to the method to produce a more realistic spatial distribution of eco-security. Subsequently, based on the pressure–state–response framework, the eco-security index was calculated, and the carrying capacity of land resources and population for each sub-region were analysed. The results showed that: (i) very insecure and insecure classes comprised 5.65% and 18.2% of the total area, respectively, highlighting the vulnerable eco-environmental situation; (ii) moderate secure classes areas comprised a large amount of arable land, spanning an area of 494.5 km2; (iii) secure areas were distributed in the northwest, containing mostly water and wetland areas and accounting for 426.3 km2; and (iv) very secure areas were located on the southeastern region, involving traditional woodland with a better vegetation cover and an overall higher eco-environmental quality. In addition, for each sub-region, the extremely low and low ecological security areas were mainly arable and urban lands, which amounted to 305 and 190 km2, respectively. Under the current ecological constraints, sub-region 1 cannot continue supporting the population size in Daye City. The present results demonstrate the accuracy of our methodology, and our method may be used by local managers to make effective decisions for regional environment protection and sustainable use of land resources.
Collapse
|