1
|
Zhang C, Lv W, Liu Y, Liu Y, Wang Q, Yang Y, Gao Y, Jiang Y. Association between ESR1 and COL1A1 gene polymorphisms and skeletal fluorosis in Tibetan, Kazakh, Mongolian and Russian populations, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125697. [PMID: 39824337 DOI: 10.1016/j.envpol.2025.125697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Skeletal fluorosis is a chronic metabolic bone disease caused by excessive accumulation of fluoride in the bones. Previous studies have found that when the intake of tea fluoride is similar, the prevalence of skeletal fluorosis varies greatly among different ethnic groups, which may be related to different genetic backgrounds. Single nucleotide polymorphisms (SNPs) of estrogen receptor 1 (ESR1) and collagen type 1 α1 (COL1A1) were strongly associated with bone metabolism as well as bone growth and development, but their association with the risk of skeletal fluorosis has not been reported. PURPOSE To explore the incidence of skeletal fluorosis in different nationalities in the endemic fluorosis area of brick-tea type. To study the relationship between 4 SNPS of ESR1 and COL1A1 gene and skeletal fluorosis. METHODS A cross-sectional study was conducted in Inner Mongolia, Qinghai and Xinjiang. By including exclusion criteria, a total of 989 people were included in the study, demographic data were collected, and physical examinations and laboratory biochemical tests were performed. The X-ray of the participants were diagnosed according to the diagnostic criteria of Chinese endemic skeletal fluorosis (WS192-2008). Fluoride levels in tea or urine were measured using fluoride ion electrodes. SNP was evaluated using Sequenom-MassARRAY system. RESULT The prevalence of skeletal fluorosis varies among different nationalities. Binary logistic regression found that carried the ESR1 Rs9340799 G allele played a protective role in brick-tea-type fluorosis (OR = 0.673[95% CI, 0.495,0.914]). Russians carried the COL1A1 Rs1800012 T allele had a significantly higher risk of developing skeletal fluorosis (OR = 6.370 [95% CI, 1.413,28.715]). When stratified by sex, carriage of the T allele in COL1A1 Rs1800012 significantly increased the risk of developing skeletal fluorosis in Russian men. At the same time, changes in tea fluoride intake and older age can affect the effect of genetic background differences on the risk of skeletal fluorosis. CONCLUSION Our data suggested that there may be a genetic component to the risk of skeletal fluorosis in participants of different ethnicities and that this difference could modified by tea fluoride intake, sex or age.
Collapse
Affiliation(s)
- Chao Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Wenbo Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Ying Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Yunzhu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Qingbo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, China.
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Yang L, Li Q, Wang S, Ji Y, Ma X, Qin M, Gao Y, Yang Y. Sirtuin 3-activated superoxide dismutase 2 mediates fluoride-induced osteoblastic differentiation in vitro and in vivo by down-regulating reactive oxygen species. Arch Toxicol 2024; 98:3351-3363. [PMID: 39012504 DOI: 10.1007/s00204-024-03819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Skeletal fluorosis is a chronic metabolic bone disease caused by long-term excessive fluoride intake. Abnormal differentiation of osteoblasts plays an important role in disease progression. Research on the mechanism of fluoride-mediated bone differentiation is necessary for the prevention and treatment of skeletal fluorosis. In the present study, a rat model of fluorosis was established by exposing it to drinking water containing 50 mg/L F-. We found that fluoride promoted Runt-related transcription factor 2 (RUNX2) as well as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) expression in osteoblasts of rat bone tissue. In vitro, we also found that 4 mg/L sodium fluoride promoted osteogenesis-related indicators as well as SOD2 and SIRT3 expression in MG-63 and Saos-2 cells. In addition, we unexpectedly discovered that fluoride suppressed the levels of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS) in osteoblasts. When SOD2 or SIRT3 was inhibited in MG-63 cells, fluoride-decreased ROS and mtROS were alleviated, which in turn inhibited fluoride-promoted osteogenic differentiation. In conclusion, our results suggest that SIRT3/SOD2 mediates fluoride-promoted osteoblastic differentiation by down-regulating reactive oxygen species.
Collapse
Affiliation(s)
- Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ming Qin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
3
|
Li YS, Yang RR, Li XY, Liu WW, Zhao YM, Zu MM, Gao YH, Huo MQ, Jiang YT, Li BY. Fluoride impairs vascular smooth muscle A7R5 cell lines via disrupting amino acids metabolism. J Transl Med 2024; 22:528. [PMID: 38824544 PMCID: PMC11143695 DOI: 10.1186/s12967-024-05350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 μmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Fluorides/pharmacology
- Rats, Sprague-Dawley
- Cell Line
- Amino Acids/metabolism
- Cell Proliferation/drug effects
- Rats
- Cell Movement/drug effects
- Male
- Aorta/pathology
- Aorta/drug effects
- Aorta/metabolism
- Metabolomics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Gene Regulatory Networks/drug effects
Collapse
Affiliation(s)
- Yan-Shu Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Ru-Ru Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xin-Ying Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Wei-Wei Liu
- Weihai Municipal Hospital, Weihai, 264299, Shandong Province, China
| | - Yi-Ming Zhao
- Xinyi Center for Disease Control and Prevention, Xinyi, China
| | - Ming-Man Zu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Yi-Hong Gao
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Min-Qi Huo
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Yu-Ting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Bing-Yun Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
4
|
Zhang M, Xu H, Lou Q, Yin F, Guo N, Wu L, Huang W, Ji Y, Yang L, Li Q, Wang S, Guan Z, Yang Y, Gao Y. LDL receptor-related protein 5 rs648438 polymorphism is associated with the risk of skeletal fluorosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:687-696. [PMID: 36617395 DOI: 10.1080/09603123.2022.2163989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
To investigate the potential association between LRP5 rs648438 polymorphism and the risk of skeletal fluorosis (SF) was evaluated in a cross-sectional case-control study conducted in Shanxi, China, in 2019. A total of 973 individuals were enrolled in this study, in which cases and controls were 346 and 627, respectively. SF was diagnosed according to the standard WS/192-2008 (China). The LRP5 rs648438 was detected by the multiple PCR and sequencing. LRP5 rs648438 was found to follow a dominant genetic model using a web-based SNP-STATS software. Logistic regression analysis found that the TC/CC genotype of LRP5 rs648438 might be a protective factor for SF. When stratified by gender, this protective effect of TC/CC genotype in rs648438 was pronounced in males. There was an interaction between gender and rs648438 on risk of SF. Our study suggested that TC/CC genotype of rs648438 might be a protective factor for water-drinking-type skeletal fluorosis, especially in male participants.
Collapse
Affiliation(s)
- Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Haili Xu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qun Lou
- Xiamen Center for Disease Control and Prevention, Xiamen, Fujian, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhizhong Guan
- Department of Pathology and Key Lab of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Kumar S, Chhabra V, Mehra M, K S, Kumar B H, Shenoy S, Swamy RS, Murti K, Pai KSR, Kumar N. The fluorosis conundrum: bridging the gap between science and public health. Toxicol Mech Methods 2024; 34:214-235. [PMID: 37921264 DOI: 10.1080/15376516.2023.2268722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Fluorosis, a chronic condition brought on by excessive fluoride ingestion which, has drawn much scientific attention and public health concern. It is a complex and multifaceted issue that affects millions of people worldwide. Despite decades of scientific research elucidating the causes, mechanisms, and prevention strategies for fluorosis, there remains a significant gap between scientific understanding and public health implementation. While the scientific community has made significant strides in understanding the etiology and prevention of fluorosis, effectively translating this knowledge into public health policies and practices remains challenging. This review explores the gap between scientific research on fluorosis and its practical implementation in public health initiatives. It suggests developing evidence-based guidelines for fluoride exposure and recommends comprehensive educational campaigns targeting the public and healthcare providers. Furthermore, it emphasizes the need for further research to fill the existing knowledge gaps and promote evidence-based decision-making. By fostering collaboration, communication, and evidence-based practices, policymakers, healthcare professionals, and the public can work together to implement preventive measures and mitigate the burden of fluorosis on affected communities. This review highlighted several vital strategies to bridge the gap between science and public health in the context of fluorosis. It emphasizes the importance of translating scientific evidence into actionable guidelines, raising public awareness about fluoride consumption, and promoting preventive measures at individual and community levels.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Manmeet Mehra
- Department of Pharmacology, Guru Nanak Dev University, Amritsar, India
| | - Saranya K
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
6
|
Veneri F, Iamandii I, Vinceti M, Birnbaum LS, Generali L, Consolo U, Filippini T. Fluoride Exposure and Skeletal Fluorosis: a Systematic Review and Dose-response Meta-analysis. Curr Environ Health Rep 2023; 10:417-441. [PMID: 37861949 DOI: 10.1007/s40572-023-00412-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW We performed a systematic review and meta-analysis on the relation between fluoride exposure and skeletal fluorosis (SF) using a novel statistical methodology for dose-response modeling. RECENT FINDINGS Skeletal fluorosis, a major health issue that is endemic in some regions, affects millions of people worldwide. However, data regarding the dose-response relation between fluoride exposure and SF are limited and outdated. We included twenty-three studies in the meta-analysis. When comparing the highest versus the lowest fluoride category, the summary risk ratio (RR) for SF prevalence was 2.05 (95% CI 1.60; 2.64), with a value of 2.73 (95% CI 1.92; 3.90) for drinking water and 1.40 (95% CI 0.90; 2.17) for urinary fluoride. The RR by the risk of bias (RoB) was 2.37 (95% CI 1.56; 3.58) and 1.78 (95% CI 1.34; 2.36) for moderate and high RoB studies, respectively. The dose-response curve based on a one-stage cubic spline regression model showed an almost linear positive relation between exposure and SF occurrence starting from relatively low concentrations up to 5 mg/L and 2.5 mg/L, respectively, for water and urinary fluoride, with no substantial increase above this threshold. The RR for developing moderate-severe forms increases at 5.00 mg/L and 2.5 mg/L of water and urinary fluoride, respectively. Better-quality studies are needed to confirm these results, but greater attention should be given to water fluoride levels to prevent SF, in addition to the other potential adverse effects of fluoride exposure.
Collapse
Affiliation(s)
- Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Inga Iamandii
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02215, USA.
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
7
|
Zhu C, Gu W, Sun D, Wei W. The mechanism underlying fluoride-induced low-renin hypertension is related to an imbalance in the circulatory and local renin-angiotensin systems. Toxicol Lett 2023; 381:36-47. [PMID: 37105417 DOI: 10.1016/j.toxlet.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
The renin-angiotensin system (RAS) is an important fluid regulation system in the body, and excessive activation of the circulatory or local RAS can increase blood pressure (BP). Excess fluoride can increase BP, although the underlying mechanism related to activation of the RAS remains unclear. Thus, the aim of this study was to elucidate the role of the RAS in fluoride-induced hypertension. Markers of the circulating and local RASs related to pathological changes to the kidneys, myocardium, and aorta were measured. Fluoride reduced serum levels of renin, angiotensin II (Ang II), and angiotensin (1-7) [Ang (1-7)], and dysregulated plasma levels of aldosterone and potassium levels. Excess fluoride can damage the kidneys, myocardium, and aorta, overactivate the renal angiotensin converting enzyme (ACE)-Ang II-angiotensin type 1 receptor axis, and inhibit activation of the ACE2-Ang (1-7)-Mas axis, leading to dysregulation of alpha epithelial sodium channels and significantly increased expression of Ang II in the myocardium and aorta. Hence, excess fluoride can cause low-renin hypertension via an imbalance between the circulatory and local RASs.
Collapse
Affiliation(s)
- Chenpeng Zhu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China.
| | - Wei Wei
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
8
|
Zhou J, Sun D, Wei W. Necessity to Pay Attention to the Effects of Low Fluoride on Human Health: an Overview of Skeletal and Non-skeletal Damages in Epidemiologic Investigations and Laboratory Studies. Biol Trace Elem Res 2023; 201:1627-1638. [PMID: 35661326 DOI: 10.1007/s12011-022-03302-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Due to the implementation of water improvement and fluoride reduction plans supported by central and local governments in recent years, areas with high fluoride exposure are being gradually decreased. Therefore, it is of practical importance to study the effect of low fluoride on human health. Epidemiologic investigations and in vivo and in vitro studies based on low fluoride have also confirmed that fluoride not only causes skeletal damage, such as dental fluorosis, but also causes non-skeletal damage involving the cardiovascular system, nervous system, hepatic and renal function, reproductive system, thyroid function, blood glucose homeostasis, and the immune system. This article summarizes the effects of low fluoride on human and animal skeletal and non-skeletal systems. A preliminary exploration of corresponding mechanisms that will help to fully understand the harm of low fluoride on human health was undertaken to provide the basis for establishing new water fluoride standards and help to implement individual guidance.
Collapse
Affiliation(s)
- Jing Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China.
| |
Collapse
|
9
|
Zhang D, Xu X, Wu X, Lin Y, Li B, Chen Y, Li X, Shen J, Xiao L, Lu S. Monitoring fluorine levels in tea leaves from major producing areas in China and the relative health risk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Wen C, Zhang Q, Xie F, Jiang J. Brick tea consumption and its relationship with fluorosis in Tibetan areas. Front Nutr 2022; 9:1030344. [PMID: 36583212 PMCID: PMC9792988 DOI: 10.3389/fnut.2022.1030344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Brick tea-type fluorosis (BTF) due to a high intake of brick tea is possible in Tibetan populations, and dental fluorosis (DF) and skeletal fluorosis (SF) are its primary manifestations. To determine the prevalence of DF and SF and their relationships with brick tea intake in Tibetan populations, a literature review was conducted for studies published between 1994 and 2021. The available evidence revealed that brick tea may be produced from older stems and leaves of the tea plant and that the fluoride content of brick tea exceeds the national standard. The harsh environment of the plateau has led to limited food sources for the local Tibetan people who form the habit of drinking tea leaves as a satiation solution to digest greasy food and replenish vitamins, and regular consumption of brick tea leads to excessive exposure of Tibetan residents to fluoride. Studies in Tibet showed that the prevalence of DF in children was 14.06-75.93% in different districts, and the overall pooled prevalence of DF was 26.08%. The prevalence of SF in adults was 19.90-74.77% in different Tibetan districts, and the overall pooled prevalence of SF was 33.84%. The analysis of risk factors showed that the prevalence of BTF may be related to high-altitude and different working and living conditions, and BTF in children may be associated with fluoride intake during mothers' pregnancy and lactation. With the development of bioinformatics research, gene polymorphisms were suspected to be related to susceptibility to fluorosis in Tibetan populations. The study of BTF in Tibetan people needs to be further investigated and standardized, and additional studies evaluating the pathogenesis and preventive measures of BTF are warranted.
Collapse
Affiliation(s)
- Cai Wen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of VIP Dental Service, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Cai Wen, ; orcid.org/0000-0002-3400-5382
| | - Qing Zhang
- Department of Nosocomial Infection Control, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fei Xie
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jixin Jiang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
He B, Dong S, Chen Q, Dong Z, Chen C. DNA Methylation Profiles of Ovarian Granular Cells from Fluorosis Female Patients Suffering Reproductive Dysfunctions. Biol Trace Elem Res 2022; 200:3529-3536. [PMID: 34686994 DOI: 10.1007/s12011-021-02954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2022]
Abstract
Fluorosis often causes female reproductive dysfunction. A rapid turnover of DNA methylation is a pathological change in many human diseases, including female reproductive dysfunction. The role of DNA methylation in fluorosis was unknown and investigated in this experiment. Fifty fluorosis women patients were selected as High F group and forty-six healthy women were recruited as Control group were enrolled. In addition, ovarian granulosa cells were obtained from five women in High F group and five women in Control group. All ten women went through in vitro fertilization (IVF) process with DNA methylation sequencing. KGN cells (human granulosa cell line) were cultured with different concentrations of sodium fluoride (0-8 mM NaF) for 24 h for the in vitro study. The level of DNA methylation in blood samples was significantly higher in High F group than that in Control group. The level of serum estradiol (E2) was significantly lower in women from High F group, while the levels of serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in High F group were significantly higher than that in Control group. The methylation sequences of KGN cells relating to autophagy were significantly changed by NaF treatment dose-dependently. Based on these results, it is concluded that DNA methylation and autophagy may play a significant role in the pathophysiology of reproductive dysfunction caused by fluorosis.
Collapse
Affiliation(s)
- Biqi He
- Class 0128, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Siyuan Dong
- Class S0141, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the People's Republic of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76, Yanta Western Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Zhaoheng Dong
- Shandong Shenghua Electronic New Materials Co., Ltd., Yantai, Shandong, China
| | - Chen Chen
- Endocrinology, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
12
|
Wang H, Yang L, Gao P, Deng P, Yue Y, Tian L, Xie J, Chen M, Luo Y, Liang Y, Qing W, Zhou Z, Pi H, Yu Z. Fluoride exposure induces lysosomal dysfunction unveiled by an integrated transcriptomic and metabolomic study in bone marrow mesenchymal stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113672. [PMID: 35617906 DOI: 10.1016/j.ecoenv.2022.113672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Fluoride has received much attention for its predominant bone toxicity in the human body. However, the toxic mechanism of bone injury caused by fluoride exposure remains largely unclear. Bone marrow mesenchymal stem cells (BMSCs) are widely used as model cells for evaluating bone toxicity after environmental toxicant exposure. In this study, BMSCs were exposed to fluoride at 1, 2, and 4 mM for 24 h, and fluoride significantly inhibited cell viability at 2 and 4 mM. A multiomics analysis combining transcriptomics with metabolomics was employed to detect alterations in genes and metabolites in BMSCs treated with 2 mM fluoride. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of transcriptomics profiles identified "lysosomes" as the top enriched pathway, which was severely damaged by fluoride exposure. Lysosomal damage was indicated by decreases in the expression of lysosomal associated membrane protein 2 (LAMP 2) and cathepsin B (CTSB) as well as an increase in pH. Upregulation of the lysosome-related genes Atp6v0b and Gla was observed, which may be attributed to a compensatory lysosomal biogenesis transcriptional response. Interestingly, inhibition of glutathione metabolism was observed in fluoride-treated BMSCs at the metabolomic level. Moreover, an integrative analysis between altered genes, metabolites and lysosome signaling pathways was conducted. Palmitic acid, prostaglandin C2, and prostaglandin B2 metabolites were positively associated with Atp6v0b, a lysosome-related gene. Overall, our results provide novel insights into the mechanism responsible for fluoride-induced bone toxicity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Lu Yang
- Hunan Province Prevention and Treatment Hospital for Occupational Diseases, Hunan, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijia Qing
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China; The 63710th Military Hospital of PLA, Xinzhou, Shanxi, China
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| |
Collapse
|
13
|
Yang Y, Zhang R, Zhang F, Li Y. Spatial-Temporal Variation and Health Risk Assessment of Fluoride in Surface Water in the Tibetan Plateau. EXPOSURE AND HEALTH 2022; 15:281-297. [PMID: 35692893 PMCID: PMC9170561 DOI: 10.1007/s12403-022-00490-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 05/21/2023]
Abstract
The Tibetan Plateau (TP) is known as the "Asian Water Tower" and provides vital drinking water for residents of China and Southeast Asian countries. However, large-scale regional research on water quality in this climate-sensitive and ecologically-fragile area is still lacking. Considering that drinking from fluoride-contaminated water poses serious health concerns worldwide, especially in Asian counties, it is urgent to clarify the spatial-temporal distribution characteristics, influencing factors, and health risk of fluoride in surface water in the TP. In this study, a total of 2697 surface water samples from major rivers and typical lakes in the TP were systematically analysed. Overall, fluoride concentrations ranged from 0.003 to 6.240 mg L-1 and varied among water periods, water basins and even water types. Pearson's correlation analysis showed that the distribution of fluoride concentration was closely related to the regional climate and positively correlated with anthropogenic activities. Probabilistic health risk assessment revealed that potential hazards in the Inner Basin were the highest for all age groups (HR > 1), especially for infants and adults (HR > 3), while the risks in most other water basins were acceptable (HR < 1). Our findings can provide scientific support for fluorosis prevention, and guide water resource utilization in the TP and adjacent regions. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-022-00490-4.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ru Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fengying Zhang
- China National Environmental Monitoring Centre, Beijing, 100012 China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
14
|
Bian S, Hu A, Lu G, Cao Z, Wang J, Wang J. Study of Chitosan Ingestion Remitting the Bone Damage on Fluorosis Mice with Micro-CT. Biol Trace Elem Res 2022; 200:2259-2267. [PMID: 34518961 DOI: 10.1007/s12011-021-02838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Chronic excessive fluoride exposure may lead to fluorosis, which causes health problems like a decrease in bone mechanical strength. It was speculated that chitosan may combine with fluorine to form in vivo organic fluorine, and may reduce the damage caused by fluorine. Hence, it is necessary to conduct a study to investigate the influence of chitosan on fluorosis mice. To investigate this problem, forty-four 4-week-old male Kunming mice were randomly divided into four groups, the control group, the fluoride group, the fluoride plus chitosan group, and the chitosan group. After 100 days of feeding, the femurs were collected to scan the Micro-CT image. The ultimate load of the femur in the fluoride group was significantly lower than control group. The trabecular separation was increased in the fluoride group compared with the fluoride plus chitosan group and the chitosan group. The level of trabecular thickness was increased in the fluoride plus chitosan group compared with the fluoride group. Our findings suggest that chitosan ingestion can improve the condition of cancellous bone and cortical bone affected by fluorine.
Collapse
Affiliation(s)
- Shengtai Bian
- Shaxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, People's Republic of China
- School of Sport Science, Beijing Sport University, Beijing, 100084, People's Republic of China
| | - Anqi Hu
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, 100084, People's Republic of China
| | - Gui Lu
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Zemei Cao
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, 100084, People's Republic of China
| | - Jinming Wang
- Shaxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, People's Republic of China
| | - Jundong Wang
- Shaxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, People's Republic of China.
| |
Collapse
|