1
|
Rougerie J, Simon S, Fondaneche P, Perez-Salva I, Palfner L, Rebillard JP, Barbe L, Fabry C, Guibaud G. Comparative study of grab, DGT, and bryophyte sampling as monitoring program for quality management: case of arsenic in freshwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12799-12808. [PMID: 40332713 PMCID: PMC12119767 DOI: 10.1007/s11356-025-36470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Selecting the most appropriate method for monitoring arsenic in freshwaters is crucial due to the diversity of available approaches and their inherent objectives, advantages, and limitations. This study addresses this challenge by conducting a comparative analysis of three well-established monitoring methodologies that have been among the most used in the last 30 years. Grab sampling, passive sampling using diffusive gradients in thin films (DGT), and bryophyte sampling were selected to monitor arsenic in a main river and its tributaries over a full hydrological year. On the one hand, grab and passive samplings both indicate stable concentrations of dissolved arsenic throughout the monitoring period and across the whole studied area. They also highlight a stable fractionation and redox speciation of arsenic, predominantly present as labile As(V). On the other hand, bryophyte monitoring exhibits significant spatiotemporal variations of arsenic content, with differences reaching up to tenfold. These contents are not solely determined by arsenic occurrence in water but result from arsenic bioavailability and its bioaccumulation in the organisms, which are both influenced by environmental factors and uptake mechanisms. Thus, the results of this study highlight the importance of clearly stating the goals of a monitoring programme in order to identify the most suitable method and implementation, ensuring relevant environmental management decisions.
Collapse
Affiliation(s)
- Juliette Rougerie
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, Limoges Cedex, 87060, France
| | - Stéphane Simon
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, Limoges Cedex, 87060, France.
| | - Patrice Fondaneche
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, Limoges Cedex, 87060, France
| | - Iris Perez-Salva
- Eau Grand Sud-Ouest, CS 87 801, 90 R. du Férétra, Toulouse Cedex 4, 31078, France
| | - Laurent Palfner
- Eau Grand Sud-Ouest, CS 87 801, 90 R. du Férétra, Toulouse Cedex 4, 31078, France
| | | | - Luc Barbe
- OFB - Direction Régionale Occitanie, 90 R. du Férétra, Toulouse, 31400, France
| | - Christine Fabry
- OFB - Direction Régionale Occitanie, 90 R. du Férétra, Toulouse, 31400, France
| | - Gilles Guibaud
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, Limoges Cedex, 87060, France
| |
Collapse
|
2
|
Rong Q, Zhang H, Li Y, Yan L, Luo J, Jones KC. Occurrence and distribution of PAHs in the Yangtze River and urban river waters of Nanjing, China: Insights from in situ DGT measurements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125921. [PMID: 40015442 DOI: 10.1016/j.envpol.2025.125921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The diffusive gradients in thin films (DGT) technique has been used for monitoring various organic pollutants in surface water in recent years. This article applies a novel DGT passive sampler to the Nanjing section of the Yangtze River and urban rivers to measure the in-situ concentrations of polycyclic aromatic hydrocarbons (PAHs), analyze their seasonal changes and determine their fate. PAH concentrations had marked seasonality. The concentration of individual PAH was 1.3-18 ng/L in summer and 4.2-161 ng/L in winter. Source inputs, flow differences and degradation/losses caused the seasonal differences. Inputs from Nanjing and tributary rivers were minor compared to the cumulative loads of PAHs in the main Yangtze river upstream of the city. Petrochemical enterprises along the Yangtze River, ship transportation, and upstream pollution were the main sources of pollution in this area. Source analysis indicated a mixed source with coal and biomass combustion inputs increasing significantly in winter. Risk assessment indicated that although the Yangtze River protection policy has reduced pollution in recent years, water quality still exceeded PAH ecological thresholds in the river and the chemical industry cluster areas during winter. Further measures are needed to reduce pollution and its associated risks from a catchment perspective.
Collapse
Affiliation(s)
- Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, 116023, PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
3
|
Carvalhal Silva H, Montero N, Belzunce-Segarra MJ, Menchaca I. Assessment of the effects of dredging on metal levels in port waters using DGT passive samplers and spot sampling. MARINE POLLUTION BULLETIN 2024; 205:116653. [PMID: 38964188 DOI: 10.1016/j.marpolbul.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Aiming at assessing the effect of dredging activities on the levels of metals in Bilbao Port (northern Spain), dissolved and labile metal concentrations in the water were concurrently measured, before, during, and after dredging activities by spot sampling and Diffusive Gradients in Thin-films (DGTs) passive samplers, respectively. Most of the dissolved metal results were below the quantification limits (Cd, <0.06-0.26 μg/L; Co, <5 μg/L; Cu, <5-15 μg/L; Fe, <10-48 μg/L; Mn, <10-22 μg/L; Ni, <2.6-7 μg/L; Pb, <0.39-0.8 μg/L; Zn, <9-24 μg/L). In contrast, DGT results for all sampling times and stations were obtained (Cd, 0.02-0.12 μg/L; Co, 0.08-0.15 μg/L; Cu, 0.5-2.8 μg/L; Fe, 1.0-3.6 μg/L; Mn, 4.7-23.5 μg/L; Ni, 0.5-0.9 μg/L; Pb, 0.15-0.28 μg/L; Zn, 2.6-7.2 μg/L), enabling to determine those metals affected by dredging. Only labile-Pb concentration surpassed momentarily the DGT-Environmental Quality Standard, enabling to rule out biological effects on biota. DGTs are a promising technique for facilitating decision-making during dredging operations.
Collapse
Affiliation(s)
- H Carvalhal Silva
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain; Future Industries Institute, University of South Australia (UniSA), Mawson Lakes Blvd, Adelaide 5095, Australia.
| | - N Montero
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| | - M J Belzunce-Segarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| | - I Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| |
Collapse
|
4
|
Chanpiwat P, Ponsin M, Numprasanthai A. Effects of sediment resuspension and changes in water nutrient concentrations on the remobilization of lead from contaminated sediments in Klity Creek, Thailand. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117909. [PMID: 37060694 DOI: 10.1016/j.jenvman.2023.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
As Pb-containing sediments in Klity Creek have had negative impacts on the area for more than 20 years, the Supreme Court ordered the Pollution Control Department (PCD) of Thailand to remediate the site. In response to the court order, the PCD decided to reduce the contamination level by dredging the sediments of the creek. Therefore, this study is the first investigation to be conducted on the coupled effects of sediment resuspension caused by dredging and changes in water nutrient concentrations upon the remobilization of Pb from sediments into the water column. The Pb concentrations and speciation in both the water and sediments collected from upstream and downstream regions of the contaminated area were determined. The results showed that the total Pb concentrations in the water taken from all sampling sites in both the dry and wet seasons were lower than the national standard (50 μg/L), and a very low mobility index was found for Pb. The highest total Pb concentration in the sediments (6930 mg/kg) from the downstream site was 23.7- to 30.4-fold greater than those of the sediments collected from the upstream site. The predominant Pb species (organic and residual Pb fractions) in the sediments collected during the dry season were identified. However, carbonate- and Fe-Mn oxide-bound Pb fractions were mainly found in the sediments collected in the wet season. The diffusive gradients in thin films (DGT)-labile Pb concentrations, which reached 2.1 mg/L, indicated potential toxicity to aquatic organisms. A total of nine resuspension scenarios generalizing all changes in water nutrient concentrations in addition to sediment resuspension due to dredging were constructed. The results confirmed that sediment resuspension alone could remobilize Pb from the sediments into the water at levels from 0.06 to 16.9 μg/L. Sediment resuspension in water contaminated with 1 mg/L phosphate (PO43-) led to the dissolution of 28.4-73.0 μg/L Pb in the water column. Nitrate (NO3-) did not significantly remobilize Pb from the sediments into the water. The high ionic strength and activity coefficient of PO43- in the water were expected to cause the retention of dissolved Pb in the water and enhance the remobilization of Pb from the sediments due to the association of Pb with PO43- in the water.
Collapse
Affiliation(s)
- Penradee Chanpiwat
- Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Center of Excellence in Environmental Innovation and Management of Metals (EnvIMM), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Montree Ponsin
- Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Apisit Numprasanthai
- Center of Excellence in Environmental Innovation and Management of Metals (EnvIMM), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Martins de Barros R, Rougerie J, Guibal R, Lissalde S, Buzier R, Simon S, Guibaud G. Interest of a new large diffusive gradients in thin films (L-DGT) for organic compounds monitoring: On-field comparison with conventional passive samplers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121257. [PMID: 36828359 DOI: 10.1016/j.envpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In this work, the performances of a Large Diffusive Gradients in Thin films (L-DGT, i.e., a DGT based on a Chemcatcher® holder with a 5-fold larger sampling area) were compared on-field with the conventional DGT and the Polar Organic Chemical Integrative Sampler (POCIS) for the monitoring of a wide range of organic contaminants (i.e., 65 pesticides and metabolites, 53 pharmaceuticals and 12 hormones). These three passive samplers were simultaneously deployed in four rivers during 14 days. Their performances were then evaluated according to their detection and quantification capacities and their physical robustness. The results obtained confirm the advantages of the L-DGT over the conventional DGT regarding its sensitivity but also its robustness during field deployment. The POCIS provides the higher sensitivity, allowing the detection of more organic compounds compared to the DGT and, to a lesser extent, the L-DGT. However, both L-DGT and DGT reduces the uncertainty on the determination of the time-weighted average concentrations (CW), mainly due to the narrow range of variation of their calibration parameters. Indeed, for a given compound, CW can vary up to only a 3-fold factor with DGT and L-DGT compared to a 2 to 10-fold factor (up to 50) with POCIS. Thus, the L-DGT appears to be more suitable than DGT in low-contaminated contexts, which require higher sensitivity, or than POCIS when a CW determination is needed. For a qualitative evaluation however, the POCIS remains the most suitable passive sampler.
Collapse
Affiliation(s)
| | - Juliette Rougerie
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Robin Guibal
- University of Limoges, E2Lim, 16 rue Atlantis, 87068 Limoges Cedex, France
| | - Sophie Lissalde
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Rémy Buzier
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Stéphane Simon
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Gilles Guibaud
- University of Limoges, E2Lim, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| |
Collapse
|
6
|
Angyus SB, Senila M, Frentiu T, Ponta M, Frentiu M, Covaci E. In-situ Diffusive Gradients in thin-films passive sampling coupled with ex-situ small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry as green and white method for the simultaneous determination of labile species of toxic elements in surface water. Talanta 2023; 259:124551. [PMID: 37075518 DOI: 10.1016/j.talanta.2023.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
This study presents for the first time the coupling between in-situ Diffusive Gradient in Thin-film (DGT) passive sampling technique and ex-situ small-sized instrumentation based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry (SSETV-μCCP-OES) for the simultaneous determination of Cd, Pb, Cu, Zn and Hg in surface water. Unique features of the DGT-SSETV-μCCP-OES are low power and low Ar consumption for plasma generation (15 W, 150 mL min-1) and significant improvement of the detection limits following DGT passive sampling. The new method was validated in terms of river water analysis in comparison with graphite furnace atomic absorption spectrometry and thermal decomposition atomic absorption spectrometry. Combining the abilities of preconcentration by in-situ Chelex-DGT passive sampling with plasma microtorch equipped with a low resolution microspectrometer provided multielemental simultaneous determination with detection limits of (μg L-1) 0.01 (Cd, Zn and Hg), 0.02 (Cu) and 0.07 (Pb) in water, at least one order of magnitude better than using grab sampling without preconcentration. It was possible the quantification of labile fraction of priority hazardous metals (Cd, Pb) in river water below the instrumental limits of detection (μg L-1) of 0.12 and 0.80 obtained in SSETV-μCCP-OES without DGT sampling. The precision of the method was in the range 15.3-22.4% (combined uncertainty), while the accuracy was 95-103% and trueness of 27-33% (expanded uncertainty, k = 2). The DGT-SSETV-μCCP-OES coupling proved to be an ideal and powerful tool for surface water analysis in compliance with green and white analytical chemistry concepts. The application of the RGB-12 algorithm provided very good red/green (AGREEprep)/blue/white scores (%) of 100/80/98/93, determined primarily by in-situ DGT passive sampling, very good detection limits and cost-effective SSETV-μCCP-OES instrumentation.
Collapse
Affiliation(s)
- Simion Bogdan Angyus
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Marin Senila
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Tiberiu Frentiu
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Michaela Ponta
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Maria Frentiu
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Eniko Covaci
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Liu Q, Jia Z, Liu G, Li S, Hu J. Assessment of heavy metals remobilization and release risks at the sediment-water interface in estuarine environment. MARINE POLLUTION BULLETIN 2023; 187:114517. [PMID: 36580839 DOI: 10.1016/j.marpolbul.2022.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The influence of overlying hydrodynamics on the exchange behaviour and fluxes of heavy metals at the sediment-water interface (SWI) is poorly understood. In the study, metals exchange behaviour and exchange rate at the SWI under resuspended and undisturbed scenario were investigated The results showed that dissolved Cr, Cu, Zn, and Pb concentrations increased rapidly to attain maximum values between 0.3 and 0.5 N·m-2 after the sediment resuspended. Following the quick release, metals concentrations gradually decreased and remained at relatively low levels, especially for Cu and Zn. Meanwhile, Cu, Zn, and Pb had higher potential remobilization potential in the undisturbed case. Calculating with the hydrodynamics in the Modaomen, the metals efflux under the resuspension scenario could reach 0.55 to 4130.83 mg·m-2·yr-1, which were 1-3 orders of magnitudes higher than the undisturbed case. Whether or not resuspension events occurred, estuarine sediments were source of heavy metals, especially in the weakly mixed zone.
Collapse
Affiliation(s)
- Qiuxin Liu
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Zhenzhen Jia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guangzhou Liu
- Hubei Provincial Academy of Eco-environmental Science (Provincial Ecological Environment Engineering Assessment Center), Wuhan 430072, China
| | - Shiyu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Jiatang Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
8
|
Sartori Jeunon Gontijo E, Santos Costa Monteiro A, Tonello PS, Roeser HMP, Friese K, Rosa AH. Analyses of colloidal, truly dissolved, and DGT-labile metal species and phosphorus in mining area surrounded by tailing dams using self-organising maps. CHEMOSPHERE 2022; 303:135003. [PMID: 35595112 DOI: 10.1016/j.chemosphere.2022.135003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The knowledge of size-distribution and lability of metals and nutrients in freshwater systems is important for estimation of the ecological effects of mining. However, it is still limited in several mining areas such as the Quadrilátero Ferrífero (Brazil) which was severely polluted by the collapse of the Fundão tailings dam in November 2015. In this study, results of an investigation from 2014 using a neural network named self-organising map (SO-Map) into the conditions of selected trace metals that are of particular importance to mining areas (Cr, Cu, Co, Mn, Ni, Pb, Zn) are presented. Additionally, P was considered by its high importance as a nutrient and sites later affected by the dam burst were also included by chance. Water samples were collected at six sites in dry and rainy seasons and filtered and ultrafiltered for determination of total dissolved (<0.45 μm) and truly dissolved (<1 kDa) fractions. Diffusive gradients in thin films (DGT) devices were deployed in situ for determination of the DGT-labile fraction. All data were analysed using SO-Map and Spearman's rank correlation. Phosphorus in the Carmo River occurred mainly in the truly dissolved and DGT-labile fractions. The higher amounts of this element in the river water (up to 263 μg L-1 of total P) might be related to untreated sewage discharge. Moreover, the concentrations of other trace metals (Mn, Cu, Co, Ni, Zn) were high, even under the "natural" conditions (before the dam failure) due to natural and anthropogenic factors such as local lithology and mining.
Collapse
Affiliation(s)
- Erik Sartori Jeunon Gontijo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| | - Adnívia Santos Costa Monteiro
- Federal University of Sergipe (UFS), Campus São Cristóvão, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000, São Cristóvão, SE, Brazil.
| | - Paulo Sérgio Tonello
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| | - Hubert Mathias Peter Roeser
- Federal University of Ouro Preto (UFOP), Campus Universitário, Morro do Cruzeiro, 354000-000, Ouro Preto, MG, Brazil.
| | - Kurt Friese
- Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brueckstr. 3a, 39114, Magdeburg, Germany.
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
9
|
Liu W, Lu G, Wang WX. In situ high-resolution two-dimensional profiles of redox sensitive metal mobility in sediment-water interface and porewater from estuarine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153034. [PMID: 35065125 DOI: 10.1016/j.scitotenv.2022.153034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Metals in contaminated sediments may present high environmental risks and ecological threats to benthic organisms. Redox sensitive elements with different oxidation states show variations in solubility as a function of redox status of the sediment water environment. The novel high-resolution ZrO-Chelex-AgI diffusive gradients in thin film (HR-ZCA DGT) technique provided sensitive in situ mapping of metals in the estuarine sediments. The present study investigated the sub-millimeter two-dimensional distributions of DGT-labile S(-II), P(V), and six redox sensitive metals (Fe, Mn, V, Cu, Ni, and Zn) across sediment-water interface (SWI) severely influenced by anthropogenic activity. We for the first time used the V-turning value (the V/Fe ratios at ~0.03) to accurately identify the actual SWI. The diffusion boundary layer (DBL) thickness of Ni, Cu and Zn was consistent with those identified by the dissolved oxygen microelectrode method, and was 3-6 mm above the SWI. No significant release of dissolved Fe and P from sediments into the overlying water was found by diffusion process. The estimated fluxes (Fdif) of Ni, Cu, and Zn at DBL were 4.0-176, -1.1-235, and 5.0-108 μg m-2 d-1, respectively, and were significantly higher in sediments near the industrial effluent dumping sites than those in sediments impacted by domestic wastewater releases. Metal diffusion flux was mainly controlled by the particulate matter on the surface sediment and organic degradation. Traditional diffusion flux may have underestimated the flux of metals from the surface sediments. The discharge of hypoxic tributary was an important source of metal pollution in the contaminated estuarine sediments.
Collapse
Affiliation(s)
- Wei Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China
| | - Guangyuan Lu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China
| | - Wen-Xiong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Rodríguez JG, Amouroux I, Belzunce-Segarra MJ, Bersuder P, Bolam T, Caetano M, Carvalho I, Correia Dos Santos MM, Fones GR, Gonzalez JL, Guesdon S, Larreta J, Marras B, McHugh B, Menet-Nédélec F, Menchaca I, Millán Gabet V, Montero N, Nolan M, Regan F, Robinson CD, Rosa N, Rodrigo Sanz M, Schintu M, White B, Zhang H. Assessing variability in the ratio of metal concentrations measured by DGT-type passive samplers and spot sampling in European seawaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147001. [PMID: 33872893 DOI: 10.1016/j.scitotenv.2021.147001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The current study evaluates the effect of seawater physico-chemical characteristics on the relationship between the concentration of metals measured by Diffusive Gradients in Thin films (DGT) passive samplers (i.e., DGT-labile concentration) and the concentrations measured in discrete water samples. Accordingly, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to measure the total dissolved metal concentrations in the discrete water samples and the labile metal concentrations obtained by DGT samplers; additionally, lead and cadmium conditional labile fractions were determined by Anodic Stripping Voltammetry (ASV) and total dissolved nickel was measured by Cathodic Stripping Voltammetry (CSV). It can be concluded that, in general, the median ratios of DGT/ICP and DGT/ASV(CSV) were lower than 1, except for Ni (median ratio close to 1) and Zn (higher than 1). This indicates the importance of speciation and time-integrated concentrations measured using passive sampling techniques, which is in line with the WFD suggestions for improving the chemical assessment of waterbodies. It is the variability in metal content in waters rather than environmental conditions to which the variability of the ratios can be attributed. The ratios were not significantly affected by the temperature, salinity, pH, oxygen, DOC or SPM, giving a great confidence for all the techniques used. Within a regulatory context such as the EU Water Framework Directive this is a great advantage, since the simplicity of not needing to use corrections to minimize the effects of environmental variables could help in implementing DGTs within monitoring networks.
Collapse
Affiliation(s)
| | - Isabelle Amouroux
- Ifremer, Unit of Biogeochemistry and Ecotoxicology, Rue de l'Ile d'Yeu, 44300 Nantes, France
| | | | - Philippe Bersuder
- CEFAS, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Thi Bolam
- CEFAS, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Miguel Caetano
- IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-165 Lisbon, Portugal
| | - Inês Carvalho
- Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | - Gary R Fones
- University of Portsmouth, School of the Environment Geography and Geosciences, Burnaby Road, Portsmouth PO1 3QL, United Kingdom
| | - Jean-Louis Gonzalez
- Ifremer, Unit of Biogeochemistry and Ecotoxicology, Zone Portuaire de Brégaillon CS20330, 83507 La Seyne/mer cedex, France
| | - Stephane Guesdon
- Ifremer, LITTORAL, Laboratoire Environnement Ressources des Pertuis Charentais, Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Joana Larreta
- AZTI, Marine Research Division, Herrera Kaia Portualde z/g, 20110 Pasaia, Spain
| | - Barbara Marras
- UNICA, Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli studi di Cagliari, 09124 Cagliari, Italy
| | | | - Florence Menet-Nédélec
- Ifremer, LITTORAL, Laboratoire Environnement Ressources de Normandie, Avenue du Général de Gaulle, 14520 Port-en-Bessin, France
| | - Iratxe Menchaca
- AZTI, Marine Research Division, Herrera Kaia Portualde z/g, 20110 Pasaia, Spain
| | | | - Natalia Montero
- UNICA, Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli studi di Cagliari, 09124 Cagliari, Italy
| | - Martin Nolan
- DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Fiona Regan
- DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Craig D Robinson
- MSS, Marine Scotland Science, Marine Laboratory, 365 Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Nuno Rosa
- IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-165 Lisbon, Portugal
| | - Marta Rodrigo Sanz
- ITC, Playa de Pozo Izquierdo, s/n. CP: 35119 Sta. Lucía, Las Palmas, Spain
| | - Marco Schintu
- UNICA, Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli studi di Cagliari, 09124 Cagliari, Italy
| | - Blánaid White
- DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Hao Zhang
- Lancaster University, Lancaster Environment Centre, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
11
|
Babitsch D, Berger E, Sundermann A. Linking environmental with biological data: Low sampling frequencies of chemical pollutants and nutrients in rivers reduce the reliability of model results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145498. [PMID: 33581512 DOI: 10.1016/j.scitotenv.2021.145498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Linking environmental and biological data using ecological models can provide crucial knowledge about the effects of water quality parameters on freshwater ecosystems. However, a model can only be as reliable as its input data. Here, the influence of sampling frequency of temporal variable environmental input data on the reliability of model results when linked to biological data was investigated using Threshold Indicator Taxa Analysis (TITAN) and species sensitivity distributions (SSDs). Large-scale biological data from benthic macroinvertebrates and matching water quality data including four metals and four nutrients of up to 559 site-year combinations formed the initial data sets. To compare different sampling frequencies, the initial water quality data sets (n = 12 samples per year, set as reference) were subsampled (n = 10, 8, 6, 4, 2 and 1), annual mean values calculated and used as input data in the models. As expected, subsampling significantly reduced the reliability of the environmental input data across all eight substances. For TITAN, the use of environmental input data with a reduced reliability led to a considerable (1) loss of information because valid taxa were no longer identified, (2) gain of unreliable taxon-specific change points due to false positive taxa, and (3) bias in the change point estimation. In contrast, the reliability of the SSD results appeared to be much less reduced. However, closer examination of the SSD input data indicated that existing effects were masked by poor model performance. The results confirm that the sampling frequency of water quality data significantly influences the reliability of model results when linked with biological data. For studies limited to low sampling frequencies, the discussion provides recommendations on how to deal with low sampling frequencies of temporally variable water quality data when using them in TITAN, in SSDs, and in other ecological models.
Collapse
Affiliation(s)
- Denise Babitsch
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany; Institute of Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Elisabeth Berger
- Department of Social-Ecological Systems, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany.
| | - Andrea Sundermann
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany; Institute of Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Teramoto EH, Gemeiner H, Zanatta MBT, Menegário AA, Chang HK. Metal speciation of the Paraopeba river after the Brumadinho dam failure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143917. [PMID: 33321338 DOI: 10.1016/j.scitotenv.2020.143917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
On January 25, 2019, a tailings dam at the Córrego do Feijão iron ore mine (Brumadinho, Minas Gerais, southern Brazil) ruptured and released ~12 million m3 of mine tailings into the Paraopeba River, which is an important source of drinking water to a populous region. While water potability due to a strong increase in turbidity has been well documented, possible effects of metal contamination are yet to be addressed. We investigated the speciation of metals in the river water and desorption of metals from sediments as a means of supporting risk assessment, using the diffusive gradient in thin films (DGT) technique, desorption experiments and chemical speciation calculations. The results of the in-situ DGT monitoring revealed that the labile concentrations of metals were low in relation to the respective total and dissolved concentrations. Chemical speciation calculations showed that the heavy metals were not stable in the Paraopeba River. The desorption experiments suggested that sediments may release a limited amount of As and Cu, but large amounts of Mn into the river water. Higher concentrations of Fe and Mn indicated a possible association with the impact of mine tailings. In general, the total metal concentrations during the rainy season were higher than those during the dry season, whereas the reverse was generally the case for labile forms. This pattern reveals that metal speciation is intrinsically dependent on the seasonal variation of the hydrological conditions.
Collapse
Affiliation(s)
- Elias H Teramoto
- Environmental Studies Center (CEA) and Basin Studies Laboratory, São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil
| | - Hendryk Gemeiner
- Environmental Studies Center (CEA), São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil
| | - Melina B T Zanatta
- Environmental Studies Center (CEA), São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil
| | - Amauri A Menegário
- Environmental Studies Center (CEA), São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil.
| | - Hung K Chang
- Department of Applied Geology and Basin Studies Laboratory, São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|