1
|
Liu R, Zhang Y, Wang Z, Zhang X, Xu W, Zhang J, Zhang Y, Hu B, Shi X, Rennenberg H. Groundcover improves nutrition and growth of citrus trees and reduces water runoff, soil erosion and nutrient loss on sloping farmland. FRONTIERS IN PLANT SCIENCE 2024; 15:1489693. [PMID: 39568460 PMCID: PMC11576175 DOI: 10.3389/fpls.2024.1489693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Introduction Groundcover management plays a crucial role in improving water retention and soil nutrition in orchard systems, thereby preventing environmental constrains by non-point source pollution. However, effectiveness of groundcover management in citrus orchards developed on sloping farmland with eroded purple soil has not been studied in detail. In particular, information on the soil nutrient losses, e.g., nitrogen (N) and phosphorus (P), through interflow and its effects on growth and nutrition of citrus plants has not been reported. Methods The present study evaluated the effects of different cover crops, i.e., Lolium perenne L. (Lolium), Vicia villosa Roth (Vicia) and Orychophragmus violaceus (Ory), on nutrition and growth of citrus trees as well as water, soil and nutrient retention in an orchard developed in sloping farmland during two consecutive years. Results and discussion The results show that the groundcover species Lolium and Vicia mediated nursing effects on nutrition and growth of citrus trees. These nursing effects included enhanced foliar levels of carbon(C), N and P as well as increased tree height, stem diameter, and crown width. Groundcover management generally reduced the annual surface runoff, interflow, soil loss, total N loss and total P loss. Among the cover crop species studied, Lolium and Vicia were overall more efficient than Ory in this context. Lolium reduced the average annual total loss of N and P by 42.53% and 49.23%, respectively, compared with clean tillage. The estimated annual reduction potentials of soil, N and P losses in Southwestern China were 16.3, 3.4 and 8.5 million tons yr-1, respectively. Obviously, Lolium and Vicia provide highly beneficial ground coverage on sloping farmland and, thus, can be used for future sustainable development of citrus orchards.
Collapse
Affiliation(s)
- Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Zhichao Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xueliang Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Wenjing Xu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jianwei Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Solomon T, Idris O, Nwaubani D, Baral R, Sherchan SP. Comparative analysis of membrane filter diameters for detection of selected viruses in wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:173973. [PMID: 38876339 DOI: 10.1016/j.scitotenv.2024.173973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Wastewater serves as a valuable source of information as it contains biological markers that have been shed by infected individuals and from other biological organisms such as plants and animals. Wastewater has been proven to indicate the presence of emerging pathogens in a community before the manifestation of clinical symptoms. Several methods of concentration and nucleic acid extraction have been employed all around the world without a unified method. One such method involves the use of the adsorption extraction method (AE-method), which involves the use of electronegative membrane filters of different pore sizes. The membrane filters also differ by diameter, but no study has been reported on the effect of diameter on capture efficiency. This study was aimed at evaluating the comparative capture efficiency of two different membrane filter diameters of 45 and 90 mm with pore sizes of 0.45 μm for the detection of indicator and pathogenic viruses. Primary influent samples were obtained from two wastewater treatment plants in Baltimore, Maryland, between April 27 and June 29, 2023. A total of twenty samples were processed using 45- and 90-mm membrane filters. Nucleic acids were extracted from the filters using the QIAmp Viral RNA Mini Kit and assayed for four different targets: PMMoV, Norovirus (GI and GII), and CrAssphage by RT-qPCR. The result showed that 45 mm membrane filters had a higher combined mean capture efficiency in log10 gene copies per liter (gc/l) for crAssphage (7.40) than 90 mm membrane filters (7.10). Similarly, the 45-mm filter had higher mean capture efficiency for Norovirus GI (4.67) than the 90-mm filter (1.84) and likewise for Norovirus GII (2.14, 1.04). On the contrary, 90-mm membrane filters were observed to have better capture of PMMoV (6.84) compared to 45-mm membrane filters (6.69). This result therefore implies that 45-mm membrane filters could be more efficient for wastewater surveillance studies through the AE method for indicator viruses like CrAssphage and human disease-causing viruses like Norovirus.
Collapse
Affiliation(s)
- Tamunobelema Solomon
- Center of Research Excellence in Wastewater based epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Oladele Idris
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Daniel Nwaubani
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Rakshya Baral
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Samendra P Sherchan
- Center of Research Excellence in Wastewater based epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America.
| |
Collapse
|
3
|
Lobos AE, Brandt AM, Gallard-Góngora JF, Korde R, Brodrick E, Harwood VJ. Persistence of sewage-associated genetic markers in advanced and conventional treated recycled water: implications for microbial source tracking in surface waters. mBio 2024; 15:e0065524. [PMID: 38864636 PMCID: PMC11253620 DOI: 10.1128/mbio.00655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Sewage contamination of environmental waters is increasingly assessed by measuring DNA from sewage-associated microorganisms in microbial source tracking (MST) approaches. However, DNA can persist through wastewater treatment and reach surface waters when treated sewage/recycled water is discharged, which may falsely indicate pollution from untreated sewage. Recycled water discharged from an advanced wastewater treatment (AWT) facility into a Florida stream elevated the sewage-associated HF183 marker 1,000-fold, with a minimal increase in cultured Escherichia coli. The persistence of sewage-associated microorganisms was compared by qPCR in untreated sewage and recycled water from conventional wastewater treatment (CWT) and AWT facilities. E. coli (EC23S857) and sewage-associated markers HF183, H8, and viral crAssphage CPQ_056 were always detected in untreated sewage (6.5-8.7 log10 GC/100 mL). Multivariate analysis found a significantly greater reduction of microbial variables via AWT vs CWT. Bacterial markers decayed ~4-5 log10 through CWT, but CPQ_056 was ~100-fold more persistent. In AWT facilities, the log10 reduction of all variables was ~5. In recycled water, bacterial marker concentrations were significantly correlated (P ≤ 0.0136; tau ≥ 0.44); however, CPQ_056 was not correlated with any marker, suggesting varying drivers of decay. Concentrations of cultured E. coli carrying the H8 marker (EcH8) in untreated sewage were 5.24-6.02 log10 CFU/100 mL, while no E. coli was isolated from recycled water. HF183 and culturable EcH8 were also correlated in contaminated surface waters (odds ratio β1 = 1.701). Culturable EcH8 has a strong potential to differentiate positive MST marker signals arising from treated (e.g., recycled water) and untreated sewage discharged into environmental waters. IMPORTANCE Genes in sewage-associated microorganisms are widely accepted indicators of sewage pollution in environmental waters. However, DNA persists through wastewater treatment and can reach surface waters when recycled water is discharged, potentially causing false-positive indications of sewage contamination. Previous studies have found that bacterial and viral sewage-associated genes persist through wastewater treatment; however, these studies did not compare different facilities or identify a solution to distinguish sewage from recycled water. In this study, we demonstrated the persistence of bacterial marker genes and the greater persistence of a viral marker gene (CPQ_056 of crAssphage) through varying wastewater treatment facilities. We also aim to provide a tool to confirm sewage contamination in surface waters with recycled water inputs. This work showed that the level of wastewater treatment affects the removal of microorganisms, particularly viruses, and expands our ability to identify sewage in surface waters.
Collapse
Affiliation(s)
- Aldo E. Lobos
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Amanda M. Brandt
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Javier F. Gallard-Góngora
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Ruchi Korde
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Eleanor Brodrick
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Plaimart J, Acharya K, Blackburn A, Mrozik W, Davenport RJ, Werner D. Effective removal of iron, nutrients, micropollutants, and faecal bacteria in constructed wetlands cotreating mine water and sewage treatment plant effluent. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:116-131. [PMID: 38214989 PMCID: wst_2024_001 DOI: 10.2166/wst.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Regulators in England and Wales have set new targets under the Environment Act 2021 for freshwater quality by 2038 that include halving the length of rivers polluted by harmful metals from abandoned mines and reducing phosphorus loadings from treated wastewater by 80%. In this context, an intriguing win-win opportunity exists in the removal of iron from abandoned mines and phosphate from small sewage treatment plants by coprecipitation in constructed wetlands (CWs). We investigated such a CW located at Lamesley, Northeast England, which cotreats abandoned coal mine and secondary-treated sewage treatment plant effluents. We assessed the removal of nutrients, heavy metals, organic micropollutants, and faecal coliforms by the CW, and characterized changes in the water bacteriology comprehensively using environmental DNA. The CW effectively removed ammonium-nitrogen, phosphorus, iron, and faecal coliforms by an average of 86, 74, 98, and 75%, respectively, to levels below or insignificantly different from those in the receiving river. The CW also effectively removed micropollutants such as acetaminophen, caffeine, and sulpiride by 70-100%. Molecular microbiology methods showed successful conversion of sewage and mine water microbiomes into a freshwater microbiome. Overall, the CW significantly reduced impacts on the rural water environment with minimal operational requirements.
Collapse
Affiliation(s)
- Jidapa Plaimart
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK E-mail:
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Adrian Blackburn
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
5
|
Liu Z, Lin Y, Ge Y, Zhu Z, Yuan J, Yin Q, Liu B, He K, Hu M. Meta-analysis of microbial source tracking for the identification of fecal contamination in aquatic environments based on data-mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118800. [PMID: 37591102 DOI: 10.1016/j.jenvman.2023.118800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Microbial source tracking (MST) technology represents an innovative approach employed to trace fecal contamination in environmental water systems. The performance of primers may be affected by amplification techniques, target primer categories, and regional differences. To investigate the influence of these factors on primer recognition performance, a meta-analysis was conducted on the application of MST in water environments using three databases: Web of Science, Scopus, and PubMed (n = 2291). After data screening, 46 studies were included in the final analysis. The investigation encompassed Polymerase Chain Reaction (PCR)/quantitative PCR (qPCR) methodologies, dye-based (SYBR)/probe-based (TaqMan) techniques, and geographical differences of a human host-specific (HF183) primer and other 21 additional primers. The results indicated that the primers analyzed were capable of differentiating host specificity to a certain degree. Nonetheless, by comparing sensitivity and specificity outcomes, it was observed that virus-based primers exhibited superior specificity and recognition capacity, as well as a stronger correlation with human pathogenicity in water environments compared to bacteria-based primers. This finding highlights an important direction for future advancements. Moreover, within the same category, qPCR did not demonstrate significant benefits over conventional PCR amplification methods. In comparing dye-based and probe-based techniques, it was revealed that the probe-based method's advantage lay primarily in specificity, which may be associated with the increased propensity of dye-based methods to produce false positives. Furthermore, the heterogeneity of the HF183 primer was not detected in China, Canada, and Singapore respectively, indicating a low likelihood of regional differences. The variation among the 21 other primers may be attributable to regional differences, sample sources, detection techniques, or alternative factors. Finally, we identified that economic factors, climatic conditions, and geographical distribution significantly influence primer performance.
Collapse
Affiliation(s)
- Zejun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yingying Lin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yanhong Ge
- Guangdong Infore Technology Co., Ltd, Foshan, 528322, China
| | - Ziyue Zhu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jinlong Yuan
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Bingjun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Kai He
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Maochuan Hu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
6
|
Halla FF, Massawa SM, Joseph EK, Acharya K, Sabai SM, Mgana SM, Werner D. Attenuation of bacterial hazard indicators in the subsurface of an informal settlement and their application in quantitative microbial risk assessment. ENVIRONMENT INTERNATIONAL 2022; 167:107429. [PMID: 35914337 DOI: 10.1016/j.envint.2022.107429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pit latrines provide essential onsite sanitation services to over a billion people, but there are concerns about their role in infectious disease transmission, and impacts on groundwater resources. We conducted fieldwork in an informal settlement in Dar es Salaam, where cholera is endemic. We combined plate counting with portable MinION sequencing and quantitative polymerase chain reaction (qPCR) methods for characterization of bacteria in pit latrine sludge, leachate, shallow and deep groundwater resources. Pit latrine sludge was characterized by log10 marker gene concentrations per 100 mL of 11.2 ± 0.2, 9.9 ± 0.9, 6.0 ± 0.3, and 4.4 ± 0.8, for total bacteria (16S rRNA), E. coli (rodA), human-host-associated Bacteroides (HF183), and Vibrio cholerae (ompW), respectively. The ompW gene observations suggested 5 % asymptomatic Vibrio cholerae carriers amongst pit latrine users. Pit leachate percolation through one-meter-thick sand beds attenuated bacterial hazard indicators by 1 to 4 log10 units. But first-order removal rates derived from these data substantially overestimated the longer-range hazard attenuation in the sand aquifers. Cooccurrence of human sewage marker gene HF183 in all shallow groundwater samples testing positive for ompW genes demonstrated the human origin of Vibrio cholerae hazards in the subsurface. All borehole water samples tested negative for ompW and HF183 genes, but 16S rRNA gene sequencing data suggested ingress of faecal pollution into boreholes at the peak of the "long rainy season". Quantitative microbial risk assessment (QMRA) predicted a gastrointestinal disease burden of 0.05 DALY per person per year for the community, well above WHO targets of 10-4-10-6 DALY for disease related to drinking water.
Collapse
Affiliation(s)
- Franella Francos Halla
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Said Maneno Massawa
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Elihaika Kengalo Joseph
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shadrack Mwita Sabai
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Shaaban Mrisho Mgana
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania.
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|