1
|
Esteves T, Malhão F, Rocha E, Lopes C. Effects of Benzo[k]fluoranthene at Two Temperatures on Viability, Structure, and Detoxification-Related Genes in Rainbow Trout RTL-W1 Cell Spheroids. TOXICS 2025; 13:302. [PMID: 40278618 PMCID: PMC12031258 DOI: 10.3390/toxics13040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and global warming impact aquatic ecosystems, eventually interacting. Monolayer (2D) cultures of cell lines, such as the rainbow trout liver RTL-W1, are employed for unveiling toxicological effects in fish. Nonetheless, three-dimensional (3D) models constitute an alternate paradigm, better emulating in vivo responses. Here, ultra-low attachment (ULA) plates were used to generate ten-day-old RTL-W1 spheroids for exposure to a control, a solvent control (0.1% DMSO) and the model PAH benzo[k]fluoranthene (BkF) at 10 and 100 nM and at 18 and 23 °C (thermal stress). After a 4-day exposure, spheroids were analyzed for viability (alamarBlue and lactate dehydrogenase), biometry (area, diameter and sphericity), histocytology (optical and electron microscopy), and mRNA levels of the detoxification-related genes cytochrome P450 (CYP)1A, CYP3A27, aryl hydrocarbon receptor (AhR), glutathione S-transferase (GST), uridine diphosphate-glucuronosyltransferase (UGT), catalase (CAT), multidrug resistance-associated protein 2 (MRP2) and bile salt export protein (BSEP). Immunocytochemistry (ICC) was used to assess CYP1A protein expression. Neither temperature nor BkF exposure altered the spheroids' viability or biometry. BkF modified the cell's ultrastructure. The expression of CYP1A was augmented with both BkF concentrations, while AhR's increased at the higher concentration. The CYP1A protein showed a dose-dependent increase. Temperature and BkF concurrently modelled UGT's expression, which increased in the 100 nM condition at 23 °C. Conversely, CYP3A27, MRP2, and BSEP expressions lowered at 23 °C. CAT and GST mRNA levels were uninfluenced by either stressor. Overall, BkF and temperature impacted independently or interactively in RTL-W1 spheroids. These seem to be useful novel tools for studying the liver-related effects of temperature and PAHs.
Collapse
Affiliation(s)
- Telma Esteves
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (T.E.); (F.M.); (C.L.)
- Group of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Fernanda Malhão
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (T.E.); (F.M.); (C.L.)
- Group of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (T.E.); (F.M.); (C.L.)
- Group of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Célia Lopes
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (T.E.); (F.M.); (C.L.)
- Group of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Khursigara AJ, Ackerly KL, Esbaugh AJ. Pyrene drives reduced brain size during early life exposure in an estuarine fish, the red drum (Sciaenops ocellatus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109397. [PMID: 35753645 DOI: 10.1016/j.cbpc.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
Crude oil and the constituent polycyclic aromatic hydrocarbons (PAHs) induce a consistent suite of sub-lethal effects in early life stage fishes. It has been suggested that 3-ring PAHs drive cardiotoxicity and that all other impacts are downstream consequences of these cardiac effects. However, recent studies have documented behavioral alterations that may not be linked to cardiotoxicity. This raises the question of whether the 3-ring PAHs that drive cardiotoxicity are also responsible for the observed neurological impairments. To explore this question, we exposed embryonic red drum (Sciaenops ocellatus) - a species that exhibits greater sensitivity to craniofacial malformations than cardiotoxicity - to individual 2-ring, 3-ring, and 4-ring PAHs for 48 h after which they were assessed for sub-lethal developmental malformations. No effects were observed following exposure to naphthalene, anthracene, dibenzothiophene, phenanthrene and fluorene at doses equivalent to the ΣPAH50 effective concentration 50 for craniofacial malformation in red drum. Conversely, pyrene caused complete lethality at the original dose, and a 5× diluted dose resulted in significantly reduced brain size and spine length. Similar sub-lethal effects were also observed in chrysene at the 1× dose. These results indicate that 4-ring PAHs are driving malformations in developing red drum and suggest oil induced impairments in this species are not a downstream consequence of 3-ring PAH induced cardiac malformations.
Collapse
Affiliation(s)
- Alexis J Khursigara
- Marine Science Department, The University of Texas at Austin Marine Science Institute, 750 Channel View Dr, Port Aransas, TX 78373, United States of America; Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, 1155 Union Cir, Denton, TX 76203, United States of America.
| | - Kerri Lynn Ackerly
- Marine Science Department, The University of Texas at Austin Marine Science Institute, 750 Channel View Dr, Port Aransas, TX 78373, United States of America. https://twitter.com/KerriAckerlyPhD
| | - Andrew J Esbaugh
- Marine Science Department, The University of Texas at Austin Marine Science Institute, 750 Channel View Dr, Port Aransas, TX 78373, United States of America
| |
Collapse
|
3
|
Leads RR, Magnuson JT, Lucero J, Lund AK, Schlenk D, Chavez JR, Roberts AP. Transcriptomic responses and apoptosis in larval red drum (Sciaenops ocellatus) co-exposed to crude oil and ultraviolet (UV) radiation. MARINE POLLUTION BULLETIN 2022; 179:113684. [PMID: 35489094 DOI: 10.1016/j.marpolbul.2022.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation can significantly increase the toxicity of polycyclic aromatic hydrocarbons (PAHs) in crude oil to early life stage (ELS) fishes through photo-induced /photo-enhanced toxicity. However, little is known about the sub-lethal effects and mechanisms of photo-induced PAH toxicity in ELS fishes. The present study investigated apoptosis and global transcriptomic effects in larval red drum (Sciaenops ocellatus) (24-72 h post-fertilization) following co-exposure to oil (0.29-0.30 μg/L ∑PAH50) and UV. Apoptosis was quantified using the TUNEL assay, and transcriptomic effects were assessed using RNA sequencing analysis. Apoptotic fluorescence was greatest in the eyes and skin following 24 and 48 h co-exposure to oil and UV, indicating photo-induced toxicity. Consistent with these phenotypic responses, pathways associated with phototransduction, eye development, and dermatological disease were among the top predicted pathways impacted. The present study is the first to provide global transcriptomic analysis of UV and oil co-exposure in an ELS fish.
Collapse
Affiliation(s)
- Rachel R Leads
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA.
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - JoAnn Lucero
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Amie K Lund
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - J Ruben Chavez
- Texas Parks and Wildlife Department, Coastal Conservation Association, Central Power and Light Marine Development Center, Corpus Christi, TX 78418, USA
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
4
|
Allmon E, Carter G, Griffitt R, Sepúlveda MS. Oil induced cardiac effects in embryonic sheepshead minnows, Cyprinodon variegatus. CHEMOSPHERE 2022; 288:132482. [PMID: 34627815 DOI: 10.1016/j.chemosphere.2021.132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Following the Deepwater Horizon oil spill in April 2010, much research has been conducted on the cardiotoxic effects of oil on fish. Sensitive life history stages, such as the embryonic period, have been targeted to elucidate the effects of polycyclic aromatic hydrocarbons (PAHs) on the developing cardiovascular systems of fish. However, much of this research has focused on rapidly developing pelagic species, with little emphasis on estuarine species with longer embryological periods. Moreover, previous studies have used heart rate as the primary endpoint to measure cardiac performance in embryos and larvae; an endpoint that on its own may overlook impairment in cardiac performance. This study aims to fill these knowledge gaps and provide a more holistic approach for assessing the effects of PAHs on cardiac function by exposing sheepshead minnow (Cyprinodon variegatus) embryos to two oil doses (150 and 300 μg/L tPAH nominally) throughout embryonic development and measuring cardiac responses through the identification of cardiotoxic phenotypes (pericardial edema) as well as calculation of cardiac output at 4 days post fertilization. Results of this study show significant increases in pericardial edema at both oil doses relative to controls as well as significantly reduced cardiac output - driven by reductions in ventricular stroke volume. This study is one of the first to assess cardiac output in embryonic fish exposed to oil and methods described here allow for more physiologically relevant measures of cardiac performance in early life stages through established and non-invasive measures.
Collapse
Affiliation(s)
- Elizabeth Allmon
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Grace Carter
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Robert Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, USA
| | - Maria S Sepúlveda
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Gan N, Martin L, Xu W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front Physiol 2021; 12:734463. [PMID: 34566698 PMCID: PMC8461069 DOI: 10.3389/fphys.2021.734463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.
Collapse
Affiliation(s)
- Nin Gan
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
6
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|