1
|
Chen L, Shi H, Medema G, van der Meer W, Liu G. Long-term impacts of free chlorine and monochloramine on the development of drinking water biofilm. WATER RESEARCH 2025; 281:123566. [PMID: 40168779 DOI: 10.1016/j.watres.2025.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Biofilm formation in drinking water distribution systems is primarily managed by disinfectants such as free chlorine (FC) and monochloramine (MC). However, there is limited understanding of their long-term and dynamic effects on biofilm development. To address this, a 56-week study was conducted to comprehensively assess biofilm development in terms of microbial quantity and community under different disinfection regimes: no chlorine (NC), FC (0.1 mg/L), and MC (0.4 mg/L). The results showed that both FC and MC significantly inhibited biofilm growth compared to the NC condition while shaping distinct biofilm communities. Notably, FC drastically reduced biofilm biomass and community diversity, resulting in a more uniform biofilm community predominantly composed of Proteobacteria (e.g., Rhizobacter spp., Pseudomonas spp., and Hyphomicrobium spp.), indicating stronger selection pressures on the microbial population. In contrast, though MC effectively reduced the biofilm biomass to a level comparable to that of FC, it maintained a high diversity comparable to that of NC (dominated by Sphingobium spp. and Nocardioides spp.), reflecting weaker selection pressure on bacterial community. Temporally, biofilm communities under all conditions started from nearly identical states. From week-19 and week-36 onwards, deterministic processes predominantly governed biofilm formation under FC and NC conditions, signifying that these biofilms reached a stable state. Differently, under MC condition, the community assembly was continually influenced by stochastic processes, with the biofilm not achieving stability until week-56. Overall, this study provides valuable insights into the long-term dynamics of biofilm development and evidenced that FC is better than MC in controlling biofilm formation, particularly from the community diversity perspective. This challenges classical views that MC is more effective than FC in penetrating and controlling biofilm, which may change the popularity of MC as a disinfectant in water utilities.
Collapse
Affiliation(s)
- Lihua Chen
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sanitary Engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands
| | - Haoran Shi
- Sanitary Engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands
| | - Gertjan Medema
- Sanitary Engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands; KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherlands
| | - Walter van der Meer
- Oasen Water Company, PO BOX 122, Gouda 2800 AC, the Netherlands; Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, the Netherlands
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
2
|
Yang J, Zhang X, Xu Z, Wang X. Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:436. [PMID: 39316241 DOI: 10.1007/s10653-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
3
|
Sudarshan AS, Dai Z, Gabrielli M, Oosthuizen-Vosloo S, Konstantinidis KT, Pinto AJ. New Drinking Water Genome Catalog Identifies a Globally Distributed Bacterial Genus Adapted to Disinfected Drinking Water Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16475-16487. [PMID: 39235268 PMCID: PMC11411728 DOI: 10.1021/acs.est.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Genome-resolved insights into the structure and function of the drinking water microbiome can advance the effective management of drinking water quality. To enable this, we constructed and curated thousands of metagenome-assembled and isolate genomes from drinking water distribution systems globally to develop a Drinking Water Genome Catalog (DWGC). The current DWGC disproportionately represents disinfected drinking water systems due to a paucity of metagenomes from nondisinfected systems. Using the DWGC, we identify core genera of the drinking water microbiome including a genus (UBA4765) within the order Rhizobiales that is frequently detected and highly abundant in disinfected drinking water systems. We demonstrate that this genus has been widely detected but incorrectly classified in previous amplicon sequencing-based investigations of the drinking water microbiome. Further, we show that a single genome variant (genomovar) within this genus is detected in 75% of drinking water systems included in this study. We propose a name for this uncultured bacterium as "Raskinella chloraquaticus" and describe the genus as "Raskinella" (endorsed by SeqCode). Metabolic annotation and modeling-based predictions indicate that this bacterium is capable of necrotrophic growth, is able to metabolize halogenated compounds, proliferates in a biofilm-based environment, and shows clear indications of disinfection-mediated selection.
Collapse
Affiliation(s)
- Ashwin S Sudarshan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zihan Dai
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf CH-8600, Switzerland
| | - Solize Oosthuizen-Vosloo
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
5
|
Fortin SG, Sun X, Jayakumar A, Ward BB. Nitrite-oxidizing bacteria adapted to low-oxygen conditions dominate nitrite oxidation in marine oxygen minimum zones. THE ISME JOURNAL 2024; 18:wrae160. [PMID: 39141833 PMCID: PMC11373643 DOI: 10.1093/ismejo/wrae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
Nitrite is a central molecule in the nitrogen cycle because nitrite oxidation to nitrate (an aerobic process) retains fixed nitrogen in a system and its reduction to dinitrogen gas (anaerobic) reduces the fixed nitrogen inventory. Despite its acknowledged requirement for oxygen, nitrite oxidation is observed in oxygen-depleted layers of the ocean's oxygen minimum zones (OMZs), challenging the current understanding of OMZ nitrogen cycling. Previous attempts to determine whether nitrite-oxidizing bacteria in the anoxic layer differ from known nitrite oxidizers in the open ocean were limited by cultivation difficulties and sequencing depth. Here, we construct 31 draft genomes of nitrite-oxidizing bacteria from global OMZs. The distribution of nitrite oxidation rates, abundance and expression of nitrite oxidoreductase genes, and relative abundance of nitrite-oxidizing bacterial draft genomes from the same samples all show peaks in the core of the oxygen-depleted zone (ODZ) and are all highly correlated in depth profiles within the major ocean oxygen minimum zones. The ODZ nitrite oxidizers are not found in the Tara Oceans global dataset (the most complete oxic ocean dataset), and the major nitrite oxidizers found in the oxygenated ocean do not occur in ODZ waters. A pangenomic analysis shows the ODZ nitrite oxidizers have distinct gene clusters compared to oxic nitrite oxidizers and are microaerophilic. These findings all indicate the existence of nitrite oxidizers whose niche is oxygen-deficient seawater. Thus, specialist nitrite-oxidizing bacteria are responsible for fixed nitrogen retention in marine oxygen minimum zones, with implications for control of the ocean's fixed nitrogen inventory.
Collapse
Affiliation(s)
- Samantha G Fortin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Xin Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, United States
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
6
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Brown C, Edwards MA, Pruden A. Premise Plumbing Pipe Materials and In-Building Disinfectants Shape the Potential for Proliferation of Pathogens and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21382-21394. [PMID: 38071676 DOI: 10.1021/acs.est.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Matheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Kimbell LK, LaMartina EL, Kohls S, Wang Y, Newton RJ, McNamara PJ. Impact of corrosion inhibitors on antibiotic resistance, metal resistance, and microbial communities in drinking water. mSphere 2023; 8:e0030723. [PMID: 37681947 PMCID: PMC10597465 DOI: 10.1128/msphere.00307-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
Corrosion inhibitors, including zinc orthophosphate, sodium orthophosphate, and sodium silicate, are commonly used to prevent the corrosion of drinking water infrastructure. Metals such as zinc are known stressors for antibiotic resistance selection, and phosphates can increase microbial growth in drinking water distribution systems (DWDS). Yet, the influence of corrosion inhibitor type on antimicrobial resistance in DWDS is unknown. Here, we show that sodium silicates can decrease antibiotic resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), while zinc orthophosphate increases ARB and ARGs in source water microbial communities. Based on controlled bench-scale studies, zinc orthophosphate addition significantly increased the abundance of ARB resistant to ciprofloxacin, sulfonamides, trimethoprim, and vancomycin, as well as the genes sul1, qacEΔ1, an indication of resistance to quaternary ammonium compounds, and the integron-integrase gene intI1. In contrast, sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth and antibiotic resistance selection compared to the other corrosion inhibitor additions. Source water collected from the drinking water treatment plant intake pipe resulted in less significant changes in ARB and ARG abundance due to corrosion inhibitor addition compared to source water collected from the pier at the recreational beach. In tandem with the antibiotic resistance shifts, significant microbial community composition changes also occurred. Overall, the corrosion inhibitor sodium silicate resulted in the least selection for antibiotic resistance, which suggests it is the preferred corrosion inhibitor option for minimizing antibiotic resistance proliferation in DWDS. However, the selection of an appropriate corrosion inhibitor must also be appropriate for the water chemistry of the system (e.g., pH, alkalinity) to minimize metal leaching first and foremost and to adhere to the lead and copper rule. IMPORTANCE Antibiotic resistance is a growing public health concern across the globe and was recently labeled the silent pandemic. Scientists aim to identify the source of antibiotic resistance and control points to mitigate the spread of antibiotic resistance. Drinking water is a direct exposure route to humans and contains antibiotic-resistant bacteria and associated resistance genes. Corrosion inhibitors are added to prevent metallic pipes in distribution systems from corroding, and the type of corrosion inhibitor selected could also have implications on antibiotic resistance. Indeed, we found that sodium silicate can minimize selection of antibiotic resistance while phosphate-based corrosion inhibitors can promote antibiotic resistance. These findings indicate that sodium silicate is a preferred corrosion inhibitor choice for mitigation of antibiotic resistance.
Collapse
Affiliation(s)
- Lee K. Kimbell
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Stan Kohls
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Patrick J. McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Calderón-Franco D, Corbera-Rubio F, Cuesta-Sanz M, Pieterse B, de Ridder D, van Loosdrecht MCM, van Halem D, Laureni M, Weissbrodt DG. Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. WATER RESEARCH 2023; 235:119905. [PMID: 36989799 DOI: 10.1016/j.watres.2023.119905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.
Collapse
Affiliation(s)
| | | | | | - Brent Pieterse
- Dunea, Utility for drinking water and nature conservancy, Plein van de Verenigde Naties 11-15, 2719 EG Zoetermeer, the Netherlands
| | - David de Ridder
- Evides Water Company N.V., Schaardijk 150, 3063 NH, Rotterdam, the Netherlands
| | | | | | | | - David G Weissbrodt
- Delft University of Technology, Delft, the Netherlands; Department of Biotechnology and Food Science, Division of Analysis and Control of Microbial Systems, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Ke Y, Sun W, Jing Z, Zhao Z, Xie S. Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city. J Environ Sci (China) 2023; 127:714-725. [PMID: 36522100 DOI: 10.1016/j.jes.2022.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue for drinking water safety. However, the seasonal variation of ARGs in drinking water distribution systems (DWDS) is still unclear. This work revealed the tempo-spatial changes of microbial community, ARGs, mobile genetic elements (MGEs) co-occurring with ARGs, ARG hosts in DWDS bulk water by means of metagenome assembly. The microbial community and antibiotic resistome varied with sampling season and site. Temperature, ammonia, chlorite and total plate count (TPC) drove the variations of microbial community structure. Moreover, environmental parameters (total organic carbon (TOC), chlorite, TPC and hardness) shifted antibiotic resistome. ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn, which might be attributed to detached pipe biofilm. In particular, ARG-bacitracin and plasmid were the predominant ARG and MGE, respectively. ARG hosts changed with season and site and were more diverse in summer and autumn. In winter and spring, Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community. In addition, in summer and autumn, high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone (0.4 km from the water treatment plant). Compared with MGEs, microbial community had a greater contribution to the variation of antibiotic resistome. This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Ke Y, Sun W, Jing Z, Zhu Y, Zhao Z, Xie S. Antibiotic resistome alteration along a full-scale drinking water supply system deciphered by metagenome assembly: Regulated by seasonality, mobile gene elements and antibiotic resistant gene hosts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160887. [PMID: 36521611 DOI: 10.1016/j.scitotenv.2022.160887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Both drinking water treatment processes and distribution can lead to antibiotic resistome variation, yet the variation of antibiotic resistome in the whole drinking water supply system (DWSS) combined with seasonality remains unknown. In this study, microbial community, antibiotic resistome, mobile genetic elements (MGEs) co-existing with antibiotic resistance genes (ARGs) and ARG hosts would be explored along a DWSS for four seasons with metagenome assembly. Multidrug and bacitracin ARGs were dominant ARGs in DWSS. Integrase, plasmids, recombinase and transposase were major MGEs co-existing with ARGs. Filtration and disinfection treatments could alter the ARG relative abundance, mainly via changing the abundance of ARG hosts (Limnohabitans and Polynucleobacter), which was influenced by water total organic carbon (TOC) content. When TOC was relatively high, filtration could proliferate ARGs via promoting antibiotic resistance bacteria (ARB) but chlorine dioxide could decrease ARGs via killing ARB. Filtration played an important role in controlling ARGs by reducing ARB when TOC was relatively low. The stimulation effect of disinfection on ARGs existed in more oligotrophic environment. Distribution could enrich ARGs in higher temperature by increasing MGEs co-occurring with ARGs and diversifying ARG hosts. MGEs co-occurring with ARGs became more abundant and diverse in disinfected water in warmer seasons. Microbial community was the most important factor determining the antibiotic resistome along a DWSS. These findings extend the knowledge about how and why water treatment processes and pipe distribution shape drinking water antibiotic resistome in different seasons.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Yuan M, Huang Z, Malakar PK, Pan Y, Zhao Y, Zhang Z. Antimicrobial resistomes in food chain microbiomes. Crit Rev Food Sci Nutr 2023; 64:6953-6974. [PMID: 36785889 DOI: 10.1080/10408398.2023.2177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The safety and integrity of the global food system is in a constant state of flux with persistent chemical and microbial risks. While chemical risks are being managed systematically, microbial risks pose extra challenges. Antimicrobial resistant microorganism and persistence of related antibiotic resistance genes (ARGs) in the food chain adds an extra dimension to the management of microbial risks. Because the food chain microbiome is a key interface in the global health system, these microbes can affect health in many ways. In this review, we systematically summarize the distribution of ARGs in foods, describe the potential transmission pathway and transfer mechanism of ARGs from farm to fork, and discuss potential food safety problems and challenges. Modulating antimicrobial resistomes in the food chain facilitates a sustainable global food production system.
Collapse
Affiliation(s)
- Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Fang P, Xiao P, Tan F, Mo Y, Chen H, Klümper U, Berendonk TU, Yang J. Biogeographical Patterns of Bacterial Communities and Their Antibiotic Resistomes in the Inland Waters of Southeast China. Microbiol Spectr 2022; 10:e0040622. [PMID: 35735994 PMCID: PMC9430403 DOI: 10.1128/spectrum.00406-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/27/2022] [Indexed: 12/05/2022] Open
Abstract
Freshwater ecosystems are important sources of drinking water and provide natural settings for the proliferation and dissemination of bacteria and antibiotic resistance genes (ARGs). However, the biogeographical patterns of ARGs in natural freshwaters and their relationships with the bacterial community at large scales are largely understudied. This is of specific importance because data on ARGs in environments with low anthropogenic impact is still very limited. We characterized the biogeographical patterns of bacterial communities and their ARG profiles in 24 reservoirs across southeast China using 16S rRNA gene high-throughput sequencing and high-throughput-quantitative PCR, respectively. We found that the composition of both bacterial communities and ARG profiles exhibited a significant distance-decay pattern. However, ARG profiles displayed larger differences among different water bodies than bacterial communities, and the relationship between bacterial communities and ARG profiles was weak. The biogeographical patterns of bacterial communities were simultaneously driven by stochastic and deterministic processes, while ARG profiles were not explained by stochastic processes, indicating a decoupling of bacterial community composition and ARG profiles in inland waters under relatively low-human-impact at a large scale. Overall, this study provides an overview of the biogeographical patterns and driving mechanisms of bacterial community and ARG profiles and could offer guidance and reference for the control of ARGs in drinking water sources. IMPORTANCE Antibiotic resistance has been a serious global threat to environmental and human health. The "One Health" concept further emphasizes the importance of monitoring the large-scale dissemination of ARGs. However, knowledge about the geographical patterns and driving mechanisms of bacterial communities and ARGs in natural freshwater environments is limited. This study uncovered the distinct biogeographical patterns of bacterial communities and ARG profiles in inland waters of southeast China under low-anthropogenic impact at a large scale. This study improved our understanding of ARG distribution in inland waters with emphasis on drinking water supply reservoirs, therefore providing the much-needed baseline information for future monitoring and risk assessment of ARGs in drinking water resources.
Collapse
Affiliation(s)
- Peiju Fang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Hydrobiology, Technical University of Dresden, Dresden, Germany
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Uli Klümper
- Institute of Hydrobiology, Technical University of Dresden, Dresden, Germany
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Technical University of Dresden, Dresden, Germany
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| |
Collapse
|
13
|
Sharma N, Kumari R, Thakur M, Rai AK, Singh SP. Molecular dissemination of emerging antibiotic, biocide, and metal co-resistomes in the Himalayan hot springs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114569. [PMID: 35091250 DOI: 10.1016/j.jenvman.2022.114569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Growing resistance among microbial communities against antimicrobial compounds, especially antibiotics, is a significant threat to living beings. With increasing antibiotic resistance in human pathogens, it is necessary to examine the habitats having community interests. In the present study, a metagenomic approach has been employed to understand the causes, dissemination, and effects of antibiotic, metal, and biocide resistomes on the microbial ecology of three hot springs, Borong, Lingdem, and Yumthang, located at different altitudes of the Sikkim Himalaya. The taxonomic assessment of these hot springs depicted the predominance of mesophilic organisms, mainly belonging to the phylum Proteobacteria. The enriched microbial metabolism assosiated with energy, cellular processes, adaptation to diverse environments, and defence were deciphered in the metagenomes. The genes representing resistance to semisynthetic antibiotics, e.g., aminoglycosides, fluoroquinolones, fosfomycin, vancomycin, trimethoprim, tetracycline, streptomycin, beta-lactams, multidrug resistance, and biocides such as triclosan, hydrogen peroxide, acriflavin, were abundantly present. Various genes attributing resistance to copper, arsenic, iron, and mercury in metal resistome were detected. Relative abundance, correlation, and genome mapping of metagenome-assembled genomes indicated the co-evolution of antibiotic and metal resistance in predicted novel species belonging to Vogesella, Thiobacillus, and Tepidimona genera. The metagenomic findings were further validated with isolation of microbial cultures, exhibiting resistance against antibiotics and heavy metals, from the hot spring water samples. The study furthers our understanding about the molecular basis of co-resistomes in the ceological niches and their possible impact on the environment.
Collapse
Affiliation(s)
- Nitish Sharma
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Reena Kumari
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Monika Thakur
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India.
| |
Collapse
|
14
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
15
|
Webster TM, McFarland A, Gebert MJ, Oliverio AM, Nichols LM, Dunn RR, Hartmann EM, Fierer N. Structure and Functional Attributes of Bacterial Communities in Premise Plumbing Across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14105-14114. [PMID: 34606240 DOI: 10.1021/acs.est.1c03309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States. The overall community structure, determined by 16S rRNA gene amplicon sequencing, revealed high levels of bacterial diversity. Although a large fraction of the observed variation in community composition could not be explained, differences in bacterial community composition were associated with water supply (private well water vs public municipal water), water source (groundwater vs surface water), and associated differences in water chemistry (pH and chlorine). Most notably, showerheads in homes supplied with public water had higher abundances of Blastomonas, Mycobacterium, and Porphyrobacter, while Pseudorhodoplanes, Novosphingobium, and Nitrospira were more abundant in those receiving private well water. We conducted shotgun metagenomic analyses on 92 of these samples to assess differences in genomic attributes. Public water-sourced showerheads had communities enriched in genes related to lipid and xenobiotic metabolisms, virulence factors, and antibiotic resistance. In contrast, genes associated with oxidative stress and membrane transporters were over-represented in communities from private well water-sourced showerheads compared to those supplied by public water systems. These results highlight the broad diversity of bacteria found in premise plumbing across the United States and the role of the water source and treatment in shaping the microbial community structure and functional potential.
Collapse
Affiliation(s)
- Tara M Webster
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Alexander McFarland
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew J Gebert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Angela M Oliverio
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen 1050, Denmark
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
16
|
McDaniel EA, Wahl SA, Ishii S, Pinto A, Ziels R, Nielsen PH, McMahon KD, Williams RBH. Prospects for multi-omics in the microbial ecology of water engineering. WATER RESEARCH 2021; 205:117608. [PMID: 34555741 DOI: 10.1016/j.watres.2021.117608] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions - including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.
Collapse
Affiliation(s)
- Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| | | | - Shun'ichi Ishii
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Yokosuka 237-0061, Japan
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Ryan Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA; Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Republic of Singapore.
| |
Collapse
|
17
|
Noman E, Al-Gheethi A, Radin Mohamed RMS, Talip B, Al-Sahari M, Al-Shaibani M. Quantitative microbiological risk assessment of complex microbial community in Prawn farm wastewater and applicability of nanoparticles and probiotics for eliminating of antibiotic-resistant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126418. [PMID: 34171673 DOI: 10.1016/j.jhazmat.2021.126418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR. The metagenomic analysis is used to explore ARGs in the non-clinical environment. V. parahaemolyticus is among the pathogenic bacteria which are transmitted through sea food causing human acute gastroenteritis due to available thermostable direct hemolysin (tdh), adhesins, TDH related hemolysin (trh). The inactivation of pathogenic bacteria using nanoparticles act by disturbing the cell membrane, interrupting the transport system, DNA and mitochondria damage, and oxidizing the cellular component by reactive oxygen species (ROS). The chloramphenicol, nitrofurans, and nitroimidazole are among the prohibited drugs in fish and fishery product. The utilization of probiotics is the most effective and safe alternative for antibiotics in Prawn aquaculture. This review will ensure public understanding among the readers on how they can decrease the risk of the antimicrobial resistance distribution in the environment.
Collapse
Affiliation(s)
- Efaq Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000 Panchor, Johor, Malaysia
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Balkis Talip
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000 Panchor, Johor, Malaysia
| | - Mohamed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Muhanna Al-Shaibani
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| |
Collapse
|