1
|
Lopez Medina JA, Domínguez D, Pizá P, Liu G, Velez C, Reyes Gómez F, Farías MH, Caudillo-Flores U, Soto Herrera G, Tiznado H, Mejía-Salazar JR. Magnetic Photocatalyst Nanocomposite Based on MnFe 2O 4@ZnO for AZO Dye Degradation. ACS OMEGA 2025; 10:17595-17610. [PMID: 40352532 PMCID: PMC12059902 DOI: 10.1021/acsomega.4c11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
This work focuses on fabricating a photocatalyst nanocomposite based on MnFe2O4@ZnO for degrading Red Amaranth azo dye. Manganese ferrite (MnFe2O4) magnetic nanoparticles were synthesized via a hydrothermal method, while a ZnO thin film, acting as the photoactive layer, was deposited on the magnetic cores using the atomic layer deposition (ALD) technique. X-ray diffraction (XRD) confirmed the spinel ferrite structure of MnFe2O4 and the hexagonal wurtzite phase of ZnO. The crystallite size, determined from the (311) peak, was 36.5 nm; this value was consistent with the average size of 33.2 nm measured by transmission electron microscopy (TEM). Magnetic characterization via vibrating sample magnetometry (VSM) at room temperature revealed a superparamagnetic behavior, determined by a very small hysteresis loop. The ZnO coating, achieved with 200 ALD cycles, resulted in a degradation efficiency ηeff of approximately 60% for the Red Amaranth dye. Finite-difference time-domain (FDTD) simulations provided theoretical insights into the electromagnetic interactions driving the photodegradation process, supporting the UV-vis absorbance data of the AZO dye. This nanocomposite can be considered as a soft magnetic material that offers promising applications in nanotechnology for environmentally friendly wastewater treatment and remediation.
Collapse
Affiliation(s)
- Javier Alonso Lopez Medina
- SECIHTI
- IxM - Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C. C.P. 22800, México
| | - David Domínguez
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C. C.P. 22800, México
| | - Pedro Pizá
- Centro
de Investigación en Materiales Avanzados−CIMAV, Chihuahua, CH C.P. 31136, México
| | - Guoduan Liu
- Materials
and Manufacturing Technology- University of California, Irvine, California C.P. 92697-3975, United States
| | - Camilo Velez
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, California C.P. 92697-3975, United States
| | - Faustino Reyes Gómez
- National
Institute of Telecommunications (Inatel), Santa Rita do Sapucaí C.P. 37536-001, Brazil
| | - Mario Humberto Farías
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C. C.P. 22800, México
| | - Uriel Caudillo-Flores
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C. C.P. 22800, México
| | - Gerardo Soto Herrera
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C. C.P. 22800, México
| | - Hugo Tiznado
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C. C.P. 22800, México
| | | |
Collapse
|
2
|
Sun Y, Feng J, Zhu W, Hou R, Zhang B, Ishag A. The recent advances of MnFe 2O 4-based nanoparticles in environmental application: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176378. [PMID: 39306129 DOI: 10.1016/j.scitotenv.2024.176378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The manganese ferrite (MnFe2O4)-based nanoparticles showed a substantial potential to remediate the various pollutants in environmental application due to low cost, simple magnetic separation and high removal capacity. Herein, the functionalization of various MnFe2O4-based nanoparticles was briefly summarized; Then the recent advances concerning the removal of pollutants (i.e., organics, heavy metals and antibacterial activity) on different MnFe2O4-based nanoparticles were reviewed in details. The reactivity of MnFe2O4-based nanoparticles was significantly influenced by environmental factors. It is demonstrated that interaction mechanism of various pollutants on magnetic MnFe2O4-based nanoparticles included degradation, adsorption, coordination, redox and precipitation. Finally, the current problems and future perspective of MnFe2O4-based nanoparticles were proposed. The highlight of this review is to compare the removal performance of MnFe2O4-based nanoparticles with the different hybrids. This review is crucial for the application of MnFe2O4-based nanoparticles in the environmental remediation.
Collapse
Affiliation(s)
- Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; Research Center of Applied Geology of China Geological Survey, Chengdu 610036, China.
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid 51111, Sudan
| |
Collapse
|
3
|
Mahapatra P, Mohanty C, Behura R, Das N. Shining light on environmental remediation: a type-II heterojunction MnFe 2O 4/rGO nanocomposites for enhanced photocatalytic degradation of organic dyes and bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54753-54767. [PMID: 39215920 DOI: 10.1007/s11356-024-34831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
In this study, the pressing issue of persistent organic pollutants in wastewater was addressed by designing and fabricating a magnetically separable MnFe2O4/rGO heterostructure catalyst for efficient mineralization of bisphenol A (BPA) and dyes such as alizarin red S (anionic) and malachite green (cationic), which are known for their resistance to biodegradation and carcinogenic properties. Comprehensive structural and surface analyses using XRD, XPS, SEM, and TEM/HRTEM coupled with magnetic and optical property measurements revealed the formation of the MnFe2O4/rGO heterostructures. Among all, the MnFe2O4/rGO-10 catalyst with 10% wt% of rGO exhibited 100% efficiency in the mineralization of BPA and both dyes under visible light illumination within 60 min. The stability and recyclability of the catalyst, assessed through XRD and VSM studies, demonstrated its consistent performance over multiple uses. The cost-effectiveness and stability of this catalyst underscore its potential for practical application in wastewater treatment, offering a viable solution to the persistent challenge of removing stubborn organic contaminants.
Collapse
Affiliation(s)
| | - Chirasmayee Mohanty
- Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India
| | - Reshma Behura
- Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India.
| |
Collapse
|
4
|
Umar E, Ikram M, Haider J, Nabgan W, Imran M, Nazir G. A State-of-Art Review of the Metal Oxide-Based Nanomaterials Effect on Photocatalytic Degradation of Malachite Green Dyes and a Bibliometric Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300001. [PMID: 37287595 PMCID: PMC10242535 DOI: 10.1002/gch2.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 06/09/2023]
Abstract
A wide range of hard contaminants in wastewater is generated from different industries as byproducts of the organic compound. In this review, various metal oxide-based nanomaterials are employed for the photocatalytic removal of malachite green (MG) dye from wastewater. Some cost-effective and appropriate testing conditions are used for degrading these hard dyes to get higher removal efficiency. The effects of specific parameters are considered such as how the catalyst is made, how much dye is in the solution at first, how much nanocatalyst is needed to break down the dye, the initial pH of the dye solution, the type of light source used, the year of publications, and how long the dye has to be exposed to light to be removed. This study suggests that Scopus-based core collected data employ bibliometric methods to provide an objective analysis of global MG dye from 2011 to 2022 (12 years). The Scopus database collects all the information (articles, authors, keywords, and publications). For bibliometric analysis, 658 publications are retrieved corresponding to MG dye photodegradation, and the number of publications increases annually. A bibliometric study reveals a state-of-art review of metal oxide-based nanomaterials' effects on photocatalytic degradation of MG dyes (12 years).
Collapse
Affiliation(s)
- Ehtisham Umar
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| | - Muhammad Imran
- Department of ChemistryGovernment College University FaisalabadPakpattan RoadSahiwalPunjab57000Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| |
Collapse
|
5
|
Wang H, Bao W, Sarwar MT, Tian L, Tang A, Yang H. Mineral-Enhanced Manganese Ferrite with Multiple Enzyme-Mimicking Activities for Visual Detection of Disease Markers. Inorg Chem 2023; 62:8418-8427. [PMID: 37196355 DOI: 10.1021/acs.inorgchem.3c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Local geometric configurations of metal cations in inorganic enzyme mimics determine their catalytic behaviors, while their optimization remains challenging. Herein, kaolinite, a naturally layered clay mineral, achieves the optimization of cationic geometric configuration in manganese ferrite. We demonstrate that the exfoliated kaolinite induces the formation of defective manganese ferrite and makes more iron cations fill into the octahedral sites, significantly enhancing the multiple enzyme-mimicking activities. The steady-state kinetic assay results show that the catalytic constant of composites toward 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 are more than 7.4- and 5.7-fold higher than manganese ferrite, respectively. Furthermore, density functional theory (DFT) calculations reveal that the outstanding enzyme-mimicking activity of composites is attributed to the optimized iron cation geometry configuration, which has a higher affinity and activation ability toward H2O2 and lowers the energy barrier of key intermediate formation. As a proof of concept, the novel structure with multiple enzyme-mimicking activities amplifies the colorimetric signal, realizing the ultrasensitive visual detection of disease marker acid phosphatase (ACP), with a detection limit of 0.25 mU/mL. Our findings provide a novel strategy for the rational design of enzyme mimics and an in-depth investigation of their enzyme-mimicking properties.
Collapse
Affiliation(s)
- Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxin Bao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Kumar A, Gora MK, Lal G, Choudhary BL, Meena PL, Dhaka RS, Singhal RK, Kumar S, Dolia SN. Impact of Gd 3+ doping on structural, electronic, magnetic, and photocatalytic properties of MnFe 2O 4 nanoferrites and application in dye-polluted wastewater remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18820-18842. [PMID: 36219287 DOI: 10.1007/s11356-022-23420-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The present work focuses on developing Gd-doped Mn spinel nanoferrites and their potential application in the photodegradation of water pollutants. The impact of Gd3+ ion substitution on structural, electronic, and magnetic characteristics of manganese ferrites has been studied. Nanocrystalline samples of MnGdxFe2-xO4 (x = 0.0 to 0.10, in step size of 0.02) ferrites were prepared via sol-gel self-ignition route. The Rietveld, XPS, HRTEM, and SAED characterization methods confirmed the formation of phase pure ferrite nanoparticles (~ 8-22 nm) in the cubic spinel structure. The Gd3+ content in these nanoferrites responded to a systematic reduction in the size of nanocrystallites and an upsurge in the density of nanoferrites. The XPS study revealed fine assimilation of constituent elements in the fcc lattice and ruled out impurities in the nanoferrites. The Fe and the Gd ions were found to be in Fe3+ and Gd3+ states, respectively. While a major fraction of the Mn ions were found to be in the Mn2+ state, a small fraction of Mn4+ ions was observed on the surface of nanoparticles. The nanoferrites were found to exhibit a soft ferromagnetic state from 300 to 20 K limits. The highest saturation magnetization was observed for x = 0.02 (MS = 66.6 emu/g at 20 K). The observed magnetic properties can be understood with the competing (Fe3+ and Mn2+)A-O2--[Fe3+, Mn2+, and Gd3+]B superexchange interactions and magnetocrystalline anisotropy. Due to the small band gap energy of Gd-doped Mn ferrites than that of the pure Mn ferrite, they have demonstrated excellent photocatalytic activity for the degradation of methylene blue (MB) dye under visible light illumination. As much as 96.35% of the MB dye was found to get degraded in 70 min of light illumination over synthesized nanoparticles and the photodegradation reaction followed pseudo-first-order kinetics. The increased optical absorbance due to lower band gap, suppressed recombination rate of charge carriers, and enhanced charge mobility make them effective visible light active photocatalysts. This study revealed that the electronic, optical, and magnetic properties of MnFe2O4 nanoferrites could be easily tuned by varying the Gd3+ content and the prepared Gd-doped MnFe2O4 nanomaterials have boundless potential to be utilized in the future making promising active photocatalysts and degradation of harmful industrial dyes for enhanced protection in the fields of environment and health care.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Physics, University of Rajasthan, Jaipur, 302004, Rajasthan, India.
| | - Mahendra Kumar Gora
- Department of Physics, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Ganesh Lal
- Department of Physics, Mohanlal Sukhadia University, Udaipur, 313002, Rajasthan, India
| | | | - Parmeshwar Lal Meena
- Department of Chemistry, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Rajendra Singh Dhaka
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rishi Kumar Singhal
- Department of Physics, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Sudhish Kumar
- Department of Physics, Mohanlal Sukhadia University, Udaipur, 313002, Rajasthan, India
| | - Satya Narain Dolia
- Department of Physics, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| |
Collapse
|
7
|
Synthesis of conjugated polyvinyl chloride derivative coupled MnFe2O4 nanoparticles as a magnetic visible-light photocatalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Chau TP, Brindhadevi K, Krishnan R, Alyousef MA, Almoallim HS, Whangchai N, Pikulkaew S. A novel synthesis, analysis and evaluation of Musa coccinea based zero valent iron nanoparticles for antimicrobial and antioxidant. ENVIRONMENTAL RESEARCH 2022; 209:112770. [PMID: 35063432 DOI: 10.1016/j.envres.2022.112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Zerovalent Iron Nanoparticles (MC-ZVI NPs) were synthesized from Musa coocinea peel extract as reducing and stabilizing agent using a novel synthesis technique. The synthesis of MC-ZVI NPs was confirmed using UV-vis spectroscopy showing a sharp absorption peak at 341 nm. Further the chemical and structural characterization of MC-ZVI NPs were performed using Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering technique (DLS). FTIR analysis revealed the presence of phytochemical molecules associated with the MC-ZVI NPs. SEM analysis revealed the synthesized MC-ZVI NPs were in spherical shaped, while DLS analysis confirmed the synthesis of poly dispersed and non-homogenous MC-ZVI NPs. The antimicrobial efficacy of MC-ZVI NPs synthesized using Musa coccinea peel extract was tested against bacterial (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis) and fungal (Aspergillus niger) pathogens. But MC-ZVI NPs exhibited maximum of 19 mm zone of inhibition against B. subtilis and A. niger. Further the free radical scavenging activity MC-ZVI NPs was confirmed using DPPH, hydroxyl radical, hydrogen peroxide, FRAP assay showing displayed effective antioxidant activity. Thus, the present idea will give a fast and cost effective approach to synthesize MC-ZVI NPs with antimicrobial property for application in biomedical purposes.
Collapse
Affiliation(s)
- Tan Phat Chau
- Institute of Applied Science & Technology, Van Lang University, Ho Chi Minh, 70000, Viet Nam.
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA, 17101, USA
| | - Mansour Ali Alyousef
- General Directorate of Health Affairs in Riyadh, Ministry of Health, Saudi Arabia
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Niwooti Whangchai
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Surachai Pikulkaew
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
9
|
Devendran P, Selvakumar D, Ramadoss G, Sivaramakrishnan R, Alagesan T, Jayavel R, Pandian K. A novel visible light active rare earth doped CdS nanoparticles decorated reduced graphene oxide sheets for the degradation of cationic dye from wastewater. CHEMOSPHERE 2022; 287:132091. [PMID: 34523436 DOI: 10.1016/j.chemosphere.2021.132091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
A variety of rare earth metals (La, Sm, Nd, Ce, Gd) doped cadmium sulfide (RE-CdS) grafted reduced graphene oxide (G) sheet nanocomposites estimated imperative attention due to their visible light-driven, tunable band gap and high surface to volume ratio were investigated for the photocatalytic degradation of cationic dye from aqueous solution. The formation of wurtzite (hexagonal) crystal structures of cadmium sulfide nanoparticles (NPs) was confirmed by Powder X-ray diffraction spectra and the average crystallite size was determined to be 10 ± 2 nm. HRTEM analysis confirmed the homogeneous distribution of RE-CdS NPs over the G sheets. The photocatalytic behaviour of the RE-CdS decorated G sheets was studied using a textile dye methylene blue (MB) under sunlight. The result indicates that among the various RE-CdS nanocomposites studied, Cerium-cadmium sulfide-reduced graphene oxide (Ce-CdS-G) shows highest MB degradation of 99.0 ± 0.4% within 90 min under sunlight. The result confirms that RE-CdS-G nanocatalyst efficiently accelerates the separation and slows down the recombination rate in photo excited charge carriers. The catalytic activity was retained over 80% of its original value even after four successive runs and the present method can be employed for the large-scale synthesis of RE-CdS-G nanocatalyst.
Collapse
Affiliation(s)
- Pazhanivel Devendran
- Department of Physics, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India.
| | - Duraisamy Selvakumar
- Research and Development Centre, Sri Krishna College of Engineering and Technology, Coimbatore, 641008, India; Centre for Nanoscience and Technology, Anna University, Chennai, 600 025, India
| | - Govindarajan Ramadoss
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Ramasamy Jayavel
- Centre for Nanoscience and Technology, Anna University, Chennai, 600 025, India
| | - Kannaiyan Pandian
- Department of Inorganic Chemistry, Guindy Campus University of Madras, Chennai, 600 025, India
| |
Collapse
|
10
|
Eco friendly synthesis and characterization of zinc oxide nanoparticles from Aegle marmelos and its cytotoxicity effects on MCF-7 cell lines. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
An attempt was made to synthesize zinc oxide gum white nanoparticles (ZnO-GWNPs) by the greenway approach using Aegle marmelos (Bael fruit) juice extract as a capping and reducing agent. Synthesis of ZnO-GWNPs by greener approach is safer, more economical, more energy-efficient, eco-friendlier, and less toxic than chemically synthesized counterparts. The optical properties of the ZnO-GWNPs were ascertained through UV-Vis spectroscopy, Fourier Transform-Infrared (FT-IR), X-ray diffraction (XRD), High-resolution transmittance electron microscopy (HRTEM). A characteristic absorption peak at 385nm confirmed the presence of ZnO-GWNP using UV-Vis spectroscopy. FTIR spectrum revealed that the characteristic absorption peak of the Zn-O bond was observed at 467 cm-1. The XRD result for the ZnO showed the tendency of the three most intense diffraction peaks. The average crystallite size ZnO NPs at scattering angle (2θ) 22.89 and 32.15 was 39.14 and 26.08 nm and it showed the presence of miller indices of (100), (002), (101), (102) respectively. The EDX spectrum gave strong signals for zinc and oxygen indicating the occurrence of the nanoparticles in their oxide form rather than the pure zinc form. The SEM image showed the surface morphology of ZnO-GW NPs and the HR-TEM image showed the crystalline nature of ZnO-GW NPs. Cytotoxicity study of ZnO-GW NPs was determined against MCF-7 cell lines and the IC50 values were found to be 40 µg/mL and 60 µg/mL at 24 h and 48 h respectively.
Collapse
|
11
|
Wang Y, Yin M, Ma Z, Wang Y, Li W, Hu H, Hong X. High antimicrobial and Rhodamine B absorption properties of N-halamine modified mesoporous silica via a thiol-ene ‘click’ reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Li J, Li X, Wang Z, Jia Y, Xu K, Wang Z, Wang Z. Adsorption of antimony using amino-functionalized magnetic MIL-101(Cr): Optimization by response surface methodology. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Velidandi A, Sarvepalli M, Pabbathi NPP, Baadhe RR. Biogenic synthesis of novel platinum-palladium bimetallic nanoparticles from aqueous Annona muricata leaf extract for catalytic activity. 3 Biotech 2021; 11:385. [PMID: 34350090 DOI: 10.1007/s13205-021-02935-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/20/2021] [Indexed: 12/25/2022] Open
Abstract
This work reports the fast and effective bio-fabrication of novel platinum-palladium bimetallic nanoparticles (Pt-Pd BNPs) along with their counterparts Pt and Pd monometallic NPs (MNPs) through aqueous Annona muricata leaf extract. The bio-fabrication of the NPs was achieved within 2 h at 100 °C and pH 7 which was established by the occurrence of dark brown color for Pt MNPs and black color for Pd MNPs and Pt-Pd BNPs. NPs were evaluated for their catalytic activity in the reduction of methyl orange (MO), rhodamine-B (rh-B), and methylene blue (MB) textile dyes in presence of sodium borohydride as a reducing agent. Pt-Pd (1:3) BNPs showed higher MO dye degradation (96.84 ± 2.05% in 50 min) followed by Pd MNPs (97.07 ± 1.46% in 60 min), Pt-Pd (3:1) BNPs (97.34 ± 1.17% in 70 min) and Pt-Pd (1:1) BNPs (98.12 ± 1.04% in 80 min). Pd MNPs showed significant catalytic activity in the reduction of rh-B dye by 97.27 ± 1.14% in 12 min followed by Pt-Pd (3:1) BNPs (96.76 ± 2.17% in 18 min), Pt-Pd (1:3) BNPs (96.53 ± 1.97% in 33 min) and Pt-Pd (1:1) BNPs (97.11 ± 2.09% in 39 min). Pt-Pd (1:3) BNPs also showed higher MB dye degradation (96.95 ± 1.57% in 40 min) followed by Pd MNPs (96.22 ± 2.36% in 55 min), Pt-Pd (3:1) BNPs (97.29 ± 1.22% in 75 min) and Pt-Pd (1:1) BNPs (96.45 ± 2.19% in 105 min). However, Pt MNPs showed no catalytic activity. Standard disc diffusion method was used to evaluate the NPs toxicity towards Escherichia coli and Staphylococcus aureus, which showed no inhibitory zones. NPs showed less toxicity compared to potassium dichromate (control) against Artemia nauplii. Among the NPs studied, Pt-Pd (1:1) BNPs showed less toxicity with 100% mortality only at 100 µg/mL concentration followed by Pt MNPs (≥ 80 µg/mL), Pt-Pd (1:3) BNPs (≥ 60 µg/mL), Pt-Pd (3:1) BNPs (≥ 60 µg/mL) and Pd MNPs (≥ 40 µg/mL) after 72 h exposure. These evaluations support the application of bio-fabricated Pt-Pd BNPs as nano-catalysts in textile dyes degradation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02935-0.
Collapse
Affiliation(s)
- Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, 506004 Telangana India
| | - Mounika Sarvepalli
- Department of Biotechnology, National Institute of Technology, Warangal, 506004 Telangana India
| | | | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, 506004 Telangana India
| |
Collapse
|