1
|
Tan Y, Wang Y, Bing X, Jiang J, Guo G, Cui F, Wang K, Meng Z, Liu Y, Zhu Y. Coupling effect of cyanobacterial blooms with migration and transformation of typical pollutants in lake or reservoir: Enhanced or decreased? ENVIRONMENTAL RESEARCH 2025; 267:120734. [PMID: 39743008 DOI: 10.1016/j.envres.2024.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Eutrophication of lake and reservoir caused by cyanobacterial harmful algal blooms (cyanoHABs) become a global ecological problem because of massive destruction of ecosystems, which have attracted attentions widely. In addition to the production of cyanotoxins by certain bloom-forming species, there may also be direct or indirect interactions between cyanobacteria blooms and various pollutants in lakes or reservoirs. Based on bibliometrics, 19110 papers in Web of Science (WOS) and 2998 papers in the China National Knowledge Infrastructure (CNKI) on eutrophication and cyanobacterial blooms in lakes and reservoirs were analyzed, which showed that research on this topic has been ongoing for nearly 80 years with a gradual increase in its popularity. The research on the coupling process of cyanobacterial blooms with five typical pollutants, including microcystins (MCs), heavy metals, viruses, antibiotics and antibiotic resistance genes (ARGs), indicate that the coupling process between cyanobacteria blooms and certain pollutants is indeed generated through direct or indirect interactions by adsorption, changing the physical and chemical conditions of water environment, and changing the structure of microbial community. For instance, the production, toxicity would be likely enhanced by cyanobacteria blooms directly. And the microorganisms may play a significant role in the interaction between cyanobacteria blooms and ARGs. Generally, the risk of some typical pollutants would be likely enhanced or decreased directly or indirectly by these processes. It is recommended that further attention be paid to the interrelationships between the process of cyanobacterial bloom and typical pollutants' migration and transformation, to provide the scientific basis for the risk assessment and thus multi-objective synergistic control and management of nutrients and typical pollutants in eutrophic lakes or reservoirs.
Collapse
Affiliation(s)
- Yidan Tan
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuyao Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaojie Bing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Juan Jiang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangxi Cui
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kuo Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zirui Meng
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuxuan Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
2
|
Zhao X, Wang J, Xie H, Liang E, Cai H. Anthropogenic activities disturb phytoplankton taxa and functional groups in an urban river. ENVIRONMENTAL RESEARCH 2025; 265:120411. [PMID: 39577720 DOI: 10.1016/j.envres.2024.120411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Anthropogenic activities have substantial impacts on river ecosystems, yet how phytoplankton taxa and functional groups respond to varying levels of anthropogenic activity in urban rivers remains poorly understood. Herein, we investigated the sensitivity of phytoplankton taxa and functional groups to anthropogenic disturbances in the Bahe River, which experiences increased anthropogenic activity intensity from upstream to downstream. We found that both phytoplankton composition and niche breadth exhibited distinct variations among the three reaches with different anthropogenic disturbances. Notably, we observed a marked increase in the abundance of potential bloom-forming species in the river section with the highest anthropogenic disturbance, suggesting that anthropogenic activities might promote the growth and proliferation of these species. Compared to geographical and physiochemical factors, anthropogenic activities were identified as the primary driver of changes in phytoplankton taxa and functional groups. Increasing levels of anthropogenic activities potentially led to higher concentrations of ammonium nitrogen and total phosphorus, further influencing niche differentiation among phytoplankton taxa and functional groups. Our study offers profound insights into the impacts of anthropogenic disturbances on phytoplankton, emphasizing the necessity of integrating watershed-scale human activity management into strategies for controlling phytoplankton in urban rivers.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an, 710048, China; College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jiawen Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Hongmin Xie
- School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| |
Collapse
|
3
|
Cardoso-Silva S, Trevizani TH, Figueira RCL, Pompêo M, Krammer O, Picazo A, Vicente E, Moschini-Carlos V. Biotic homogenization in multisystem cascade reservoirs: insights from sedimentary photopigment analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59012-59026. [PMID: 39331298 DOI: 10.1007/s11356-024-35023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The existing literature provides limited insights into the dynamics of phytoplankton communities and the spatial heterogeneity of physicochemical parameters in multisystem cascade reservoirs (interconnected reservoirs derived from different rivers). The existing studies are concentrated on cascade reservoirs (interconnected reservoirs derived from the same river). To address this knowledge gap, the aims of the present study were as follows: (1) investigate the spatial heterogeneity, within and between reservoirs, of geochemical parameters associated with the eutrophication process, considering total phosphorus, chlorophyll-a, pheophytin, and metals (chromium, copper, nickel, lead, zinc, iron, and manganese); (2) evaluate sediment quality at the designated locations; (3) assess differences in the richness and concentration of sedimentary photopigments between the reservoirs. Application of principal component analysis revealed discernible gradients for the abiotic variables, although the differences were not statistically significant (one-way PERMANOVA test, p > 0.05). The observations suggested a tendency towards spatial homogeneity within and between the reservoirs. The metal concentrations were consistent with regional reference values, while phosphorus levels in the sediment approached the threshold for classification as pollution (~ 2000 mg/kg). Analysis of pigments indicated low dissimilarity among the reservoirs, which could be mainly attributed to the eutrophication process and high connectivity of the sampled areas. To counteract ongoing biotic homogenization, it is essential to reduce nutrient inputs and invest in ecological protection and restoration programs. The analysis of sedimentary photopigments provides an efficient and cost-effective alternative way to assess phytoplankton communities.
Collapse
Affiliation(s)
- Sheila Cardoso-Silva
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil.
- Oceanographic Institute, University of São Paulo (USP), São Paulo, SP, Brazil.
- Graduate Program in Environmental Sciences, Institute of Science and Technology, Federal University of Alfenas (UNIFAL), Poços de Caldas, MG, Brazil.
| | | | | | - Marcelo Pompêo
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil
- Ecology Department, Biosciences Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Olga Krammer
- Microbiology and Ecology Department, Valencia University, Burjassot, Valencia, Spain
| | - Antonio Picazo
- Microbiology and Ecology Department, Valencia University, Burjassot, Valencia, Spain
| | - Eduardo Vicente
- Microbiology and Ecology Department, Valencia University, Burjassot, Valencia, Spain
| | - Viviane Moschini-Carlos
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil
| |
Collapse
|
4
|
Cai G, Ge Y, Dong Z, Liao Y, Chen Y, Wu A, Li Y, Liu H, Yuan G, Deng J, Fu H, Jeppesen E. Temporal shifts in the phytoplankton network in a large eutrophic shallow freshwater lake subjected to major environmental changes due to human interventions. WATER RESEARCH 2024; 261:122054. [PMID: 38986279 DOI: 10.1016/j.watres.2024.122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Phytoplankton communities are crucial components of aquatic ecosystems, and since they are highly interactive, they always form complex networks. Yet, our understanding of how interactive phytoplankton networks vary through time under changing environmental conditions is limited. Using a 29-year (339 months) long-term dataset on Lake Taihu, China, we constructed a temporal network comprising monthly sub-networks using "extended Local Similarity Analysis" and assessed how eutrophication, climate change, and restoration efforts influenced the temporal dynamics of network complexity and stability. The network architecture of phytoplankton showed strong dynamic changes with varying environments. Our results revealed cascading effects of eutrophication and climate change on phytoplankton network stability via changes in network complexity. The network stability of phytoplankton increased with average degree, modularity, and nestedness and decreased with connectance. Eutrophication (increasing nitrogen) stabilized the phytoplankton network, mainly by increasing its average degree, while climate change, i.e., warming and decreasing wind speed enhanced its stability by increasing the cohesion of phytoplankton communities directly and by decreasing the connectance of network indirectly. A remarkable shift and a major decrease in the temporal dynamics of phytoplankton network complexity (average degree, nestedness) and stability (robustness, persistence) were detected after 2007 when numerous eutrophication mitigation efforts (not all successful) were implemented, leading to simplified phytoplankton networks and reduced stability. Our findings provide new insights into the organization of phytoplankton networks under eutrophication (or re-oligotrophication) and climate change in subtropical shallow lakes.
Collapse
Affiliation(s)
- Guojun Cai
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China; Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, China
| | - Yili Ge
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Dong
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yu Liao
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yaoqi Chen
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Aiping Wu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Youzhi Li
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Huanyao Liu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Guixiang Yuan
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hui Fu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China.
| | - Erik Jeppesen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; imnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Liu H, Zhang C, Yang W, Ru Z, Ding J, Jing Y, Li C. Assessing spatial heterogeneity of nutrient loads in a large shallow lake using a lattice Boltzmann water quality model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121587. [PMID: 38981272 DOI: 10.1016/j.jenvman.2024.121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
Nutrient loads in lakes are spatially heterogeneous, but current spatial analysis method are mainly zonal, making them subjective and uncertain. This study proposes a high-resolution model for assessing spatial differences in nutrient loads based on the lattice Boltzmann method. The model was applied to Dongping Lake in China. Firstly, the contribution rates of four influencing factors, including water transfer, inflow, wind, and internal load, were calculated at different locations in the lake. Then, their proportionate contributions during different intervals to the whole lake area were calculated. Finally, the cumulative load could be calculated for any location within the lake. The validation showed that the model simulated hydrodynamics and water quality well, with relative errors between the simulated and measured water quality data smaller than 0.45. Wind increased the nutrient loads in most parts of the lake. The loads tended to accumulate in the east central area where high-frequency circulation patterns were present. Overall, the proposed water quality model based on the lattice Boltzmann method was able to simulate seven indexes. Therefore, this model represents a useful tool for thoroughly assessing nutrient load distributions in large shallow lakes and could help refine lake restoration management.
Collapse
Affiliation(s)
- Haifei Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chuqi Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wei Yang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhiming Ru
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiewei Ding
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuetong Jing
- School of Economics and Management, Harbin Normal University, Harbin 150500, China
| | - Cheng Li
- Qingdao 63 Middle School, Shandong Province 266199, China
| |
Collapse
|
6
|
Wang Y, Li Y, Cheng Y, Wang Y, Zhu Y, Li R, Acharya K, Ibrahim M. Thermal stratification and mixing processes response to meteorological factors in a monomictic reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120205. [PMID: 38359623 DOI: 10.1016/j.jenvman.2024.120205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/17/2024]
Abstract
Formation and extinction of thermal stratifications impact the reservoir ecosystems and have been closely influenced by meteorological and hydrological factors. However, quantifying the relative importance of these crucial environmental factors and mechanisms in reservoir regions characterized by various depths remain comparatively uninvestigated. Tianbao Reservoir is a typical monomictic warm and drinking water source reservoir in Southwest China. This study supplemented field observations with a three-dimensional numerical simulation model to quantitatively analyze mixing and turnover events. Air temperature and wind were two important meteorological factors resulting in hydrodynamics during stratification and mixing processes. Air temperature led to variations in stratification strength and wind-induced fluctuations of thermocline depth. A 10% rise in air temperature increased stratification strength by 18%, and a 3 m/s rise in wind speed induced the deepening of the thermocline by 2.09 m. Two hydrodynamics involved penetrative convection caused by temperature plummets and wind-induced mixing during winter turnover events were identified. Penetrative convection was the main driving force, and wind shear mixed the upper 21% of the mixed layer, which was contributed by convection. Response of water temperature to air temperature in shallow regions was faster (58 d), and the mixing depth caused by the wind was smaller than that in deep regions. Research on physical processes during stratification and mixing processes can provide support for further study on water quality deterioration distributions.
Collapse
Affiliation(s)
- Yaning Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yue Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yu Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ya Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ronghui Li
- Key Laboratory of Disaster Prevention and Structural Safety, Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning, 530000, China
| | - Kumud Acharya
- Desert Research Institute, Las Vegas, NV, 89119, USA
| | - Muhammad Ibrahim
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Department of Environmental Management and Toxicology, Federal University Dutse, Dutse, 720101, Nigeria
| |
Collapse
|
7
|
Huang T, Wen C, Wang S, Wen G, Li K, Zhang H, Wang Z. Controlling spring Dinoflagellate blooms in a stratified drinking water reservoir via artificial mixing: Effects, mechanisms, and operational thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157400. [PMID: 35850327 DOI: 10.1016/j.scitotenv.2022.157400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water-lifting aerators (WLAs) are often applied in stratified reservoirs to activate artificial mixing to inhibit harmful algal blooms (HABs). Here, the effects, mechanisms, and operational thresholds of spring Dinoflagellate control via artificial mixing were studied using a combination of taxonomic and functional groups and boundary line models. Algal cell density at two sampling sites (i.e., S1 and S2) decreased to below 1.0 × 106 cells/L (corresponding chlorophyll-a content under 10 μg/L) during artificial mixing, with a Dinoflagellate removal efficiency of 97.1 % at S1 and 95.5 % at S2, respectively. The succession patterns of main phytoplankton taxonomic and functional groups changed greatly during artificial mixing at the sites: from Dinoflagellate and motile Chlorophyta to Bacillariophyta from groups A/LO/P to A, respectively. Water temperature (WT), light availability (Zeu/Zmix), and mixing depth (Zmix) were more effective factors influencing phytoplankton dynamics at a short-term scale, followed by total phosphorus (TP). A decrease in surface WT and Zeu/Zmix, and increase in Zmix alongside the improvement of TP levels, which were induced by WLAs, drove the Dinoflagellate bloom control by a shift of phytoplankton structure from large, motile, and low surface to volume ratio (S/V) to small, immobile, and high S/V algae. The operational threshold values of WT, Zeu/Zmix, Zmix and TP concentration for the suppression of Dinoflagellate growth using mixing systems are recommended as 9.6 °C, 0.17, 11.5 m, and 0.020 mg/L, respectively, based on a boundary line analysis. This work can help improve the cognition of mechanisms controlling HABs using mixing and aeration techniques in reservoirs.
Collapse
Affiliation(s)
- Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chengcheng Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sai Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhi Wang
- Lijiahe Reservoir management Co., Ltd., Xi'an 710016, China
| |
Collapse
|
8
|
Dashkova V, Malashenkov DV, Baishulakova A, Davidson TA, Vorobjev IA, Jeppesen E, Barteneva NS. Changes in Phytoplankton Community Composition and Phytoplankton Cell Size in Response to Nitrogen Availability Depend on Temperature. Microorganisms 2022; 10:microorganisms10071322. [PMID: 35889045 PMCID: PMC9324377 DOI: 10.3390/microorganisms10071322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The climate-driven changes in temperature, in combination with high inputs of nutrients through anthropogenic activities, significantly affect phytoplankton communities in shallow lakes. This study aimed to assess the effect of nutrients on the community composition, size distribution, and diversity of phytoplankton at three contrasting temperature regimes in phosphorus (P)–enriched mesocosms and with different nitrogen (N) availability imitating eutrophic environments. We applied imaging flow cytometry (IFC) to evaluate complex phytoplankton communities changes, particularly size of planktonic cells, biomass, and phytoplankton composition. We found that N enrichment led to the shift in the dominance from the bloom-forming cyanobacteria to the mixed-type blooming by cyanobacteria and green algae. Moreover, the N enrichment stimulated phytoplankton size increase in the high-temperature regime and led to phytoplankton size decrease in lower temperatures. A combination of high temperature and N enrichment resulted in the lowest phytoplankton diversity. Together these findings demonstrate that the net effect of N and P pollution on phytoplankton communities depends on the temperature conditions. These implications are important for forecasting future climate change impacts on the world’s shallow lake ecosystems.
Collapse
Affiliation(s)
- Veronika Dashkova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 00010, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
- Correspondence: (V.D.); (N.S.B.)
| | - Dmitry V. Malashenkov
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
- National Laboratory Astana, Nur-Sultan 00010, Kazakhstan
| | - Assel Baishulakova
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
| | - Thomas A. Davidson
- Department of Ecoscience, Aarhus University Center for Water Technology (WATEC), 8000 Aarhus, Denmark; (T.A.D.); (E.J.)
| | - Ivan A. Vorobjev
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University Center for Water Technology (WATEC), 8000 Aarhus, Denmark; (T.A.D.); (E.J.)
- Sino-Danish Centre for Education and Research, Beijing 100049, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey
- Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| | - Natasha S. Barteneva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 00010, Kazakhstan; (D.V.M.); (A.B.); (I.A.V.)
- The Environment & Resource Efficiency Cluster, Nazarbayev University, Nur-Sultan 00010, Kazakhstan
- Correspondence: (V.D.); (N.S.B.)
| |
Collapse
|
9
|
Fu H, Chen L, Ge Y, Wu A, Liu H, Li W, Yuan G, Jeppesen E. Linking human activities and global climatic oscillation to phytoplankton dynamics in a subtropical lake. WATER RESEARCH 2022; 208:117866. [PMID: 34800853 DOI: 10.1016/j.watres.2021.117866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Human activities and climate change are two major stressors affecting lake ecosystems as well as phytoplankton communities worldwide. However, how the temporal dynamics of phytoplankton are directly or indirectly linked to anthropogenic activities and climatic oscillation remains unclear. We assessed the annual trends (1988-2018) in phytoplankton abundance (PA) in Lake Dongting, China and related it to five groups of variables characterizing human activities, global climate oscillation, water nutrients, hydrology, and meteorology. We found a significant increase in PA, urbanization (Upop), total nitrogen (TN), fertilizer application (FA), number of summer days (SU), and the warm speed duration index (WSDI) and a significant decrease in the water discharge of three inlets (TIWD) and the sediment discharge of three inlets (TISD) and four tributaries (FTSD) and the net sediment deposition (NSD). However, no significant annual trends were observed for the number of rainstorm days (R50mm), the simple precipitation intensity index (SDII) and yearly anomalies of El Niño-Southern oscillation events (ENSOi). Cross-correlation Function analyses demonstrated that the operation of the Three George Dam (TGD) strengthened the effects of hydrology, rainfall patterns and ENSOi on phytoplankton, but strongly weakened the association between water nutrients, human activities and phytoplankton abundance. Path analysis revealed that TP, TN, FA, R50 mm as well as WSDI had a direct positive effect on PA, while a direct negative effect was found for ENSOi, NSD and TISD. Human activities (Upop and FA), warming (WSDI and SU), and rainfall patterns (SDII and R50 mm) exerted indirect controls on phytoplankton through changes in water nutrients and hydrology. Climate change (ENSOi) had a direct effect on PA, but also showed twelve indirect pathways via changes in hydrology and meteorology (both positive and negative effects were found). Overall, meteorology contributed most markedly to the variations of PA (29.3%), followed by hydrology (25.3%), human activities (24%), water nutrients (10.5%), and ENSOi (1.9%). Our results highlight a strongly causal connection between human activities as well as global climate change and phytoplankton and the benefits of considering multiple environmental drivers in determining the temporal dynamics of lake biotic communities.
Collapse
Affiliation(s)
- Hui Fu
- Department of Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environments, Hunan Agricultural University, Nongda Road 1#, Changsha 410128, PR China.
| | - Lidan Chen
- Department of Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environments, Hunan Agricultural University, Nongda Road 1#, Changsha 410128, PR China
| | - Yili Ge
- Department of Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environments, Hunan Agricultural University, Nongda Road 1#, Changsha 410128, PR China
| | - Aiping Wu
- Department of Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environments, Hunan Agricultural University, Nongda Road 1#, Changsha 410128, PR China
| | - Huanyao Liu
- Department of Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environments, Hunan Agricultural University, Nongda Road 1#, Changsha 410128, PR China
| | - Wei Li
- Research Institute of Ecology and Environmental Sciences, Nanchang Institute of Technology, Nanchang 330099, PR China
| | - Guixiang Yuan
- Department of Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environments, Hunan Agricultural University, Nongda Road 1#, Changsha 410128, PR China.
| | - Erik Jeppesen
- Department of Bioscience, Center for Water Technology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China; Limnology Laboratory, Department of Biological Sciences, Center for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey
| |
Collapse
|
10
|
Fu H, Özkan K, Yuan G, Johansson LS, Søndergaard M, Lauridsen TL, Jeppesen E. Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146368. [PMID: 34030386 DOI: 10.1016/j.scitotenv.2021.146368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Seasonal and annual dynamics of the zooplankton community in lakes are affected by changes in abiotic drivers, trophic interactions (e.g., changes in phytoplankton and fish communities and abundances) and habitat characteristics (e.g. macrophyte abundance and composition). However, little is known about the temporal responses of the zooplankton community to abiotic and biotic drivers across lakes at the regional scale. Using a comprehensive 20-year dataset from 20 Danish lakes in recovery from eutrophication, we assessed the seasonal and annual trends in the spatial heterogeneity of zooplankton community across lakes and related it to abiotic and biotic drivers. We found significant seasonality and inter-annual decreases in spatial zooplankton heterogeneity in both shallow and deep lakes, with the decrease in the spatial turnover dominating the temporal dynamics of the beta diversity. For the inter-annual changes, decreased spatial heterogeneity of phytoplankton, macrophytes and fish were important biotic drivers at the regional scale. Using a series of ordinary least squares regressions and model selection with model averaging approaches, we revealed that both local (e.g., total phosphorus, total nitrogen, pH, Secchi depth, alkalinity, Schmidt stability, water temperature) and regional drivers (e.g., air temperature, solar irradiance) were important variables influencing the spatial zooplankton heterogeneity, although the directions depended on the beta diversity measures and water depth. Our results highlight an important role of bottom-up forces through phytoplankton community as well as macrophytes and top-down forces via fishes in driving the temporal changes in zooplankton community composition patterns at the regional scale.
Collapse
Affiliation(s)
- Hui Fu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Korhan Özkan
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Guixiang Yuan
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | | | - Martin Søndergaard
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Torben L Lauridsen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Erik Jeppesen
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey; Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| |
Collapse
|