1
|
Lo C, Boboescu I, Haemers S, Wijffels RH, Eppink MHM. Semi-hydrophobic eutectic solvents: Sequential extraction of lipids, proteins & carbohydrates, recycling, scalability of microalga Nannochloropsis oceanica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179373. [PMID: 40220467 DOI: 10.1016/j.scitotenv.2025.179373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Semi-hydrophobic eutectic solvents (ES) possess a great potential as lipid extraction solvent from untreated microalgae. However, the low vapor pressure of these solvents and the unknown effects on other biomolecules (e.g., proteins, carbohydrates) limit their application in microalgae biorefinery. In this work, recovery of the extracted lipids was performed by addition of antisolvents and the affecting parameters (i.e., antisolvent type, amount, temperature, ES imidazole content) were studied. The highest recovery was obtained with methanol addition to ES with 15 mol% imidazole at -20 °C, where lipid crystals were formed consisting mainly of saturated fatty acids. The remaining soluble lipids under the same condition were found to be fractions with mono- and poly-unsaturated fatty acids. Furthermore, based on the iterative extractions, the regenerated solvents could create sufficient driving force for lipid extraction despite the lipid accumulation. In addition, a scale-up study of lipid extraction and solvent recycling was performed (2 mL vs 500 mL), whereby the larger scale also showed a good performance. Finally, protein and carbohydrate isolation from the defatted biomass was feasible, but the proposed ES process was not sufficiently mild to maintain native proteins. On the other hand, opportunities are discussed to create new functionalities for proteins and carbohydrates so that a multiproduct biorefinery is feasible for this ES.
Collapse
Affiliation(s)
- Calvin Lo
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - Iulian Boboescu
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - Sebastiaan Haemers
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049 Bodø, Norway
| | - Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
2
|
Díaz V, Antiñolo L, Poyatos JM, Muñío MDM, Martín-Pascual J. Effect of hydraulic retention time and treated urban wastewater ratio on progressive adaptation of an inoculated microalgae in membrane photobioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123005. [PMID: 39476682 DOI: 10.1016/j.jenvman.2024.123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Currently, there is a growing concern about water scarcity. The rising demand for wastewater treatment systems that facilitate the reuse of wastewater has resulted in a focus on the use of microalgae in sustainable treatments. These methods not only eliminate nutrients from the wastewater but also produce biomass that can be used to obtain high-value products. This study aimed to observe the effect of different hydraulic retention times (HRTs) and treated urban wastewater (TUWW) percentages on the growth of microalgae biomass and nutrient consumption in membrane photobioreactors. Microalgae biomass growth increases with HRT regardless of the percentage of TUWW. Biomass concentration stabilises at between 40% and 60% TUWW but significantly increases when 100% TUWW is used, resulting in the highest biomass concentrations. As HRT increases, ammonium and total nitrogen consumption also rise. A positive trend in ammonium consumption was observed with increasing TUWW, reaching its peak with 100% TUWW. The optimal conditions for biomass growth and nutrient removal are achieved with a 7-day HRT and 100% TUWW as influent, which was confirmed as optimal with the response surface methodology.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - Laura Antiñolo
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - José Manuel Poyatos
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - María Del Mar Muñío
- Institute of Water Research, University of Granada 18071, Granada, Spain; Department of Chemical Engineering, University of Granada 18071, Granada, Spain.
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| |
Collapse
|
3
|
Şirin PA, Serdar S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol (Praha) 2024; 69:889-902. [PMID: 38285280 DOI: 10.1007/s12223-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Collapse
Affiliation(s)
- Pınar Akdoğan Şirin
- Fatsa Faculty of Marine Science, Department of Fisheries Technology Engineering, Ordu University, 52400, Fatsa, Ordu, Turkey.
| | - Serpil Serdar
- Faculty of Fisheries, Department of Aquaculture, Ege University, 35030, Bornova, Izmir, Turkey
| |
Collapse
|
4
|
Babich O, Ivanova S, Tupitsyn A, Vladimirov A, Nikolaeva E, Tiwari A, Budenkova E, Kashirskikh E, Anokhova V, Michaud P, Sukhikh S. Study of the polysaccharide production by the microalgae C-1509 Nannochloris sp. Naumann. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00818. [PMID: 38020727 PMCID: PMC10656214 DOI: 10.1016/j.btre.2023.e00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Biologically active compounds, including polysaccharides isolated from microalgae, have various properties. Although Nannochloropsis spp. have the potential to produce secondary metabolites important for biotechnology, only a small part of the research on these microalgae has focused on their ability to produce polysaccharide fractions. This study aims to evaluate the physicochemical growth factors of Nannochloropsis spp. microalgae, which ensure the maximum accumulation of polysaccharides, as well as to optimize the parameters of polysaccharide extraction. The optimal nutrient medium composition was selected to maximize biomass and polysaccharide accumulation. The significance of selecting the extraction module and extraction temperature regime, as well as the cultivation conditions (temperature and active acidity value) is emphasized. Important chemical components of polysaccharides responsible for their biological activity were identified.
Collapse
Affiliation(s)
- Olga Babich
- Research and Education Center, Industrial Biotechnologies, Immanuel Kant BFU, A. Nevsky Street, 14, Kaliningrad, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Aleksandr Tupitsyn
- Laboratory of Carbon Nanomaterials, R&D Department, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Aleksandr Vladimirov
- P.A. Chikhachev House of Scientific Collaboration, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Elena Nikolaeva
- P.A. Chikhachev House of Scientific Collaboration, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ekaterina Budenkova
- Research and Education Center, Industrial Biotechnologies, Immanuel Kant BFU, A. Nevsky Street, 14, Kaliningrad, Russia
| | - Egor Kashirskikh
- Research and Education Center, Industrial Biotechnologies, Immanuel Kant BFU, A. Nevsky Street, 14, Kaliningrad, Russia
| | - Veronika Anokhova
- Research and Education Center, Industrial Biotechnologies, Immanuel Kant BFU, A. Nevsky Street, 14, Kaliningrad, Russia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Clermont-Ferrand F-63000, France
| | - Stanislav Sukhikh
- Research and Education Center, Industrial Biotechnologies, Immanuel Kant BFU, A. Nevsky Street, 14, Kaliningrad, Russia
| |
Collapse
|
5
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
6
|
Sousa SC, Freitas AC, Gomes AM, Carvalho AP. Extraction of Nannochloropsis Fatty Acids Using Different Green Technologies: The Current Path. Mar Drugs 2023; 21:365. [PMID: 37367690 DOI: 10.3390/md21060365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Nannochloropsis is a genus of microalgae widely recognized as potential sources of distinct lipids, particularly polyunsaturated fatty acids (PUFA). These may be obtained through extraction, which has conventionally been performed using hazardous organic solvents. To substitute such solvents with "greener" alternatives, several technologies have been studied to increase their extraction potential. Distinct technologies utilize different principles to achieve such objective; while some aim at disrupting the cell walls of the microalgae, others target the extraction per se. While some methods have been utilized independently, several technologies have also been combined, which has proven to be an effective strategy. The current review focuses on the technologies explored in the last five years to extract or increase extraction yields of fatty acids from Nannochloropsis microalgae. Depending on the extraction efficacy of the different technologies, distinct types of lipids and/or fatty acids are obtained accordingly. Moreover, the extraction efficiency may vary depending on the Nannochloropsis species. Hence, a case-by-case assessment must be conducted in order to ascertain the most suited technology, or tailor a specific one, to be applied to recover a particular fatty acid (or fatty acid class), namely PUFA, including eicosapentaenoic acid.
Collapse
Affiliation(s)
- Sérgio Cruz Sousa
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- REQUIMTE/LAQV-Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Ana Cristina Freitas
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- REQUIMTE/LAQV-Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|
7
|
Vishwakarma R, Dey S, Samuchiwal S, Malik A. A biphasic photobioreactor system for consecutive extraction of lipids and carotenoids from pre-hydrolysed microalgae and evaluation of its biodiesel potential. ENVIRONMENTAL RESEARCH 2023; 226:115681. [PMID: 36925037 DOI: 10.1016/j.envres.2023.115681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
A green extraction method is developed using partially hydrolysed microalgal cells grown in biocompatible solvent for simultaneous cultivation and extraction of bioproducts from a highly efficient permeabilized microalgal cell with enhanced biomass and lipid content for potential use in biodiesel production. Incomplete digestion of cell wall was achieved by regulating the incubation time of the enzymatic pretreatment of the microalgal cells. 15.77% increase in lipid content was seen when untreated cells were cultured with biocompatible solvent, while cultivation of these enzymatically pretreated cells with biocompatible solvent, the lipid content increased by 53.33% and 22% higher carotenoid content was observed as compared to conventional extraction. The total fatty acids obtained after 1st and 2nd extractions in untreated samples were 67.82%, while those in enzymatically partially digested samples were 91.94%. The untreated and partially enzymatically predigested strain showed suitable properties for quality biodiesel production as per international recommendations. The cost benefit analysis of the overall process showed the use of biocompatible solvent coupled to enzymatically predigested biomass was a favorable option as compared to conventional extraction.
Collapse
Affiliation(s)
- Rashi Vishwakarma
- Applied Microbiology Laboratory, Center for Rural Development and Technology, Indian Institute of Technology- Delhi, New Delhi, 110016, India.
| | - Saptarshi Dey
- Applied Microbiology Laboratory, Center for Rural Development and Technology, Indian Institute of Technology- Delhi, New Delhi, 110016, India
| | - Saurabh Samuchiwal
- Applied Microbiology Laboratory, Center for Rural Development and Technology, Indian Institute of Technology- Delhi, New Delhi, 110016, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Center for Rural Development and Technology, Indian Institute of Technology- Delhi, New Delhi, 110016, India
| |
Collapse
|
8
|
A novel approach for microalgal cell disruption and bioproducts extraction using non-thermal atmospheric plasma (NTAP) technology and chitosan flocculation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Can Growth of Nannochloropsis oculata under Modulated Stress Enhance Its Lipid-Associated Biological Properties? Mar Drugs 2022; 20:md20120737. [PMID: 36547884 PMCID: PMC9782458 DOI: 10.3390/md20120737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Nannochloropsis oculata is well-recognized as a potential microalgal source of valuable compounds such as polyunsaturated fatty acids, particularly, eicosapentaenoic acid (EPA). The content and profile of these lipids is highly dependent on the growth conditions and can, therefore, be tailored through modulation of the growth parameters, specifically, temperature. Moreover, biological activities are composition dependent. In the present work, lipid extracts obtained from N. oculata, grown under constant temperature and under modulated temperature stress (to increase EPA content; Str) were characterized by GC-FID and several bioactivities were evaluated, namely, antioxidant (L-ORACFL), cytotoxic (MTT), adipolytic, anti-hepatic lipid accumulation (steatosis), and anti-inflammatory properties. Both extracts exhibited antioxidant activity (c.a. 49 µmol Troloxequivalent/mgextract) and the absence of toxicity (up to 800 µg/mL) toward colon and hepatic cells, adipocytes, and macrophages. They also induced adipolysis and the inhibition of triglycerides hepatic accumulation, with a higher impact from Str. In addition, anti-inflammatory activity was observed in the lipopolysaccharide-induced inflammation of macrophages in the presence of either extract, since lower levels of pro-inflammatory interleukin-6 and interferon-β were obtained, specifically by Str. The results presented herein revealed that modulated temperature stress may enhance the health effects of N. oculata lipid extracts, which may be safely utilized to formulate novel food products.
Collapse
|
10
|
Moreno Martínez P, Ortiz-Martínez V, Sánchez Segado S, Salar-García M, de los Ríos A, Hernández Fernández F, Lozano-Blanco L, Godínez C. Deep eutectic solvents for the extraction of fatty acids from microalgae biomass: recovery of omega-3 eicosapentaenoic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
In Vivo Nutritional Assessment of the Microalga Nannochloropsis gaditana and Evaluation of the Antioxidant and Antiproliferative Capacity of Its Functional Extracts. Mar Drugs 2022; 20:md20050318. [PMID: 35621969 PMCID: PMC9147351 DOI: 10.3390/md20050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nannochloropsis gaditana is a microalga with interesting nutritional and functional value due to its high content of protein, polyunsaturated fatty acids, and bioactive compounds. However, the hardness of its cell wall prevents accessibility to these components. This work aimed to study the effect of a treatment to increase the fragility of the cell wall on the bioavailability of its nutrients and functional compounds. The antioxidant and antiproliferative capacity of functional extracts from treated and untreated N. gaditana was assessed, and the profile of bioactive compounds was characterized. Furthermore, to study the effect of treatment on its nutrient availability and functional capacity, an in vivo experiment was carried out using a rat experimental model and a 20% dietary inclusion level of microalgae. Functional extracts from treated N. gaditana exhibited higher antioxidant activity than the untreated control. Furthermore, the treated microalga induced hypoglycemic action, higher nitrogen digestibility, and increased hepatic antioxidant activity. In conclusion, N. gaditana has interesting hepatoprotective, antioxidant, and anti-inflammatory potential, thus proving itself an ideal functional food candidate, especially if the microalga is treated to increase the fragility of its cell wall before consumption.
Collapse
|
12
|
Kant Mehta S. Assessing the prospects of Zygnema heydrichii, a filamentous Chlorophyte, as a biodiesel feedstock. BIORESOURCE TECHNOLOGY 2022; 345:126487. [PMID: 34871720 DOI: 10.1016/j.biortech.2021.126487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This research aimed to investigate the suitability of the filamentous microalga Zygnema heydrichii as a biodiesel feedstock. Under ambient culture conditions, biomass yield, lipid content, and fatty acid composition were measured. The effects of nutrient deprivation, pH, and salinity on biomass and lipid production were also investigated. Z. heydrichii under nutrient-enriched medium showed specific growth rate (µ) 0.31 day-1 and lipid content 14.75% DW. The most abundant fatty acids were C16:0, C18:1, C18:2 and C18:3, all of which are considered appropriate for biodiesel production. Nitrogen and phosphorus depletion from the growth medium further increased lipid content to 21.45% and 15.35% DW, respectively. The N depletion of the medium remarkably increased TAG content of the culture. Z. heydrichii possess great ability to grow in salty water (40 Mm NaCl). A low-cost, semi-continuous outdoor culture yielded biomass and lipid productivity of 0.208 g day-1and 0.038 g L-1 day-1, respectively.
Collapse
|
13
|
Rodríguez-González I, Díaz-Reinoso B, Domínguez H. Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149765. [PMID: 34454141 DOI: 10.1016/j.scitotenv.2021.149765] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/27/2023]
Abstract
There is a growing global recognition that microalgae-based biofuel are environment-friendly and economically feasible options because they incur several advantages over traditional fossil fuels. Also, the microalgae can be manipulated for extraction of value-added compounds such as lipids (triacylglycerols), carbohydrates, polyunsaturated fatty acids, proteins, pigments, antioxidants, various antimicrobial compounds, etc. Recently, there is an increasing focus on the co-cultivation practices of microalgae with other microorganisms to enhance biomass and lipid productivity. In a co-cultivation strategy, microalgae grow symbiotically with other heterotrophic microbes such as bacteria, yeast, fungi, and other algae/microalgae. They exchange nutrients and metabolites; this helps to increase the productivity, therefore facilitating the commercialization of microalgal-based fuel. Co-cultivation also facilitates biomass harvesting and waste valorization, thereby help to build an algal biorefinery platform for bioenergy production along with multivariate high value bioproducts and simultaneous waste bioremediation. This article comprehensively reviews various microalgae cultivation practices utilizing co-culture approaches with other algae, fungi, bacteria, and yeast. The review mainly focuses on the impact of several binary culture strategies on biomass and lipid yield. The advantages and challenges associated with the procedure along with their respective cultivation modes have also been presented and discussed in detail.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
15
|
du Preez R, Majzoub ME, Thomas T, Panchal SK, Brown L. Nannochloropsis oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients 2021; 13:3991. [PMID: 34836248 PMCID: PMC8624018 DOI: 10.3390/nu13113991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
The microalgal genus Nannochloropsis has broad applicability to produce biofuels, animal feed supplements and other value-added products including proteins, carotenoids and lipids. This study investigated a potential role of N. oceanica in the reversal of metabolic syndrome. Male Wistar rats (n = 48) were divided into four groups in a 16-week protocol. Two groups were fed either corn starch or high-carbohydrate, high-fat diets (C and H, respectively) for the full 16 weeks. The other two groups received C and H diets for eight weeks and then received 5% freeze-dried N. oceanica in these diets for the final eight weeks (CN and HN, respectively) of the protocol. The H diet was high in fructose and sucrose, together with increased saturated and trans fats. H rats developed obesity, hypertension, dyslipidaemia, fatty liver disease and left ventricular fibrosis. N. oceanica increased lean mass in CN and HN rats, possibly due to the increased protein intake, and decreased fat mass in HN rats. Intervention with N. oceanica did not change cardiovascular, liver and metabolic parameters or gut structure. The relative abundance of Oxyphotobacteria in the gut microbiota was increased. N. oceanica may be an effective functional food against metabolic syndrome as a sustainable protein source.
Collapse
Affiliation(s)
- Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| |
Collapse
|
16
|
Wei C, Zhou Z, Wang L, Huang Z, Liang Y, Zhang J. Perfluorooctane sulfonate (PFOS) disturbs fatty acid metabolism in Caenorhabditis elegans: Evidence from chemical analysis and molecular mechanism exploration. CHEMOSPHERE 2021; 277:130359. [PMID: 34384190 DOI: 10.1016/j.chemosphere.2021.130359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that might induce disorders in fatty acid (FA) metabolism, but the underlying mechanisms remain unresolved. Caenorhabditis elegans (C. elegans) as a model organism can synthesize polyunsaturated FAs de novo via the polyunsaturated FA synthesis pathway. In this study, synchronized L1 C. elegans were exposed to 0, 0.01, 0.1, 0.5 and 1 μM PFOS for 72 h. Gas chromatography-mass spectrometry (GC-MS) was used to establish a sensitive and reliable analysis method for PFASs in exposed nematode, the instrument detection limits of nine fatty acid methyl esters examined ranged between 1.11 and 27.6 ng/mL, with satisfactory reproducibility (RSD < 10%) observed. Methyl pentadecanoate (C15:0) was used as an internal standard, the linearity of the calibration (0.1-10 μg/mL) nine FAs from the nematode were quantitatively analyzed. Comparing with the control group, PFOS exposure caused significantly decreased levels of C18:0 while significantly increased levels of C18:3n6. A decrease in the C18:3n6: C18:2n6 ratio was observed. Consistently, expression of the FA desaturation gene fat-3 was significantly down-regulated. These findings suggest that the FA disorder is associated with decrease in mRNA expression of Δ6-desaturase genes in C. elegans. Simultaneously, the disorders in FA metabolism were found to disrupt mitochondrial function with a reduction in ATP synthesis, as determined by the luciferase method. In summary, the results of the study provide insights into the adverse effects of PFOS on FA metabolism in living organisms.
Collapse
Affiliation(s)
- Cuiyun Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China; Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zichun Huang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Li CJ, Xin MR, Sun ZL. Selection of extraction solvents for edible oils from microalgae and improvement of the oxidative stability. J Biosci Bioeng 2021; 132:365-371. [PMID: 34344605 DOI: 10.1016/j.jbiosc.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
Microalgae are natural, green raw material and could be used for the development of edible oil for its abundant polyunsaturated fatty acids, with fast growth rate. The wet mud and dry powder of Scenedesmus dimorphus were applied to compare the extraction effects of different organic solvent systems in this study. The results displayed that, by using the ethanol/n-hexane (3:2, v/v) mixed solvent, the oil extraction rate from wet algal mud was 68.31 %, with 71.65 % of neutral lipid, and 1.87 % of vitamin E; the retention rates of protein, chlorophyll, and carbohydrates in the algal residue after oil extraction were 60.56 %, 53.27 %, and 80.20 %, respectively. Through the single solvent n-hexane, the oil extraction rate from dried algal powder was 71.52 %, with 75.86 % of neutral lipids, and 1.63 % of vitamin E. The retention rates of protein, chlorophyll, and carbohydrate were 55.92 %, 61.33 % and 78.35 %, respectively, suggesting the high rate of nutrient retention. In addition, the orthogonal experiments indicated that the compound of low concentration natural antioxidants with 0.010 % of tea polyphenols, 0.005 % of vitamin E, and 0.015 % of rosemary extract had the best effects on improvement of oxidative stability.
Collapse
Affiliation(s)
- Chan-Juan Li
- Shandong Technology and Business University, Yantai 264005, China
| | - Meng-Ru Xin
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zhong-Liang Sun
- College of Life Sciences, Yantai University, Yantai 264005, China.
| |
Collapse
|
18
|
Matos J, Afonso C, Cardoso C, Serralheiro ML, Bandarra NM. Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 2021; 10:1458. [PMID: 34202539 PMCID: PMC8306745 DOI: 10.3390/foods10071458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga Isochrysis galbana has great potential for the food industry as a functional ingredient, given its richness in ω3 long chain-polyunsaturated fatty acids (LC-PUFAs), with high contents of oleic, linoleic, alpha-linolenic acid (ALA), stearidonic, and docosahexaenoic (DHA) acids. This study focuses on the formulation of a functional food by the incorporation of 2% (w/w) of I. galbana freeze-dried biomass and 2% (w/w) of I. galbana ethyl acetate lipidic extract in solid natural yogurts preparation. In the functional yogurt enriched with microalgal biomass, the ω3 LC-PUFA's content increased (to 60 mg/100 g w/w), specifically the DHA content (9.6 mg/100 g ww), and the ω3/ω6 ratio (augmented to 0.8). The in vitro digestion study showed a poor bioaccessibility of essential ω3 LC-PUFAs, wherein linoleic acid (18:2 ω6) presented a bioaccessibility inferior to 10% and no DHA or eicosapentaenoic acid (EPA) was detected in the bioaccessible fraction of the functional yogurts, thus indicating a low accessibility of lipids during digestion. Notwithstanding, when compared to the original yogurt, an added value novel functional yogurt with DHA and a higher ω3 LC-PUFAs content was obtained. The functional yogurt enriched with I. galbana can be considered important from a nutritional point of view and a suitable source of essential FAs in the human diet. However, this needs further confirmation, entailing additional investigation into bioavailability through in vivo assays.
Collapse
Affiliation(s)
- Joana Matos
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Maria L. Serralheiro
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
19
|
Mariam I, Kareya MS, Nesamma AA, Jutur PP. Delineating metabolomic changes in native isolate Aurantiochytrium for production of docosahexaenoic acid in presence of varying carbon substrates. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|