1
|
Huang Y, Liu Q, Luo J, Huang F, Yan X, Huang X. Silicate impedes arsenic release and oxidation from ferrihydrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136406. [PMID: 39522206 DOI: 10.1016/j.jhazmat.2024.136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Silicate fertilization is a common farming practice and an effective method to mitigate arsenic (As) pollution in paddy. Investigating the interaction between silicate and ferrihydrite on As retention is key to comprehensively understand the mechanism of As sequestration by silicate fertilization. Our results indicated that the transformation of ferrihydrite into goethite and hematite was inversely proportional to Si/Fe ratios. The added silicate impeded the decrease of solution pH from neutral to acidity, and imposed strong inhibitory effect on goethite formation. The aqueous As in silicate-free system was 3.43 times higher than that with Si/Fe ratio at 0.33, but similar results were not observed in those with high-level As pollution due to the inhibitory effect of As on ferrihydrite transformation. Solid characterization showed that silicate was monomerically adsorbed to ferrihydrite through Si-O-Fe bond, which impeded the reductive dissolution, Fe atom exchange, internal atomic rearrangement and dehydration of ferrihydrite. As(III) oxidation weakened in silicate-coprecipitated ferrihydrite due to the lack of Fe(II) catalysis stem from ferrihydrite dissolution. This work demonstrated that As release could be effectively impeded through the inhibitory effect of silicate on ferrihydrite transformation, thereby providing new insights into the understanding of As accumulation reduction in rice by silicate fertilization.
Collapse
Affiliation(s)
- Yuting Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qianjun Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jiayi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiuming Yan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaoqing Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Zhang J, Guo C, Zhou Y, Deng Y, Dang Z. Effect of Mn(II) photochemical oxidation on Cd immobilization in hematite. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135687. [PMID: 39236538 DOI: 10.1016/j.jhazmat.2024.135687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Hematite, a commonly stable iron oxide in the environment, which can not only adsorb Cd in the environment, but also catalyze the photochemical oxidation of Mn(II) in the environment. However, the impact of Mn(II) on the structure of hematite and the adsorption of Cd during the surface oxidation of hematite remains unknown. In this study, we investigated the surface and structural changes of hematite after the photochemical oxidation of Mn(II), as well as the geochemical behavior of Cd during this process. The results demonstrate that Mn(II) was oxidized to Mn(III/IV) on the hematite surface, with some Mn(III) being incorporated into the hematite structure. Simulations using XRD data showed that higher Mn(II) concentrations resulted in increased levels of Mn doping, leading to significant variations in the hematite unit cell. This was further confirmed through FTIR and Raman spectroscopy characterization. The oxidation of Mn(II) on the hematite surface resulted in a shift in surface charge from positive to negative, enhancing the adsorption capacity of Cd. However, when Mn(II) exceeded 0.4 mM, the immobilization of Cd within the system decreased. This was attributed to the competitive adsorption of Mn(II) and a reduction in the relative abundance of Mn(IV) oxides.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Liu L, Yang Z, Yang W, Jiang W, Liao Q, Si M, Zhao F. Ferrihydrite transformation impacted by coprecipitation of lignin: Inhibition or facilitation? J Environ Sci (China) 2024; 139:23-33. [PMID: 38105051 DOI: 10.1016/j.jes.2023.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 12/19/2023]
Abstract
Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.
Collapse
Affiliation(s)
- Lin Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Wen Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China.
| |
Collapse
|
4
|
Xi Y, Ji X, Kong F, Li T, Zhang B. Production of Lignin-Derived Functional Material for Efficient Electromagnetic Wave Absorption with an Ultralow Filler Ratio. Polymers (Basel) 2024; 16:201. [PMID: 38257000 PMCID: PMC10819316 DOI: 10.3390/polym16020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Industrial lignin, a by-product of pulping for papermaking fibers or of second-generation ethanol production, is primarily served as a low-grade combustible energy source. The fabrication of high-value-added functional materials with industrial lignin is still a challenge. Herein, a three-dimensional hierarchical lignin-derived porous carbon (HLPC) was prepared with lignosulfonate as the carbon source and MgCO3 as the template. The uniform mixing of precursor and template agent resulted in the construction of a three-dimensional hierarchical porous structure. HLPC presented excellent electromagnetic wave (EMW) absorption performance. With a low filler content of 7 wt%, HLPC showed a minimum reflection loss (RL) value of -41.8 dB (1.7 mm, 13.8 GHz), and a maximum effective absorption bandwidth (EAB) of 4.53 GHz (1.6 mm). In addition, the enhancement mechanism of HLPC for EMW absorption was also explored through comparing the morphology and electromagnetic parameters of lignin-derived carbon (LC) and lignin-derived porous carbon (LPC). The three-dimensional hierarchical porous structure endowed the carbon with a high pore volume, resulting in an abundant gas-solid interface between air and carbon for interfacial polarization. This structure also provided conductive networks for conduction loss. This work offers a strategy to synthesize biomass-based carbon for high-performance EMW absorption.
Collapse
Affiliation(s)
- Yuebin Xi
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangong Kong
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tianjin Li
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Binpeng Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Ouyang S, Zhou Q, Bi Z, Sun J, Hu X. Effect of natural soil nanocolloids on the fate and toxicity of cadmium to rice (Oryza sativa L.) roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162887. [PMID: 36934947 DOI: 10.1016/j.scitotenv.2023.162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Toxic heavy metals are common contaminants and will most likely interact with ubiquitous natural nanocolloids (Ncs) in the soil environment. However, the effect of soil Ncs on the fate and health risk of cadmium (Cd) have not been well addressed. Here, the interaction between Ncs and Cd is investigated using two-dimensional correlation spectroscopy (2DCOS) combined with synchronous fluorescence and Fourier transform infrared spectroscopy. Our results reveal that Cd binding to the soil Ncs surface is mainly driven through strong hydrophilic effects and π - π interactions, which contribute to a high adsorption capacity (366-612 mg/g) and strong affinity (KL = 4.3-9.7 L/mg) of Cd to soil Ncs. Interestingly, soil Ncs and Cd coexposure can significantly mediate the phytotoxicity (e.g., uptake, root growth, and oxidative stress) of Cd to rice (Oryza sativa L.) roots after 7 days of exposure. At the molecular level, metabolomic analysis reveals that the downregulated metabolic pathways (e.g., isoquinoline alkaloid and aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism) may contribute to the above adverse phytotoxicity. This study provides new insight into the effect of natural Ncs on the fate and health risks of toxic heavy metals in soil environments.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhicheng Bi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Dai J, Chen T, Chen Q, Ma H, Xu X, Yuan W, Wang L. Facile synthesis of ZIF-8-lignosulfonate microspheres with ultra-high adsorption capacity for Congo red and tetracycline removal from water. Int J Biol Macromol 2023; 242:124672. [PMID: 37164136 DOI: 10.1016/j.ijbiomac.2023.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) can be used as adsorbent to efficiently adsorb organic pollutants. However, the hydrophobicity of the ZIFs may be easily to form ZIFs nanoparticles aggregates, hampering the effective and practical application in adsorption. In this study, novel spherical composites of ZIF-8 incorporated with lignosulfonate (LS) were synthesized by in-situ growth method. The effects of different mass ratios of LS and Zn in ZIF-8-LS composites were evaluated with respect to structural characteristics and adsorption properties. As an adsorbent for adsorptive removing Congo Red (CR) and tetracycline (TC) from water, the prepared ZIF-8-LS4 shows the best adsorption capacity of 31.5 mg g-1 and 48 mg g-1, respectively. The spherical structure facilitates the contact between the ZIF-8 and the adsorbed substance, in addition to the H-bonding, electrostatic and π-π stacking interactions also contribute to the improvement of the adsorption performance of the ZIF-8-LS4 composite. The outstanding adsorption capacity and good reusability of the ZIF-8-LS4 composite provide a good prospect for the effective removal of other contaminants from water.
Collapse
Affiliation(s)
- Juan Dai
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China.
| | - Tianying Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qixu Chen
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China
| | - Hao Ma
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xianmang Xu
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China
| | - Wenpeng Yuan
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Lin J, Xiang W, Zhan Y. Comparison of magnetite, hematite and goethite amendment and capping in control of phosphorus release from sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66080-66101. [PMID: 37097581 DOI: 10.1007/s11356-023-27063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
The characteristics and mechanism of phosphate adsorption onto magnetite, hematite and goethite were comparatively studied, and the effects of magnetite, hematite and goethite amendment and capping on endogenous phosphorus (P) liberation from sediment into overlying water (OW) were comparatively investigated. The adsorption of phosphate onto magnetite, hematite and goethite mainly obeyed the inner-sphere complexation mechanism, and the phosphate adsorption capacity decreased in the order of magnetite > goethite > hematite. The magnetite, hematite and goethite amendment all can decrease the risk of endogenous Prelease into OW under anoxic conditions, and the inactivation of diffusion gradients in thin films-labile P in sediment made a great contribution to the restraint of endogenous P release into OW by the magnetite, hematite and goethite amendment. The efficiency of endogenous P release restraint by the iron oxide addition decreased in the order of magnetite > goethite > hematite. The magnetite, hematite and goethite capping all can be effective for the suppression of endogenous P release from sediment into OW under anoxic conditions, and most of P immobilized by the magnetite, hematite and goethite capping layers is relatively or very stable. The results obtained from this work suggest that magnetite is more suitably used a capping/amendment material to prevent P release from sediment than hematite and goethite, and magnetite capping is a promising approach for hindering sedimentary P release into OW.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Weijie Xiang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
Amino-Functionalized Cellulose Nanofiber/Lignosulfonate New Aerogel Adsorbent for the Removal of Dyes and Heavy Metals from Wastewater. Gels 2023; 9:gels9020154. [PMID: 36826324 PMCID: PMC9956574 DOI: 10.3390/gels9020154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Due to the increasingly widespread water pollutants and the high cost of treatment methods, there is a demand for new, inexpensive, renewable, and biodegradable adsorbent materials for the purification of wastewater contaminants. In this study, a new biocomposite aerogel (Amf-CNF/LS) was prepared using a chemically cross-linking method between the amino-functionalized cellulose nanofibers (Amf-CNF) and lignosulfonates (LS). The physical and chemical properties of the prepared aerogel were investigated using several techniques including elemental analysis, scanning electron microscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and N2 adsorption-desorption analysis. The Amf-CNF/LS aerogel was then applied for the removal of methylene blue (MB), rhodamine B dye (RhB), and the heavy metal cadmium ion (Cd2+) from synthetic wastewater solutions. The adsorption parameters controlling the adsorption process including the pH, contact time, adsorbent dosage, and adsorbate concen-tration were optimized. High adsorption kinetics and isotherms were observed, with the adsorption isotherms of the Amf-CNF/LS aerogel fitting the Langmuir model with maximum adsorption capacities of 170.94, 147.28, and 129.87 mg/g for MB, RhB, and Cd2+, respectively. These results show that Amf-CNF/LS aerogel is a promising green and inexpensive adsorbent for MB, RhB, and Cd2+ removal from wastewater.
Collapse
|
9
|
He K, Wang S, Liu Y, Cao Z, Yang L, He F. Enhanced removal of hexavalent chromium by lignosulfonate modified zero valent iron: Reaction kinetic, performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159397. [PMID: 36240939 DOI: 10.1016/j.scitotenv.2022.159397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The application of lignin derivative as modifier is an economical and efficient approach to improve the reactivity of raw material towards pollutant removal. In this study, lignosulfonate modified zero valent iron (LS-ZVI) was firstly prepared by ball-milling method and utilized for Cr(VI) removal under different conditions. The comparative experiments showed that lignosulfonate modification could significantly enhance the Cr(VI) removal by ZVI from <10 % to 100 % within 90 min reaction. Compared to ZVI, the specific surface area of LS-ZVI increased 3.4 times and surface Fe(0) content increased from 3.4 % to 10.5 % due to the surface erosion, resulting in the high-efficient Cr(VI) removal. Solution and solid-phase analyses indicated that Fe(0) played dominated role and generated Fe(II) involved in Cr(VI) removal process, which mainly included rapid adsorption, reduction and co-precipitation. Batch experiments revealed that lower pH conditions were beneficial for Cr(VI) removal and the effect of co-existing ions (Ca2+, Mg2+, NO3-, Cl-, and SO42-) was negligible except the inhibitory effect of NO3-. Moreover, LS-ZVI also exhibited excellent removal performance for Ni(II), Zn(II), and Cd(II) with removal efficiency beyond 96.6 %. Overall, this work provides a feasible approach for enhancing the reactivity of commercial ZVI in the treatment of heavy metal pollution.
Collapse
Affiliation(s)
- Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312000, China
| | - Shuchen Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenyu Cao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liwei Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Liu Q, Huang Y, Zhou Y, Chen Z, Luo J, Yan X. Impacts of wet-dry alternations on cadmium and zinc immobilisation in soil remediated with iron oxides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116660. [PMID: 36375433 DOI: 10.1016/j.jenvman.2022.116660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Chemical immobilisation is extensively used for in-situ remediation of heavy metals contaminated soil. Immobilised heavy metals could be reactivated by multiple factors such as pH, moisture, temperature, rainfall, etc., among which rainfall is very important, especially acid rain in southern China. Wet-dry alternations were used to simulate the leaching of metals by rainwater. The variation of cadmium (Cd) and zinc (Zn) speciation distribution in soil immobilised with iron oxides (goethite (GE) and 2-line ferrihydrite (GLS)) was investigated. The impacts of wet-dry alternations on the properties of the soil and amendments were also assessed. In the soil without amendments (OS) and amended with GE (GS), the stable fractions were reactivated and transformed into labile fractions under wet-dry alternations. In the soil amended with GLS (LS), the exchangeable and carbonate-bound Cd decreased while the soluble, Fe-Mn oxide bound and organic bound Cd increased. The carbonate-bound Zn was transformed into the Fe-Mn oxide-bound Zn. Transformation from the amorphous iron oxide into crystalline iron oxide in GS and LS were 4.9% and 5.3%. The Pearson correlation analysis showed that the soil pH and the iron-oxide speciation were strongly correlated with Cd/Zn fractions in the soil. The specific surface area, pore volume and adsorption capacity of the iron oxides decreased by 9.26%, 38.89% and 62-73% (for GE), 1.88%, 22.22% and 26-55% (for GLS). The altered soil properties and morphological differences between the two iron oxides under wet-dry alternations were important reasons for Cd/Zn reactivation.
Collapse
Affiliation(s)
- Qianjun Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yuting Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yangmei Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhiliang Chen
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510275, PR China.
| | - Jiayi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiuming Yan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
11
|
Full-Lignin-Based Adsorbent for Removal of Cr(VI) from Waste Water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Huang Y, Wang B, Lv J, He Y, Zhang H, Li W, Li Y, Wågberg T, Hu G. Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high adsorption capacity for Cr(VI) removal from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129270. [PMID: 35739785 DOI: 10.1016/j.jhazmat.2022.129270] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Chromium (VI) is a widely occurring toxic heavy metal ion in industrial wastewater that seriously impacts the environment. In this study, we used environmentally friendly sodium lignosulfonate (SL), polyethyleneimine (PEI), and sodium alginate (SA) to synthesize SL/PEI/SA beads by employing a simple crosslinking method with to develop a novel absorbent with excellent adsorption capacity and practical application in wastewater treatment. We studied the adsorption performance of SL/PEI/SA through batch adsorption and continuous dynamic adsorption experiments. SL/PEI/SA has ultra-high adsorption capacity (2500 mg·g-1) at 25 ℃, which is much higher than that of existing adsorbents. Humic acids and coexisting anions commonly found in wastewater have minimal effect on the adsorption performance of SL/PEI/SA. In the column system, 1 g SL/PEI/SA can treat 8.1 L secondary electroplating wastewater at a flow rate of 0.5 mLmin-1, thereby enabling the concentration of Cr(VI) in secondary electroplating wastewater to meet the discharge standard (< 0.2 mg·L-1). It is worth noting that the concentration of competitive ions in secondary electroplating wastewater is more than 500 times higher than that of Cr(VI). These results demonstrate that the novel SL/PEI/SA beads can be effectively applied in the removal of Cr(VI) in wastewater.
Collapse
Affiliation(s)
- Yimin Huang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingnan He
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Wenyan Li
- Joint Institute for Environmental Research and Education, College of resources and environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- Joint Institute for Environmental Research and Education, College of resources and environment, South China Agricultural University, Guangzhou 510642, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Department of Physics, Umeå University, Umeå 901 87, Sweden.
| |
Collapse
|
13
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
14
|
Cu(II) and Au(III) recovery with electrospun lignosulfonate CO 2-activated carbon fiber. Int J Biol Macromol 2022; 203:505-514. [PMID: 35093439 DOI: 10.1016/j.ijbiomac.2022.01.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The objectives of this study were twofold: developing lignosulfonate activated carbon fibers (LACFs) and determining the corresponding metal recovery mechanisms with batch experiments and non-linear modeling. LACFs were developed through electrospinning, followed by CO2-based physical activation. Physical and chemical characterizations revealed that the LACF sample that was activated for 60 min exhibited a higher specific surface area (376.54 m2/g), larger total pore volume (0.30 cm3/g), higher micropore ratio (32%), and more acidic and sulfur functional groups than did the other samples. Cu(II) and Au(III) adsorption behaviors on the LACF could be described with the Freundlich and Langmuir model, respectively. Both systems consist of physisorption and chemisorption, and the mechanisms include electrostatic forces, Van der Walls forces, cation exchange, surface complexation. In particular, Au(III) adsorption was faster, and LACF-Au bonds were stronger due to the additional microprecipitation. Furthermore, the LACF sample could regenerate after three adsorption-desorption cycles. Overall, this study provides the foundation for developing physically activated lignosulfonate carbon and its application in recovering valuable metal ions.
Collapse
|
15
|
Liang L, Li W, Li Y, Zhou W, Chen J. Removal of EDTA-chelated CdII by sulfidated nanoscale zero-valent iron: Removal mechanisms and influencing factors. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Li X, Wang X, Han T, Hao C, Han S, Fan X. Synthesis of sodium lignosulfonate-guar gum composite hydrogel for the removal of Cu 2+ and Co 2. Int J Biol Macromol 2021; 175:459-472. [PMID: 33549663 DOI: 10.1016/j.ijbiomac.2021.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
As an emerging pollutant treatment material, hydrogel is known for its good adsorption capacity and environmental friendliness. In this study, a composite material of acrylic acid as the polymerization monomer grafted sodium lignosulfonate and guar gum was prepared, which provided a channel for adsorbing metal ions with its abundant active functional groups and porous structure. The optimized synthesized product was applied to the removal of Cu2+ and Co2+ in a one-component system and a multi-component system, and the maximum ion adsorption capacities obtained were determined to be 709 mg g-1 of Cu2+, 601 mg g-1 of Co2+, respectively. The adsorption kinetics and isotherms were well fitted by the pseudo second-order kinetic model and the Langmuir isotherm, showing that the adsorption of Cu2+ and Co2+ by the adsorbent belongs to the chemisorption on monolayer. XPS results confirmed the successful adsorption of Cu2+ and Co2+ by GG/SLS. Surface complexation was proposed to be the main mechanism for GG/SLS adsorbent to remove heavy metal ions. In addition, the use of recycling research showed that the adsorbent has good chemical stability. These results provided valuable information for designing highly efficient adsorbents that can be used as a high-quality wastewater treatment material.
Collapse
Affiliation(s)
- Xin Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Tiantian Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Shiqi Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangbo Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|