1
|
Chen X, Chen X, Wu W, Wu C. Phosphorus cycle in shallow lakes affected by crucian carp (Carassius auratus): Effects of fish density and size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176480. [PMID: 39326762 DOI: 10.1016/j.scitotenv.2024.176480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Crucian carp (Carassius auratus) is an omni-benthivorous fish common in many shallow lakes in China. The presence of crucian carp can contribute to the nutrient cycles in lakes and thus affect water quality. In this work, a two-by-two factorial mesocosm experiment was performed with crucian carp of different sizes and densities, to investigate their effects on the cycle of phosphorus (P). Results showed that nutrients in particulate form increased in overlying water due to crucian carp disturbance, especially for treatments with higher fish densities and larger individuals. Smaller individuals at high density have a greater ability to promote P release from sediment, due to a stronger combined effects of physical disturbance and excretion. Accumulation of feces led to sediment anaerobiosis and the reductive dissolution of iron oxide-hydroxide, which were the main factors affecting the desorption of P. Our results quantify the endogenous P diffusion fluxes across the sediment-water interface attributed to different densities and sizes of crucian carp disturbance, and suggest controlling crucian carp at low density and small size to minimize their impact on sediment P flux.
Collapse
Affiliation(s)
- Xin Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaofei Chen
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Weiju Wu
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Ren H, Wang G, Ding W, Li H, Shen X, Shen D, Jiang X, Qadeer A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116185. [PMID: 37207736 DOI: 10.1016/j.envres.2023.116185] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microorganisms play a crucial role in the biogeochemical processes of Dissolved Organic Matter (DOM), and the properties of DOM also significantly influence changes in microbial community characteristics. This interdependent relationship is vital for the flow of matter and energy within aquatic ecosystems. The presence, growth state, and community characteristics of submerged macrophytes determine the susceptibility of lakes to eutrophication, and restoring a healthy submerged macrophyte community is an effective way to address this issue. However, the transition from eutrophic lakes dominated by planktic algae to medium or low trophic lakes dominated by submerged macrophytes involves significant changes. Changes in aquatic vegetation have greatly affected the source, composition, and bioavailability of DOM. The adsorption and fixation functions of submerged macrophytes determine the migration and storage of DOM and other substances from water to sediment. Submerged macrophytes regulate the characteristics and distribution of microbial communities by controlling the distribution of carbon sources and nutrients in the lake. They further affect the characteristics of the microbial community in the lake environment through their unique epiphytic microorganisms. The unique process of submerged macrophyte recession or restoration can alter the DOM-microbial interaction pattern in lakes through its dual effects on DOM and microbial commu-----nities, ultimately changing the stability of carbon and mineralization pathways in lakes, such as the release of methane and other greenhouse gases. This review provides a fresh perspective on the dynamic changes of DOM and the role of the microbiome in the future of lake ecosystems.
Collapse
Affiliation(s)
- Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guoxi Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanchang Ding
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He Li
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongbo Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Abdul Qadeer
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Guo C, Li S, Ke J, Liao C, Hansen AG, Jeppesen E, Zhang T, Li W, Liu J. The feeding habits of small-bodied fishes mediate the strength of top-down effects on plankton and water quality in shallow subtropical lakes. WATER RESEARCH 2023; 233:119705. [PMID: 36801569 DOI: 10.1016/j.watres.2023.119705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The proliferation of small-bodied fishes in lakes is often accompanied by deterioration of water quality and ecosystem function. However, the potential impacts of different types of small-bodied fish species (e.g., obligate zooplanktivores and omnivores) on subtropical lake ecosystems in particular have been overlooked mainly due to their small size, shorter life spans and lower economic value. Therefore, we conducted a mesocosm experiment to elucidate how plankton communities and water quality respond to different types of small-bodied fishes, including a common zooplanktivorous fish (thin sharpbelly Toxabramis swinhonis) and other small-bodied omnivorous fishes (bitterling Acheilognathus macropterus, crucian carp Carassius auratus and sharpbelly Hemiculter leucisculus). During the experiment, the mean weekly total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (CODMn), turbidity, chlorophyll-a (Chl.α) and trophic level index (TLI) values were generally higher in treatments where fish were present compared to treatments where fish were absent, but responses varied. At the end of the experiment, phytoplankton abundance and biomass and the relative abundance and biomass of cyanophyta were higher while the abundance and biomass of large-bodied zooplankton were lower in the fish-present treatments. Moreover, the mean weekly TP, CODMn, Chl.α and TLI values were generally higher in treatments with the obligate zooplanktivore, thin sharpbelly, when compared to treatments with omnivorous fishes. Also, the ratio of zooplankton to phytoplankton biomass was the lowest, and the ratio of Chl.α to TP was the highest in treatments with thin sharpbelly. Collectively, these general findings indicate that an overabundance of small-bodied fishes can have adverse effects on water quality and plankton communities and that small-bodied zooplanktivorous fishes likely induce stronger top-down effects on plankton and water quality than omnivorous fishes. Our results emphasise that small-bodied fishes should be monitored and controlled if overabundant when managing or restoring shallow subtropical lakes. From the perspective of environmental protection, the combined stocking of different piscivorous fish species that feed in different habitat types could be a way forward to control small-bodied fishes with different feeding habits, but more research is needed to assess the feasibility of this approach.
Collapse
Affiliation(s)
- Chao Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ke
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuansong Liao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Adam G Hansen
- Colorado Parks and Wildlife, Aquatic Research Section, Fort Collins, CO, United States
| | - Erik Jeppesen
- Department of Ecoscience and WATEC, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey; Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey
| | - Tanglin Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiashou Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhang C, Pei H, Lu C, Liu C, Wang W, Zhang X, Liu P, Lei G. Indirect herbivore biomanipulation may halt regime shift from clear to turbid after macrophyte restoration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120242. [PMID: 36162564 DOI: 10.1016/j.envpol.2022.120242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication transforms clear water into turbid water in shallow lakes. Current restoration techniques focus on re-establishing the clear-water state rather than on its maintenance. We investigated the response of submerged macrophytes to temporary grass carp (Ctenopharyngodon idella) and scraping snail (Bellamya aeruginosa) introductions. We also explored the impacts of herbivores on underwater light conditions to identify their long- and short-term potential to halt regime shift from clear to turbid after clear-water state reestablishment. Herbivores reduced both the biomass of submerged macrophytes and accumulated nutrients in the tissue of submerged macrophytes. This potentially avoided the pulse of endogenous nutrient release which would have exceeded the threshold required for the regime shift from clear to turbid. However, herbivores had a non-significant impact on submerged macrophyte-reduced light attenuation coefficient, which has a positive linear relationship with water chlorophyll a. Further, grass carp and snails enhanced the inhibition ratio of submerged macrophytes to phytoplankton by 3.96 and 2.13 times, respectively. Our study provides novel findings on the potential of herbivore introduction as an indirect biomanipulation tool for halting the regime shift of shallow lakes from clear to turbid after the restoration of submerged macrophytes.
Collapse
Affiliation(s)
- Chengxiang Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cai Lu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Cunqi Liu
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Wei Wang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaobo Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Peizhong Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Guangchun Lei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|