1
|
Luo Y, Li C, Hu X, Feng J. Spongy moths from Europe and Asia: Who could have higher invasion risk in North American? PLoS One 2025; 20:e0320598. [PMID: 40338844 PMCID: PMC12061144 DOI: 10.1371/journal.pone.0320598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/20/2025] [Indexed: 05/10/2025] Open
Abstract
North American forest systems are significantly impacted by spongy moths (Lymantria dispar Linnaeus). It is unclear, nevertheless, how are the invasion risks of spongy moths from Asia and Europe in North American relative to each other. In this study, we compared the potential ranges of spongy moths from Asia (ASM) and those from Europe (ESM) in North America, and investigated the range shifts between spongy moths in North America (NASM) and ASM and ESM. ASM and ESM would occupy larger potential ranges in North America than NASM, i.e., 7.16 and 6.98 times, respectively. Thus, one should not undervalue the invasive potential posed by spongy moths from Asia and Europe. Compared to ESM, ASM displayed larger ranges in North America. It is likely due to ASM's tolerance of more variable climates. Consequently, even though ASM was more recently introduced to North America than ESM, it's possible that the former has higher invasion risk in North American.
Collapse
Affiliation(s)
- Yi Luo
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Changxi Li
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Xiaokang Hu
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| |
Collapse
|
2
|
Zhang P, Zhou P, Liu Y, Xu Z, Gong L, Xiang X. Distribution Dynamics of Wide-Ranged and Narrow-Ranged Species From the Pliocene to the Future: Insights From Asian Endemic Holcoglossum (Orchidaceae). Ecol Evol 2025; 15:e71301. [PMID: 40230866 PMCID: PMC11994890 DOI: 10.1002/ece3.71301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Climate change is an important driver of the potential distribution changes of plants. However, the potential distribution changes of wide-ranged and narrow-ranged species in response to climate change were still controversial. An epiphytic orchid genus Holcoglossum is a key group to address this issue, with about 30% of species widely distributed in the Asian mainland, while the others are only narrowly distributed in special mountains. Combining with species' occurrences, the environmental variables, and Human Footprint data, we analyzed the key predictor variables and predicted the potential distributions and centroid shifts of four wide-ranged and four narrow-ranged Holcoglossum species from the Pliocene to the future using the maximum entropy (MaxEnt) model. Our results showed that the potential distributions of seven Holcoglossum species (except H. subulifolium) were mainly impacted by the precipitation of the warmest quarter in the future. From the Pliocene to the present, the potential distributions of the wide-ranged species (except H. subulifolium) and the narrow-ranged species were contracted. From the present to the future (SSP2-4.5, 2090), the potential distributions of two wide-ranged species (H. flavescens, H. himalaicum) would contract, whereas the other two would expand; the potential distributions of two narrow-ranged species (H. kimballianum, H. wangii) would contract, and the other two would expand. The centroids of three wide-ranged species would migrate southwards (H. amesianum, H. himalaicum, and H. subulifolium), whereas H. flavescens would have nearly no migration; the centroids of three narrow-ranged species would migrate southwards (H. pumilum, H. quasipinifolium, and H. wangii), whereas H. kimballianum would migrate westwards. We found that the vulnerability to climate change of species might be unlinked to their current distribution range and the phylogenetic relationships. This study provides new insights for the potential distribution changes and conservation of narrow-ranged and wide-ranged orchid species.
Collapse
Affiliation(s)
- Pei‐Yang Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Peng Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Yi‐Zhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Zhi‐Wen Xu
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake WetlandNanchang UniversityNanchangJiangxiChina
- Administration Bureau of Poyang Lake National Nature Reserve in Jiangxi ProvinceNanchangJiangxiChina
| | - Lei‐Qiang Gong
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake WetlandNanchang UniversityNanchangJiangxiChina
- Administration Bureau of Poyang Lake National Nature Reserve in Jiangxi ProvinceNanchangJiangxiChina
| | - Xiao‐Guo Xiang
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life SciencesNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
3
|
Guo F, Gao G, Sun Q, Guo L, Yang Y. Predicting high-risk zones for pine wood nematodes invasion: Integrating climate suitability, host availability, and vector dominance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178902. [PMID: 40022972 DOI: 10.1016/j.scitotenv.2025.178902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Pine wood nematodes (PWN, Bursaphelenchus xylophilus) cause widespread mortality in pine forests via pine wilt disease (PWD). The rapid death of diseased trees, which destroys biodiversity and significantly affects forest carbon storage, leading to negative environmental and economic consequences, as forests are crucial to the global carbon cycle. The interactions among PWN, hosts, and vector insects are closely linked to climate change. Climate warming has exacerbated changes in the geographic distribution of host tree species and vector insects, thereby increasing the rate and extent of PWD transmission. These interactions increase the risk of pine infection and can have far-reaching consequences for the health and stability of entire forest ecosystems. However, the global effects of climate change on these interactions are poorly understood. To fill this research gap and predict the potential impacts of climate change on the distribution of PWNs and vector insects in pine forests, we used the biomod2 integrated model to forecast their potential geographic distributions by 2050, 2070, and 2090 under three greenhouse gas emission scenarios (SSP126, SSP245, and SSP585). We analysed vector dominance and risk zones and found that potentially suitable areas for PWNs could migrate to higher latitudes in the future. The dominant vector insects, Monochamus alternatus, Monochamus carolinensis, and Monochamus saltuarius, exhibited a high ecological niche similarity to PWNs and their populations should be controlled. Additionally, high-risk areas for abiotic factors (environmental similarity) and biotic factors (hosts and vectors) will greatly expand in North America and Europe. Areas already infested by PWN will become high-risk zones for the conversion of carbon sinks to carbon sources. The modeled changes in the spatial and temporal patterns of PWN, hosts, and vector insects in this study provide a reference for developing management and conservation strategies for ensuring PWN control and improving future forest health.
Collapse
Affiliation(s)
- Facheng Guo
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guizhen Gao
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Qian Sun
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Liang Guo
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yaru Yang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
4
|
Wang P, Yang M, Zhao H, Wei D, Zhang G, Jiang H, Zhang C, Xian X, Huang H, Zhang Y. Global Potential Geographic Distribution of Anthonomus eugenii Under Climate Change: A Comprehensive Analysis Based on an Ensemble Modeling Approach. NEOTROPICAL ENTOMOLOGY 2025; 54:25. [PMID: 39820799 DOI: 10.1007/s13744-024-01242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Climate warming is affecting the ranges and population dynamics of invasive species, including insects, which have become a global problem, causing biodiversity declines and agricultural economic losses. Anthonomus eugenii as an important invasive pest on pepper is now mainly located in the USA and Mexico. However, the global potential geographic distribution (PGD) of A. eugenii with climate change remains unknown, which makes it difficult to monitor and control. In this study, based on the global distribution areas and important environmental variables, we constructed an ensemble model to predict the global PGD of A. eugenii under the current climate and three climate scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) in the 2030s and 2050s. The mean true skill statistics (TSS) and the area under the receiver operating characteristic curve (AUC) of the EM were 0.825 and 0.988, respectively, indicating that the EM was reliable. The mean temperature of the driest (bio9) and wettest (bio8) quarter and precipitation of the coldest quarter (bio19) were the most important environmental variables affecting the PGD of A. eugenii. Under the current climate, the PGD of A. eugenii was mainly concentrated in southern North America and central South America. The suitable areas of A. eugenii could increase significantly, reaching the maximum under SSP5-8.5 in the 2030s, approximately 1911.7 × 104 km2. Moreover, the distribution centroid would shift to higher latitudes with global warming. It also had the potential invasion risk in Russia, China, the Republic of the Congo, and Romania, which should enhance quarantine control and early warning.
Collapse
Affiliation(s)
- Peilin Wang
- College of Plant Protection, Southwest Univ, Chongqing, China
- State Key Lab for Biology of Plant Diseases and Insect Pests, Key Lab of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Yang
- State Key Lab for Biology of Plant Diseases and Insect Pests, Key Lab of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoxiang Zhao
- State Key Lab for Biology of Plant Diseases and Insect Pests, Key Lab of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dandan Wei
- College of Plant Protection, Southwest Univ, Chongqing, China
| | - Guifen Zhang
- State Key Lab for Biology of Plant Diseases and Insect Pests, Key Lab of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbo Jiang
- College of Plant Protection, Southwest Univ, Chongqing, China
| | - Chi Zhang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaoqing Xian
- State Key Lab for Biology of Plant Diseases and Insect Pests, Key Lab of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Hongkun Huang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Yibo Zhang
- State Key Lab for Biology of Plant Diseases and Insect Pests, Key Lab of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang Y, Xue W, Lyu J, Yue M, Mao Z, Shen X, Wang X, Li Y, Li Q. Biotic Interactions Shape Soil Bacterial Beta Diversity Patterns along an Altitudinal Gradient during Invasion. Microorganisms 2024; 12:1972. [PMID: 39458281 PMCID: PMC11509125 DOI: 10.3390/microorganisms12101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Invasive plants have already been observed in the understory of mountain forests, which are often considered a safe shelter for most native plants. Microorganisms might be drivers of plant invasions. Nevertheless, the mechanisms determining variations in microbial community composition (beta diversity) during invasion along altitudinal gradients remain to be elucidated. Here, the elevational patterns and the driving ecological processes (e.g., environmental filtering, co-occurrence patterns, and community assembly processes) of soil bacterial beta diversity were compared between invasive and native plants on the Qinling Mountains. The species turnover dominated bacterial compositional dissimilarities in both invasive and native communities, and its contribution to total beta diversity decreased during invasion. Total soil bacterial dissimilarities and turnover exhibited significant binominal patterns over an altitudinal gradient, with a tipping point of 1413 m. Further analysis showed that the contributions of assembly processes decreased in parallel with an increase in contributions of co-occurrence patterns during the invasion process, indicating that species interdependence rather than niche partitioning is strongly correlated with the bacterial biogeography of invasive communities. Plant invasion affects the relative contributions of stochastic processes and co-occurrence interactions through the regulation of the physiochemical characteristics of soil, and ultimately determines compositional dissimilarities and the components of the bacterial community along altitudinal gradients.
Collapse
Affiliation(s)
- Yuchao Wang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
- Xi’an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi’an 710061, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710061, China
| | - Wenyan Xue
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Jinlin Lyu
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
- Xi’an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi’an 710061, China
- School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Xuejian Shen
- Forest Disease and Pest Control and Quarantine Station of Shangluo, Shangluo 726000, China
| | - Xue Wang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Qian Li
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| |
Collapse
|
6
|
Farquhar JE, Russell W, Chapple DG. Identifying the abiotic factors that determine the inland range limits of a mesic-adapted lizard species. Integr Comp Biol 2024; 64:55-66. [PMID: 37858300 PMCID: PMC11277862 DOI: 10.1093/icb/icad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
For most species, the factors that determine geographical range limits are unknown. In mesic-adapted species, populations occurring near the edge of the species' distribution provide ideal study systems to investigate what limits distributional ranges. We aimed to identify the abiotic constraints that preclude an east-Australian mesic-adapted lizard (Lampropholis delicata) from occupying arid environments. We performed lizard surveys at sites spanning an elevation/aridity gradient (380-1070 m) and measured the prevalence of habitat features (logs, rocks, leaf litter, bare ground, solar radiation) in addition to hourly temperatures in a variety of microhabitats available to lizards. Species distribution models (SDM) were used to identify the macroclimatic variables limiting the species' distribution. At its inland range limit, L. delicata is associated with mesic high-elevation forests with complex microhabitat structures, which gradually decline in availability toward lower (and more arid) elevations where the species is absent. Moreover, L. delicata is absent from sites with a shallow leaf litter layer, in which daily temperatures exceed the species' thermal preference range, which we determined in a laboratory thermal gradient. In regards to macroclimate, SDM revealed that temperature seasonality is the primary variable predicting the species' distribution, suggesting that L. delicata avoids inland areas owing to their high annual thermal variability. By combining multiple lines of evidence, this research highlights that habitat and microclimate suitability-not solely macroclimate suitability-are important range-limiting factors for mesic ectotherms and should be incorporated in studies addressing range-limiting hypotheses.
Collapse
Affiliation(s)
- Jules E Farquhar
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Wyn Russell
- Biosis Pty Ltd, Port Melbourne, Melbourne, Victoria 3207, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Nie P, Cao R, Yang R, Feng J. Future range dynamics of Asian yellow-legged hornets (Vespa velutina) and their range overlap with Western honey bees (Apis mellifera) reveal major challenges for bee conservation in Europe. PEST MANAGEMENT SCIENCE 2024; 80:2785-2795. [PMID: 38415910 DOI: 10.1002/ps.7987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The invasion of Asian yellow-legged hornets (Vespa velutina) has significantly affected Western honey bees (Apis mellifera) and apiculture in Europe. However, the range dynamics of this hornet and its range overlap with the bees under future change scenarios have not yet been clarified. Using land-use, climate, and topographical datasets, we projected the range dynamics of this hornet and Western honey bees in Europe and the future overlap of their ranges. RESULTS We found that climatic factors had stronger effects on the potential ranges of the hornets compared with land-use and topographical factors. A considerable range expansion of this hornet was predicted, and an increase in the overlap between this pest and the bees was primarily caused by future decreases in temperature seasonality. Additionally, we detected future range expansions of the hornet in the UK and France; future range overlap between this pest and Western honey bees in the UK, Ireland, Portugal, and France; and future overlap between the ranges of this pest and bees but not under recent conditions was mainly projected in Germany, Denmark, and the UK. CONCLUSION Mitigating future climate change might effectively control the proliferation of the hornets and their effects on the bees. Strategies for preventing the invasion of this pest and developing European apiculture should be developed and implemented in these regions where future range overlap between them was projected. Given that climate-change scenarios may result in uncertainty in our projections, further investigation is needed to clarify future range changes of our target species. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peixiao Nie
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| | - Runyao Cao
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| | - Rujing Yang
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| | - Jianmeng Feng
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| |
Collapse
|
8
|
Feng C, Guo F, Gao G. Climate as a Predictive Factor for Invasion: Unravelling the Range Dynamics of Carpomya vesuviana Costa. INSECTS 2024; 15:374. [PMID: 38921089 PMCID: PMC11203509 DOI: 10.3390/insects15060374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Invasive alien species (IAS) significantly affect global native biodiversity, agriculture, industry, and human health. Carpomya vesuviana Costa, 1854 (Diptera: Tephritidae), a significant global IAS, affects various date species, leading to substantial economic losses and adverse effects on human health and the environment. This study employed biomod2 ensemble models, multivariate environmental similarity surface and most dissimilar variable analyses, and ecological niche dynamics based on environmental and species data to predict the potential distribution of C. vesuviana and explore the environmental variables affecting observed patterns and impacts. Compared to native ranges, ecological niche shifts at invaded sites increased the invasion risk of C. vesuviana globally. The potential geographical distribution was primarily in Asia, Africa, and Australia, with a gradual increase in suitability with time and radiation levels. The potential geographic distribution centre of C. vesuviana is likely to shift poleward between the present and the 2090s. We also show that precipitation is a key factor influencing the likely future distribution of this species. In conclusion, climate change has facilitated the expansion of the geographic range and ecological niche of C. vesuviana, requiring effective transnational management strategies to mitigate its impacts on the natural environment and public health during the Anthropocene. This study aims to assess the potential threat of C. vesuviana to date palms globally through quantitative analytical methods. By modelling and analysing its potential geographic distribution, ecological niche, and environmental similarities, this paper predicts the pest's dispersal potential and possible transfer trends in geographic centres of mass in order to provide prevention and control strategies for the global date palm industry.
Collapse
Affiliation(s)
| | | | - Guizhen Gao
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (C.F.); (F.G.)
| |
Collapse
|
9
|
Mirhashemi H, Ahmadi K, Heydari M, Karami O, Valkó O, Khwarahm NR. Climatic variables are more effective on the spatial distribution of oak forests than land use change across their historical range. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:289. [PMID: 38381166 DOI: 10.1007/s10661-024-12438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The current research is conducted to model the effect of climate change and land use change (LUC) on the geographical distribution of Quercus brantii Lindl. (QB) forests across their historical range. Forecasting was done based on six general circulation models under RCP 2.6 and RCP 8.5 future climate change scenarios for the future years 2050 and 2070. In order to model the species distribution, different modeling methods were used. The results indicated that, in general, climatic variables had a higher influence on the distribution of QB than land use-related attributes. The mean diurnal range (bio2), the precipitation seasonality (bio15), and the mean temperature of the driest quarter (bio9) were the main predictors in the distribution of QB forests, while land use variables were less important in oak species distribution. The GBM, MaxEnt, and RF had higher accuracy and performance in modeling species distribution. The outputs also showed that in the current climate circumstances, 97,608.81 km2 of the studied area has high desirability for the presence of QB, and by 2070, under the pessimistic scenario, 96.29% of these habitats will be lost under the concomitant effect of LUC and climate change. By using the results of this research, it is possible to predict and identify the effective factors in changing the habitat of this oak species with more certainty. Based on the insights obtained from the results of such studies, the protection and restoration planning of the habitat of this key species, which supports diverse species, will be provided more efficiently.
Collapse
Affiliation(s)
- Hengameh Mirhashemi
- Department of Forest Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kourosh Ahmadi
- Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Heydari
- Department of Forest Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Omid Karami
- General Department of Natural Resources and Watershed Management of Ilam Province, Ilam, Iran
| | - Orsolya Valkó
- HUN-REN 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Nabaz R Khwarahm
- Department of Biology, College of Education, University of Sulaimani, Kurdistan Region, Sulaimani, 46001, Iraq
| |
Collapse
|
10
|
Yang W, Sun S, Wang N, Fan P, You C, Wang R, Zheng P, Wang H. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166260. [PMID: 37579809 DOI: 10.1016/j.scitotenv.2023.166260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Climate change and biological invasions pose significant threats to the conservation of biodiversity and the provision of ecosystem services. With the rapid development of international trade and economy, China has become one of the countries most seriously affected by invasive alien plants (IAPs), especially the Asteraceae IAPs. For this end, we selected occurrence data of 31 Asteraceae IAPs and 33 predictor variables to explore the distribution pattern under current climate using MaxEnt model. Based on future climate data, the changes in distribution dynamics of Asteraceae IAPs were predicted under two time periods (2041-2060 and 2081-2100) and three climate change scenarios (SSP126, SSP245 and SSP585). The results indicated that the potential distribution of IAPs was mainly in the southeast of China under current climate. Climatic variables, including precipitation of coldest quarter (BIO19), temperature annual range (BIO07) and annual precipitation (BIO12) were the main factors affecting the potential distribution. Besides, human footprint (HFP), population (POP) and soil moisture (SM) also had a great contribution for shaping the distribution pattern. With climate change, the potential distribution of IAPs would shift to the northwest and expand. It would also accelerate the expansion of most Asteraceae IAPs in China. The results of our study can help to understand the dynamics change of distributions of Asteraceae IAPs under climate change in advance so that early strategies can be developed to reduce the risk and influence of biological invasions.
Collapse
Affiliation(s)
- Wenjun Yang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Shuxia Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Naixian Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Peixian Fan
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Chao You
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China.
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
11
|
Nie P, Feng J. Niche and Range Shifts of Aedes aegypti and Ae. albopictus Suggest That the Latecomer Shows a Greater Invasiveness. INSECTS 2023; 14:810. [PMID: 37887822 PMCID: PMC10607146 DOI: 10.3390/insects14100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The yellow fever (Aedes aegypti) and Asian tiger (Ae. albopictus) mosquitos are major vectors of global mosquito-borne pathogens. However, their niche and range shifts, the underlying mechanisms, and related relative invasion rates remain scarcely known. We examined the niche and range shifts between the native and invasive Ae. aegypti and Ae. albopictus populations through dynamic niche and range models and the largest occurrence record datasets to date. We detected substantial niche and range expansions in both species, probably because the introduced populations have more opportunities to acclimate to diverse environmental conditions than their native counterparts. Mitigating climate change could effectively control their future invasions, given that future climate changes could promote their invasiveness. Additionally, compared to the introduced Ae. aegypti, the more recent invader Ae. albopictus had greater niche and range expansion over its shorter invasion history. In terms of the range shifts, Ae. albopictus had an invasion rate approximately 13.3 times faster than that of Ae. aegypti, making it a more invasive vector of global mosquito-borne pathogens. Therefore, considering its higher invasion rate, much more attention should be paid to Ae. albopictus in devising our strategies against prevailing global mosquito-borne pathogens than Ae. aegypti. Since small niche shifts could result in their large range shifts, niche shifts might be a more important indicator for biological invasion assessments.
Collapse
Affiliation(s)
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| |
Collapse
|
12
|
Yang M, Zhao H, Xian X, Qi Y, Li Q, Guo J, Chen L, Liu W. Reconstructed Global Invasion and Spatio-Temporal Distribution Pattern Dynamics of Sorghum halepense under Climate and Land-Use Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:3128. [PMID: 37687374 PMCID: PMC10489930 DOI: 10.3390/plants12173128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Sorghum halepense competes with crops and grass species in cropland, grassland, and urban environments, increasing invasion risk. However, the invasive historical dynamics and distribution patterns of S. halepense associated with current and future climate change and land-use change (LUC) remain unknown. We first analyzed the invasive historical dynamics of S. halepense to explore its invasion status and expansion trends. We then used a species distribution model to examine how future climate change and LUC will facilitate the invasion of S. halepense. We reconstructed the countries that have historically been invaded by S. halepense based on databases with detailed records of countries and occurrences. We ran biomod2 based on climate data and land-use data at 5' resolution, assessing the significance of environmental variables and LUC. Sorghum halepense was widely distributed worldwide through grain trade and forage introduction, except in Africa. Europe and North America provided most potential global suitable habitats (PGSHs) for S. halepense in cropland, grassland, and urban environments, representing 48.69%, 20.79%, and 84.82%, respectively. The future PGSHs of S. halepense increased continuously in the Northern Hemisphere, transferring to higher latitudes. Environmental variables were more significant than LUC in predicting the PGSHs of S. halepense. Future PGSHs of S. halepense are expected to increase, exacerbating the invasion risk through agricultural LUC. These results provide a basis for the early warning and prevention of S. halepense worldwide.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
13
|
Hua Z, Xie Q, Li Y, He M, Wang Y, Wu H, Zhang Z. Effects of 13C isotope-labeled allelochemicals on the growth of the invasive plant Alternanthera philoxeroides. Sci Rep 2023; 13:13756. [PMID: 37612314 PMCID: PMC10447425 DOI: 10.1038/s41598-023-39889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The secondary metabolites of indigenous plants have significant allelopathic inhibitory effects on the growth and development of invasive alien plants. Methyl palmitate (MP) and methyl linolenate (ML) were used as exogenous allelopathic substances. The research investigated the differences of inhibitory effects of MP and ML on the growth of seedlings of Alternanthera philoxeroides, and calculated their morphological characteristics, biomass, physiological indicators and the response index (RI). The synthetical allelopathic index (SE) of 1 mmol/L MP was the smallest (- 0.26) and the allelopathic inhibition was the strongest; therefore, it was selected as a 13C-labeled allelochemical. The distribution of 1 mmol/L MP in different parts of A. philoxeroides and the correlation between the biomass ratios of roots, stems and leaves and the 13C content were studied by 13C stable isotope tracing experiments. Atom percent excess (APE) between roots, stems and leaves of A. philoxeroides treated with 1 mmol/L MP were significantly different in terms of magnitude, with leaves (0.17%) > roots (0.12%) > stems (0.07%). The root, stem and leaf biomass ratios of invasive weeds had great significant positive correlation with 13C content (p < 0.01, R2 between 0.96 and 0.99). This current research provides a new idea and method for the control of A. philoxeroides, but large-scale popularization remains to be studied.
Collapse
Affiliation(s)
- Zexun Hua
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Qingsong Xie
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Li
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Mengying He
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Hongmiao Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
14
|
Nie P, Yang R, Cao R, Hu X, Feng J. Niche and Range Shifts of the Fall Webworm ( Hyphantria cunea Dury) in Europe Imply Its Huge Invasion Potential in the Future. INSECTS 2023; 14:316. [PMID: 37103131 PMCID: PMC10141053 DOI: 10.3390/insects14040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The fall webworm (Hyphantria cunea Dury) has a strong impact on agricultural systems in Europe. However, its invasive potential, which was inherited from its native niche in North America, remains unknown. Here, we investigated the climatic niche and range shifts of the fall webworm in Europe and compared them with those in native North America, then assessed the worms' invasive potential in Europe. Compared with the fall webworm in Europe, those in North America survived in more diverse climatic conditions, which was closely associated with their broader niche and larger potential ranges in Europe. If the fall webworm in Europe could exploit the native niche inherited from those in North America to adapt to climatic conditions in Europe, their potential ranges in Europe could be 5.5-fold those based on the niche as introduced in Europe. The potentially unfilled ranges of the fall webworm in Europe were mainly detected in vast regions of Europe, excluding Norway, Sweden, Finland, North Russia, Hungary, Croatia, Romania, and Ukraine, suggesting that, without strict control, these vast regions might be preferably invaded by the fall webworm in Europe in the future. Therefore, strict control against its invasion is needed. Given that small niche shifts in this invasive insect could result in large range shifts, the niche shifts represent a more sensitive indicator of invasion risk than range shifts.
Collapse
Affiliation(s)
- Peixiao Nie
- Division of Plant Ecology, College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Research Center for Agroecology in Erhai Lake Watershed, Division of Plant Ecology, Dali University, Dali 671003, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Division of Plant Ecology, Dali University, Dali 671003, China
| | - Rujing Yang
- Division of Plant Ecology, College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Runyao Cao
- Research Center for Agroecology in Erhai Lake Watershed, Division of Plant Ecology, Dali University, Dali 671003, China
| | - Xiaokang Hu
- Division of Plant Ecology, College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Research Center for Agroecology in Erhai Lake Watershed, Division of Plant Ecology, Dali University, Dali 671003, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Division of Plant Ecology, Dali University, Dali 671003, China
| | - Jianmeng Feng
- Division of Plant Ecology, College of Agriculture and Biological Science, Dali University, Dali 671003, China
| |
Collapse
|
15
|
Jia T, Qi Y, Zhao H, Xian X, Li J, Huang H, Yu W, Liu WX. Estimation of climate-induced increased risk of Centaurea solstitialis L. invasion in China: An integrated study based on biomod2. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
IntroductionInvasive alien plants (IAPs) are major hazards to biodiversity, human health, and the agricultural economy. As one of the most aggressive species of IAPs, the distribution area of Centaurea solstitialis L. has increased exponentially in the past two years since its invasion into Xinjiang, China, in July 2014. Predicting the potential geographic distributions (PGDs) of C. solstitialis in China can provide theoretical support for preventing the continued spread of this weed.MethodsIn this study, based on 5,969 valid occurrence records of C. solstitialis and 33 environmental variables, we constructed an ensemble model to predict suitable habitats for C. solstitialis under climate change scenarios.ResultsOur results showed that the mean true skill statistic (TSS) values, area under the receiver operating characteristic (ROC) curve (AUC), and Cohen’s Kappa (KAPPA) for the ensemble model were 0.954, 0.996, and 0.943, respectively. The ensemble model yielded more precise predictions than those of the single model. Temperature seasonality (Bio4), minimum temperature of the coldest month (Bio6), precipitation of the driest month (Bio14), and human influence index (HII) have significantly disrupted the PGDs of C. solstitialis in China. The total (high) suitability habitat area of C. solstitialis in China was 275.91 × 104 (67.78 × 104) km2, accounting for 71.26 (7.06)% of China. The PGDs of C. solstitialis in China under the current climate were mainly in East China (Shandong, Jiangsu, Shanghai, Zhejiang, and Anhui), Central China (Henan, southwestern Shanxi, southern Shaanxi, southern Gansu, Hubei, Hunan, Jiangxi, Chongqing, and Guizhou), and South China (southern Tibet, eastern Sichuan, Yunnan, Guangxi, Guangdong, Fujian, and Taiwan). Under future climate scenarios, the total suitability habitat area for C. solstitialis will expand, whereas the high suitability habitat area will decrease.DiscussionThe main manifestation is that the shift of southeast China into a moderate suitability habitat, and the total suitability habitats will be extended to northwest China. More focus needs to be placed on preventing further spread of C. solstitialis in northwest China.
Collapse
|
16
|
Xian X, Zhao H, Wang R, Huang H, Chen B, Zhang G, Liu W, Wan F. Climate change has increased the global threats posed by three ragweeds (Ambrosia L.) in the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160252. [PMID: 36427731 DOI: 10.1016/j.scitotenv.2022.160252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Invasive alien plants (IAPs) substantially affect the native biodiversity, agriculture, industry, and human health worldwide. Ambrosia (ragweed) species, which are major IAPs globally, produce a significant impact on human health and the natural environment. In particular, invasion of A. artemisiifolia, A. psilostachya, and A. trifida in non-native continents is more extensive and severe than that of other species. Here, we used biomod2 ensemble model based on environmental and species occurrence data to predict the potential geographical distribution, overlapping geographical distribution areas, and the ecological niche dynamics of these three ragweeds and further explored the environmental variables shaping the observed patterns to assess the impact of these IAPs on the natural environment and public health. The ecological niche has shifted in the invasive area compared with that in the native area, which increased the invasion risk of three Ambrosia species during the invasion process in the world. The potential geographical distribution and overlapping geographical distribution areas of the three Ambrosia species are primarily distributed in Asia, North America, and Europe, and are expected to increase under four representative concentration pathways in the 2050s. The centers of potential geographical distributions of the three Ambrosia species showed a tendency to shift poleward from the current time to the 2050s. Bioclimatic variables and the human influence index were more significant in shaping these patterns than other factors. In brief, climate change has facilitated the expansion of the geographical distribution and overlapping geographical distribution areas of the three Ambrosia species. Ecomanagement and cross-country management strategies are warranted to mitigate the future effects of the expansion of these ragweed species worldwide in the Anthropocene on the natural environment and public health.
Collapse
Affiliation(s)
- Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Hongkun Huang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Baoxiong Chen
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|
17
|
Morais MC, Ferreira H, Cabral JA, Gonçalves B. Differential tolerance of the woody invasive Hakea sericea to drought and terminal heat stress. TREE PHYSIOLOGY 2023; 43:47-56. [PMID: 35961009 DOI: 10.1093/treephys/tpac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Drought and extreme temperatures are likely to be more common and intense in the Mediterranean region as a consequence of climate change. Both stresses usually arise together in the field, but our understanding of their joint influence on the performance of invasive alien species (IAS) is limited. Thus, the main objective of the present study is to fill this gap by analyzing the individual and combined effects of drought and terminal heat stress on the leaf physiology, biochemistry and growth of Hakea sericea Schrader, one of the most problematic IAS in the Mediterranean-type ecosystems. In this study, 1-year-old plants of H. sericea were exposed to four treatments under controlled conditions: control (CT), drought (DS), terminal heat stress (Ht), and combined Ht and DS (DHt). The DS treatment alone caused a marked reduction in shoot biomass, net photosynthetic (A) rate and stomatal conductance, while increasing the proline content, as compared with CT plants. In turn, the Ht treatment promoted the accumulation of malondialdehyde but hastened the decline in all gas exchange parameters, and also decreased leaf photosynthetic pigments, carotenoids, proline and relative water contents Exposure of H. sericea plants to the combined DHt exacerbated the impacts of Ht, which was accompanied by significant decreases in net photosynthetic and transpiration rates, and intrinsic water-use efficiency. Principal component analysis clearly separated the DHt from the other treatments and revealed similarities between DS and CT treatment. These findings suggest that xerothermic weather conditions might modify the fitness, competitive ability, resilience and spread of this IAS, thereby providing opportunities for its control.
Collapse
Affiliation(s)
- Maria C Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João A Cabral
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
18
|
Xian X, Zhao H, Wang R, Zhang H, Chen B, Liu W, Wan F. Evidence of the niche expansion of crofton weed following invasion in China. Ecol Evol 2023; 13:e9708. [PMID: 36620415 PMCID: PMC9817199 DOI: 10.1002/ece3.9708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Niche dynamics of invasive alien plants (IAPs) play pivotal roles in biological invasion. Ageratina adenophora-one of the most aggressive IAPs in China and some parts of the world-poses severe ecological and socioeconomic threats. However, the spatiotemporal niche dynamics of A. adenophora in China remain unknown, which we aimed to elucidate in the present study. China, Mexico; using a unifying framework, we reconstructed the climate niche dynamics of A. adenophora and applied the optimal MaxEnt model to predict its potential geographical distribution in China. Furthermore, we compared the heterogeneity of A. adenophora niche between Mexico (native) and China (invasive). We observed a low niche overlap between Mexico (native) and China (invasive). Specifically, the niche of A. adenophora in China has distinctly expanded compared to that in Mexico, enhancing the invasion risk of this IAP in the former country. In fact, the climatic niche of A. adenophora in Mexico is a subset of that in China. The potential geographical distribution of A. adenophora is concentrated in the tropical and subtropical zones of Southwest China, and its geographical distribution pattern in China is shaped by the combination of precipitation and temperature variables. The niche dynamics of A. adenophora follow the hypothesis of niche shift and conservatism. The present work provides a unifying framework for studies on the niche dynamics of other IAPs worldwide.
Collapse
Affiliation(s)
- Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Hongbin Zhang
- Rural Energy and Environment AgencyMinistry of Agriculture and Rural AffairsBeijingChina
| | - Baoxiong Chen
- Rural Energy and Environment AgencyMinistry of Agriculture and Rural AffairsBeijingChina
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| |
Collapse
|
19
|
Yang R, Cao R, Gong X, Feng J. Large shifts of niche and range in the golden apple snail (
Pomacea canaliculata
), an aquatic invasive species. Ecosphere 2023. [DOI: 10.1002/ecs2.4391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Rujing Yang
- Department of Life Science and Agronomy Dali University Dali China
| | - Runyao Cao
- Department of Life Science and Agronomy Dali University Dali China
| | - Xiang Gong
- Department of Life Science and Agronomy Dali University Dali China
| | - Jianmeng Feng
- Department of Life Science and Agronomy Dali University Dali China
| |
Collapse
|
20
|
Global niche shifts of rice and its weak adaptability to climate change. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Kharivha T, Ruwanza S, Thondhlana G. Effects of Elevated Temperature and High and Low Rainfall on the Germination and Growth of the Invasive Alien Plant Acacia mearnsii. PLANTS (BASEL, SWITZERLAND) 2022; 11:2633. [PMID: 36235501 PMCID: PMC9571736 DOI: 10.3390/plants11192633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The impact of climate change on the germination and growth of invasive alien plants varies depending on the plant species and invasion process. We experimentally assessed the responses of the invasive alien plant Acacia mearnsii to future climate change scenarios-namely, elevated temperature as well as high and low rainfall. Acacia mearnsii was grown at an elevated air temperature (+2 °C), high rainfall (6 mm per day), and low rainfall (1.5 mm per day), and its germination and growth performance were measured over five months. We further examined changes in soil nutrients to assess if the above-mentioned climate change scenarios affected soils. Both elevated temperature and high rainfall did not influence A. mearnsii germination and seedling growth. In contrast, we observed reductions in A. mearnsii germination and growth in the low rainfall treatment, an indication that future drought conditions might negatively affect A. mearnsii invasion. We noted that elevated temperature and rainfall resulted in varied effects on soil properties (particularly soil C, N, Ca, and Mg content). We conclude that both elevated temperature and high rainfall may not enhance A. mearnsii invasion through altering germination and growth, but a decrease in A. mearnsii invasiveness is possible under low rainfall conditions.
Collapse
Affiliation(s)
- Tshililo Kharivha
- Department of Environmental Science, Rhodes University, Makhanda 6140, South Africa
- Department of Environmental Science and Centre of Excellence for Invasion Biology, Rhodes University, Makhanda 6140, South Africa
| | - Sheunesu Ruwanza
- Department of Environmental Science, Rhodes University, Makhanda 6140, South Africa
- Department of Environmental Science and Centre of Excellence for Invasion Biology, Rhodes University, Makhanda 6140, South Africa
| | - Gladman Thondhlana
- Department of Environmental Science, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
22
|
Cao R, Gong X, Feng J, Yang R. Niche and range dynamics of Tasmanian blue gum ( Eucalyptus globulus Labill.), a globally cultivated invasive tree. Ecol Evol 2022; 12:e9305. [PMID: 36177110 PMCID: PMC9482005 DOI: 10.1002/ece3.9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
The ecological niche concept has provided insights into various areas in ecology and biogeography. Although there remains much controversy regarding whether species niches are conserved across space and time, many recent studies have suggested that invasive species conserve their climatic niche between native and introduced ranges; however, whether the climatic niche of cultivated invasive species, whose niches are strongly affected by human activities, are conserved between native and introduced ranges remains unclear. Additionally, the range dynamics of invasive species in their native and introduced regions have not been extensively studied. Here, we investigated the niche and range dynamics of Tasmanian blue gum (Eucalyptus globulus Labill.), a globally cultivated invasive tree, using ecological niche models and niche dynamic analyses. The most important factors affecting the niche changes between native and introduced Tasmanian blue gum were max temperature of the warmest month and precipitation of the wettest month. The climate niche was not conserved between introduced and native range Tasmanian blue gum; moreover, the niche area of the former was ca. 7.4 times larger than that of the latter, as introduced Tasmanian blue gum could survive in hotter, colder, wetter, and drier climates. In addition, the potential range of introduced Tasmanian blue gum was ca. 32 times larger than that of its native counterpart. Human introduction and cultivation may play a key role in the niche and range expansion of introduced Tasmanian blue gum. Given that small increases in niche area can result in large range expansions, the niche expansion of an invasive species could be used to evaluate invasion risk, which might even be more sensitive than range expansions.
Collapse
Affiliation(s)
- Runyao Cao
- Department of Life Science and AgronomyDali UniversityDaliChina
| | - Xiang Gong
- Department of Life Science and AgronomyDali UniversityDaliChina
| | - Jianmeng Feng
- Department of Life Science and AgronomyDali UniversityDaliChina
| | - Rujing Yang
- Department of Life Science and AgronomyDali UniversityDaliChina
| |
Collapse
|
23
|
Xian X, Zhao H, Wang R, Zhang H, Chen B, Huang H, Liu W, Wan F. Predicting the potential geographical distribution of Ageratina adenophora in China using equilibrium occurrence data and ensemble model. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.973371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive alien plants (IAPs) pose a significant threat to the ecological environment and agricultural production in China. Ageratina adenophora is one of the most aggressive IAPs in China and poses serious ecological and socioeconomic threats. Estimating the distribution pattern of A. adenophora in China can provide baseline data for preventing damage by this weed. In the present study, based on the equilibrium occurrence data of A. adenophora in China and related environmental variables, we used an ensemble model to predict the distribution pattern of A. adenophora in China under climate change. Our findings indicated that true skill statistic (TSS), area under the receiver operating characteristic (ROC) curve (AUC), and Cohen’s Kappa (KAPPA) values for the ensemble model were 0.925, 0.993, and 0.936, respectively. The prediction results of the ensemble model were more accurate than those of the single models. Temperature variables had a significant impact on the potential geographical distribution (PGD) of A. adenophora in China. The total, high, and moderate suitability habitat areas of A. adenophora in China were 153.82 × 104, 92.13 × 104, and 21.04 × 104 km2, respectively, accounting for 16.02, 9.60, and 2.19% of the Chinese mainland area, respectively. The PGD of A. adenophora in China under the current climate is mainly located in southwestern and southeastern China, which are located in the tropical and subtropical zone. The high-suitability habitat areas of A. adenophora decreased under the future climate scenarios, mainly by changing to moderately suitable habitats in Southwest China. The geographical distribution of A. adenophora in southwestern China is currently saturated and will spread to southeastern China under climate change in the future. More attention should be paid to early warning and monitoring of A. adenophora in southeastern China to prevent its further spread.
Collapse
|
24
|
Pant G, Maraseni T, Apan A, Allen BL. Predicted declines in suitable habitat for greater one-horned rhinoceros ( Rhinoceros unicornis) under future climate and land use change scenarios. Ecol Evol 2021; 11:18288-18304. [PMID: 35003673 PMCID: PMC8717310 DOI: 10.1002/ece3.8421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022] Open
Abstract
Rapidly changing climate is likely to modify the spatial distribution of both flora and fauna. Land use change continues to alter the availability and quality of habitat and further intensifies the effects of climate change on wildlife species. We used an ensemble modeling approach to predict changes in habitat suitability for an iconic wildlife species, greater one-horned rhinoceros due to the combined effects of climate and land use changes. We compiled an extensive database on current rhinoceros distribution and selected nine ecologically meaningful environmental variables for developing ensemble models of habitat suitability using ten different species distribution modeling algorithms in the BIOMOD2 R package; and we did this under current climatic conditions and then projected them onto two possible climate change scenarios (SSP1-2.6 and SSP5-8.5) and two different time frames (2050 and 2070). Out of ten algorithms, random forest performed the best, and five environmental variables-distance from grasslands, mean temperature of driest quarter, distance from wetlands, annual precipitation, and slope, contributed the most in the model. The ensemble model estimated the current suitable habitat of rhinoceros to be 2610 km2, about 1.77% of the total area of Nepal. The future habitat suitability under the lowest and highest emission scenarios was estimated to be: (1) 2325 and 1904 km2 in 2050; and (2) 2287 and 1686 km2 in 2070, respectively. Our results suggest that over one-third of the current rhinoceros habitat would become unsuitable within a period of 50 years, with the predicted declines being influenced to a greater degree by climatic changes than land use changes. We have recommended several measures to moderate these impacts, including relocation of the proposed Nijgad International Airport given that a considerable portion of potential rhinoceros habitat will be lost if the airport is constructed on the currently proposed site.
Collapse
Affiliation(s)
- Ganesh Pant
- Ministry of Forests and EnvironmentSinghadurbarKathmanduNepal
- Institute for Life Sciences and the EnvironmentUniversity of Southern QueenslandToowoombaQldAustralia
| | - Tek Maraseni
- Institute for Life Sciences and the EnvironmentUniversity of Southern QueenslandToowoombaQldAustralia
- University of Sunshine CoastSippy DownsQldAustralia
| | - Armando Apan
- Institute for Life Sciences and the EnvironmentUniversity of Southern QueenslandToowoombaQldAustralia
- Institute of Environmental Science and MeteorologyUniversity of the Philippines DilimanQuezon CityPhilippines
| | - Benjamin L. Allen
- Institute for Life Sciences and the EnvironmentUniversity of Southern QueenslandToowoombaQldAustralia
- Centre for African Conservation EcologyNelson Mandela UniversityPort ElizabethSouth Africa
| |
Collapse
|
25
|
Lemoine NP. Phenology dictates the impact of climate change on geographic distributions of six co-occurring North American grasshoppers. Ecol Evol 2021; 11:18575-18590. [PMID: 35003694 PMCID: PMC8717342 DOI: 10.1002/ece3.8463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
Abstract
Throughout the last century, climate change has altered the geographic distributions of many species. Insects, in particular, vary in their ability to track changing climates, and it is likely that phenology is an important determinant of how well insects can either expand or shift their geographic distributions in response to climate change. Grasshoppers are an ideal group to test the hypothesis that phenology correlates with range expansion, given that co-occurring confamilial, and even congeneric, species can differ in phenology. Here, I tested the hypothesis that early- and late-season species should possess different range expansion potentials, as estimated by habitat suitability from ecological niche models. I used nine different modeling techniques to estimate habitat suitability of six grasshopper species of varying phenology under two climate scenarios for the year 2050. My results suggest that, of the six species examined here, early-season species were more sensitive to climate change than late-season species. The three early-season species examined here might shift northward during the spring, while the modeled geographic distributions of the three late-season species were generally constant under climate change, likely because they were pre-adapted to hot and dry conditions. Phenology might therefore be a good predictor of how insect distributions might change in the future, but this hypothesis remains to be tested at a broader scale.
Collapse
Affiliation(s)
- Nathan P. Lemoine
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Department of ZoologyMilwaukee Public MuseumMilwaukeeWisconsinUSA
| |
Collapse
|
26
|
Environmental Degradation by Invasive Alien Plants in the Anthropocene: Challenges and Prospects for Sustainable Restoration. ANTHROPOCENE SCIENCE 2021. [PMCID: PMC8430299 DOI: 10.1007/s44177-021-00004-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biodiversity, soil, air, and water are the vital life-supporting systems of this planet Earth. However, the deliberate and accidental introduction of invasive alien plants (IAPs) in the Anthropocene majorly due to the global international trade perturbed the homeostasis of our biosphere. IAPs are considered as one of the major drivers of biodiversity loss and ecosystem degradation. The pervasive threats of IAPs to environmental sustainability and biosecurity are further exacerbated under the COVID-19 pandemic. The environmental disturbances resulting from IAPs can be attributed to several mechanisms/hypothesis (e.g., novel weapon (NW), enemy release (ER), and evolution of increased competitive ability (EICA), efficient reproductive attributes, and phenotypic plasticity, etc.) deployed by IAPs. Nevertheless, the interrelationship of IAPs with environmental degradation and restoration remain elusive especially in terms of ecological sustainability. Moreover, there is a dearth of studies which empirically assess the synergies of IAPs spread with other anthropogenic disturbances such as climate and land-use change. In this context, the present review is aimed to depict the impacts of IAPs on environment and also to assess their role as drivers of ecosystem degradation. The restoration prospects targeted to revitalize the associated abiotic (soil and water) and biotic environment (biodiversity) are also discussed in detail. Furthermore, the effects of IAPs on socio-economy, livelihood, and plant-soil microbe interactions are emphasized. On the other hand, the ecosystem services of IAPs such as associated bioresource co-benefits (e.g., bioenergy, phytoremediation, biopolymers, and ethnomedicines) can also be vital in sustainable management prospects. Nevertheless, IAPs-ecological restoration interrelationship needs long-term pragmatic evaluation in terms of ecological economics and ecosystem resilience. The incorporation of ‘hybrid technologies’, integrating modern scientific information (e.g., ‘biorefinery’: conversion of IAPs feedstock to produce bioenergy/biopolymers) with traditional ecological knowledge (TEK) can safeguard the environmental sustainability in the Anthropocene. Importantly, the management of IAPs in concert with circular economy principles can remarkably help achieving the target of UN Sustainable Development Goals and UN-Decade on Ecosystem Restoration.
Collapse
|
27
|
Xu J, Chai N, Zhang T, Zhu T, Cheng Y, Sui S, Li M, Liu D. Prediction of temperature tolerance in Lilium based on distribution and climate data. iScience 2021; 24:102794. [PMID: 34355143 PMCID: PMC8324855 DOI: 10.1016/j.isci.2021.102794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
There are plenty publications providing guidance for resistant taxa selection by experimental researches while the number of experimental taxa is often restricted. In this study, we presented a concise method to predict the temperature tolerance of wild Lilium in China based on open access botanical and associated environmental datasets. We divided all taxa into five groups to present an overview of Lilium's adaptability to temperature stress. Furthermore, according to the environmental conditions, the prediction of heat and cold tolerance in Lilium was made based on the combined multi-sources data at taxon level. Thirteen taxa with potential temperature tolerance were predicted of 42 taxa. The results showed that not only is tolerance prediction created by large-scale data analysis possible, but that it may supplement traditional laboratory researches with a comprehensive list of taxa.
Collapse
Affiliation(s)
- Jie Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Nan Chai
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Zhu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Yulin Cheng
- School of Life Science, Chongqing University, Chongqing 401331, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
28
|
Synthesis and Characterization of a Novel Lignin-Based Biopolymer from Ulex europaeus: A Preliminary Study. J 2021. [DOI: 10.3390/j4020009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Invasive plant species are a global environmental threat since they affect native species and can modify ecosystems, which negatively impacts human health and world economics. The aim of this preliminary study was to synthesize and characterize a new lignin-based biopolymer from gorse (Ulex europaeus), a globally widespread invasive plant. The lignin extraction was carried out through base/acid and solvent-based methodologies to compare the reaction yield. Subsequent polymerization of the extracted lignin was performed by glycine condensation in a 70% 1,4-dioxane solution with H2O2 and CaCl2 as catalysts. The extraction and polymerization products were characterized by Fourier-transform infrared spectroscopy. Thermal and stability properties of the new biopolymer were determined by thermogravimetric analysis, differential scanning calorimetry, and a soil burial test. The alkaline extraction process of lignin resulted in a higher yield than the process using an organic solvent. In comparison to the extracted lignin, the novel biopolymer showed different absorption bands that are characteristic of tensions and flexions of alkenes, amine, and amide groups. Additionally, thermal properties revealed peaks corresponding to decomposition and dehydration reactions, endothermic processes and a glass transition temperature of ≈259 °C. Potential biodegradation was observed. A new polymeric, possibly cross-linked, thermally stable material with a potentially high degree of crystallinity was synthesized from a renewable raw material, which might contribute to the gorse management according to the concept of novel ecosystem, as well as the reduction in contamination by other polymeric materials.
Collapse
|
29
|
Investigating the Invasion Pattern of the Alien Plant Solanum elaeagnifolium Cav. (Silverleaf Nightshade): Environmental and Human-Induced Drivers. PLANTS 2021; 10:plants10040805. [PMID: 33923898 PMCID: PMC8072529 DOI: 10.3390/plants10040805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/30/2023]
Abstract
Invasive alien plant species have impacts on nature conservation, ecosystem services and agricultural production. To identify environmental and human-related drivers of the invasion of Solanum elaeagnifolium (Solanaceae)—one of the worst alien invasive plants worldwide—we conducted an extensive drive-by survey across the Greek territory (presence/absence data; all national major multilane highways; 12–25% of the remaining road network; driven 3–5 times during 2000–2020). These data were linked in GIS with (i) physical environmental attributes (elevation, climate, soil properties) and (ii) type and intensity of human-related activities (land uses, settlements and road type). Compared to previous records, our survey showed that the range of S. elaeagnifolium increased by 1750% during the last decades, doubling its main distribution centers and reaching higher elevations. Our study revealed that the presence of S. elaeagnifolium is associated with (i) higher maximum temperatures and precipitation in summer and low precipitation in winter, as well as with (ii) soil disturbance related to agricultural activities, settlements and road networks, thus facilitating its spread mainly at low altitudes. Our study elucidates the current invasion pattern of S. elaeagnifolium and highlights the urgent need for its widespread monitoring, at least in the noninvaded areas in Greece that have been surveyed in this study. Preventative measures and integrative initiatives should be implemented quickly, and urgently incorporated into current agricultural, road network and conservation-management regimes.
Collapse
|
30
|
Fang Y, Zhang X, Wei H, Wang D, Chen R, Wang L, Gu W. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143841. [PMID: 33248784 DOI: 10.1016/j.scitotenv.2020.143841] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Ageratina adenophora, Eupatorium odoratum, and Mikania micrantha are three highly destructive invasive plants of Compositae in China. Through the screening of SDMs, random forest (RF), gradient boosting model (GBM), artificial neural network (ANN), and flexible discriminant analysis (FDA) with TSS greater than 0.8 are selected to construct a high-precision ensemble model (EM) as the prediction model. We use specimen sites and environmental variables containing climate, soil, terrain, and human activities to simulate and predict the invasion trend of three invasive weeds in China in current, the 2050s, and the 2070s. Results indicate that the highly invasive risk area of three exotic plants is mostly distributed along the river in the provinces south of 30° N. In the future scenario, the three exotic plants obviously invade northwards Yunnan, Sichuan, Guizhou, Jiangxi and Fujian. Climate is the most important variable that affects the spread of three kinds of alien plant invasions. Temperature and precipitation variables have a similar effect on A. adenophora and E. odoratum, while M. micrantha is more sensitive to temperature. It has been reported that Ipomoea batatas and Vitex negundo can prevent the invasion of three invasive plants. Hence, we also simulate the suitable planting areas for I. batatas and V. negundo. The results show that I. batatas and V. negundo are suitable to be planted in the areas where the three weeds show invasion tendency. In the paper, predicting invasion trends of exotic plants and simulating the planting suitability of crops that can block invasion, to provide a practical significance reference and suggestion for the management, prevention, and control of the invasion of exotic plants in China.
Collapse
Affiliation(s)
- Yaqin Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China; School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China
| | - Xuhui Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China; School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China
| | - Haiyan Wei
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China.
| | - Daju Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China; School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China
| | - Ruidun Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China; School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China
| | - Lukun Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China; School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|