1
|
Wang Q, Guan Q, Sun Y, Du Q, Xiao X, Luo H, Zhang J, Mi J. Simulation of future land use/cover change (LUCC) in typical watersheds of arid regions under multiple scenarios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117543. [PMID: 36848808 DOI: 10.1016/j.jenvman.2023.117543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/25/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of the social economy has promoted a continuous increase in the intensity and scale of land use by humans, which has seriously affected the sustainable development of the region. It is important to understand the land use/cover change (LUCC) in the arid region and its future development trends and to make reasonable planning recommendations for the sustainable development of the ecological environment. This study validates the patch-generating land use simulation (PLUS) model in a typical arid region, the Shiyang River Basin (SRB), and analyzes the applicability of the model in arid regions. On this basis, the PLUS model is combined with the scenario analysis method to design four scenarios including no policy intervention, farmland protection, ecological protection and sustainable development to analyze the dynamic changes in past and future land use in the SRB and to make corresponding planning recommendations for the development of each type of land use in the arid region. The results showed that the PLUS model had a better simulation effect in the SRB (its overall accuracy reached 0.97). Coupled models obtain better simulation results than quantitative and spatial models by comparing the mainstream models, with PLUS model that combines CA model and patch generation strategy showing better simulation results in the same category. From 1987 to 2017, the spatial centroid of each LUCC in the SRB moved to varying degrees due to a continuous increase in human activities. The spatial centroid of water bodies had the most obvious change, with a moving speed of 1.49 km/a, while the moving speed of built-up land increased year by year. The spatial centroid of farmland, built-up land and unused land all shifted toward the middle and lower plains, which is a further indication of increased human activity. Due to different government policies, the development trend of land use was also different under different scenarios. However, the four scenarios all showed that the area of built-up land will be increasing exponentially from 2017 to 2037, which would seriously affect the surrounding ecological land and have a negative impact on the local agro-ecological environment. Therefore, we proposed the following planning recommendations: (1) Land leveling work should be carried out on scattered farmland located at high altitudes and with slopes over 25°. Additionally, the land use of low-altitude areas should strictly adhere to basic farmland, increase the diversification of cropping patterns and improve the efficiency of agricultural water. (2) The relationship between ecology, farmland and cities should be reasonably coordinated and the existing idle built-up land should be efficiently used. (3) Forestland and grassland resources should be strictly protected and the ecological redline should be strictly observed. This study can provide new ideas for LUCC modeling and prediction in other parts of the world and provide a strong basis for ecological management and sustainable development in arid areas.
Collapse
Affiliation(s)
- Qingzheng Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yunfan Sun
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qinqin Du
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiong Xiao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jun Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jimin Mi
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Du Z, Ding S, Xiao R, Fang C, Song W, Jia R, Chu W. Does Snowfall Introduce Disinfection By-product Precursors to Surface Water? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14487-14497. [PMID: 36196960 DOI: 10.1021/acs.est.2c04408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Snow with large specific surface area and strong adsorption capacity can effectively adsorb atmospheric pollutants, which could/might lead to the increase of disinfection by-product (DBP) precursors in surface water. In this study, the contents and characteristics of dissolved organic matter (DOM) in meltwater were investigated, and DBP formation and the DBP-associated cytotoxicity index during chlorination of meltwater was first explored. Overall, meltwater exhibited high nitrogen contents. Meltwater-derived DOM was mainly composed of organics with low molecular weights, low aromaticity, and high unsaturated degrees. DBP formation potentials and cytotoxicity indexes in chlorinated meltwater were positively correlated with air quality index and were significantly impacted by snowfall stages. The trihalomethane and haloacetic acid yields from meltwater were relatively low, while yields of highly cytotoxic DBPs, especially halonitromethanes (6.3-10.8 μg-HNMs/mg-DOC), were significantly higher than those of surface water (1.7 μg-HNMs/mg-DOC). Notably, unsaturated nonaromatic organic nitrates in meltwater were important precursors of halonitromethanes. The actual monitoring results showed that snowfall significant increased the haloacetaldehydes and nitrogenous DBP formation levels of surface water. Considering increased DBP formation and DBP-associated toxicity, it was demonstrated that DOM derived from snowfall in atmosphere-polluted areas could deteriorate surface water quality and pose potential risks to drinking water.
Collapse
Affiliation(s)
- Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Wuchang Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Ruibao Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| |
Collapse
|
3
|
Snow Cover in the Three Stable Snow Cover Areas of China and Spatio-Temporal Patterns of the Future. REMOTE SENSING 2022. [DOI: 10.3390/rs14133098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the context of global warming, relevant studies have shown that China will experience the largest temperature rise in the Qinghai–Tibet Plateau and northwestern regions in the future. Based on MOD10A2 and MYD10A2 snow products and snow depth data, this study analyzes the temporal and spatial evolution characteristics of the snow cover fraction, snow depth, and snow cover days in the three stable snow cover areas in China, and combines 15 modes in CMIP6 snow cover data in four different scenarios with three kinds of variables, predicting the spatiotemporal evolution pattern of snow cover in China’s three stable snow cover areas in the future. The results show that (1) the mean snow cover fraction, snow depth, and snow cover days in the snow cover area of Northern Xinjiang are all the highest. Seasonal changes in the snow cover areas of the Qinghai–Tibet Plateau are the most stable. The snow cover fraction, snow depth, and snow cover days of the three stable snow cover areas are consistent in spatial distribution. The high values are mainly distributed in the southeast and west of the Qinghai–Tibet Plateau, the south and northeast of Northern Xinjiang, and the north of the snow cover area of Northeast China. (2) The future snow changes in the three stable snow cover areas will continue to decline with the increase in development imbalance. Snow cover fraction and snow depth decrease most significantly in the Qinghai–Tibet Plateau and the snow cover days in Northern Xinjiang decrease most significantly under the SSPs585 scenario. In the future, the southeast of the Qinghai–Tibet Plateau, the northwest of Northern Xinjiang, and the north of Northeast China will be the center of snow cover reduction. (3) Under the four different scenarios, the snow cover changes in the Qinghai–Tibet Plateau and Northern Xinjiang are the most significant. Under the SSPs126 and SSPs245 scenarios, the Qinghai–Tibet Plateau snow cover has the most significant change in response. Under the SSPs370 and SSPs585 scenarios, the snow cover in Northern Xinjiang has the most significant change.
Collapse
|
4
|
Land Surface Snow Phenology Based on an Improved Downscaling Method in the Southern Gansu Plateau, China. REMOTE SENSING 2022. [DOI: 10.3390/rs14122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snow is involved in and influences water–energy processes at multiple scales. Studies on land surface snow phenology are an important part of cryosphere science and are a hot spot in the hydrological community. In this study, we improved a statistical downscaling method by introducing a spatial probability distribution function to obtain regional snow depth data with higher spatial resolution. Based on this, the southern Gansu Plateau (SGP), an important water source region in the upper reaches of the Yellow River, was taken as a study area to quantify regional land surface snow phenology variation, together with a discussion of their responses to land surface terrain and local climate, during the period from 2003 to 2018. The results revealed that the improved downscaling method was satisfactory for snow depth data reprocessing according to comparisons with gauge-based data. The downscaled snow depth data were used to conduct spatial analysis and it was found that snow depth was on average larger and maintained longer in areas with higher altitudes, varying and decreasing with a shortened persistence time. Snow was also found more on steeper terrain, although it was indistinguishable among various aspects. The former is mostly located at high altitudes in the SGP, where lower temperatures and higher precipitation provide favorable conditions for snow accumulation. Climatically, factors such as precipitation, solar radiation, and air temperature had significantly singular effectiveness on land surface snow phenology. Precipitation was positively correlated with snow accumulation and maintenance, while solar radiation and air temperature functioned negatively. Comparatively, the quantity of snow was more sensitive to solar radiation, while its persistence was more sensitive to air temperature, especially extremely low temperatures. This study presents an example of data and methods to analyze regional land surface snow phenology dynamics, and the results may provide references for better understanding water formation, distribution, and evolution in alpine water source areas.
Collapse
|
5
|
Spatiotemporal Variation of Snow Cover Frequency in the Qilian Mountains (Northwestern China) during 2000–2020 and Associated Circulation Mechanisms. REMOTE SENSING 2022. [DOI: 10.3390/rs14122823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Linking snow cover frequency (SCF) and atmospheric circulation is vital for comprehension of hemispheric-scale change mechanisms and for accurate forecasting. This study combined MODIS imagery with meteorological observations to investigate the variation of annual SCFs in the Qilian Mountains. Results indicated that more than 80% of annual SCF is distributed at high elevations and mostly on northern slopes, and that SCF is greater in the west than in the east. Abrupt change in the increase in annual SCF was not detected; however, significant (0.05 confidence level) variation with quasi-3-year and quasi-5-year periods indicated potential connection with monsoons. Topographically, SCF increased at high elevations and decreased in valleys. Moreover, SCF increased significantly with a rise in slope below 23° and then decreased between 23° and 45°, and it decreased with a change in aspect from 70° to 200° and then increased from 200° to 310°. Annual SCF variation in the Qilian Mountains is dominated by precipitation rather than by temperature. In the years with high SCFs, southeasterly winds associated with an anticyclone over southeastern China and southwesterly winds associated with the cyclone over the Iranian Plateau brought warm moisture across northwestern China, favoring snowfall in the Qilian Mountains. Meanwhile, cold moisture outbreaks from the Arctic into the mid-latitudes are conducive to maintaining snow cover. However, in the years with low SCFs, the cold air might be difficultly transporting out of the Arctic region due to the strengthening polar vortex. Moreover, the water vapor was less than that of the mean state and divergence over the Qilian Mountains, which difficultly conduced snowfall over the Qilian Mountains.
Collapse
|
6
|
Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su13147589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Tarim River Basin (TRB), the retreat of glacier and snow cover reduction due to climate warming threatens the regional economy of downstream basins that critically depends on meltwater. However, the quantitative evaluation of its impact on multiple sectors of the socioeconomic system is incomplete. Based on compiled regional input–output table of the year 2012, this study developed a method to analyze the relationships between economic activities and related meltwater withdrawal, as well as sectoral transfer. The results show that the direct meltwater withdrawal intensity (DMWI) of agriculture was much higher than other sectors, reaching 2348.02 m3/10,000 CNY. Except for A01 (agriculture) and A02 (mining and washing of coal), the embodied meltwater withdrawal (EMW) driven by the final demand of other sectors was greater than direct meltwater withdrawal, and all sectors required inflows of virtual water (72.45 × 108 m3, accounting for 29% of total supply from cryospheric water resources) for their production processes in 2012. For sectors with high DMWI, improving water-use efficiency is an effective way to reduce water withdrawal. To some extent, the unbalanced supply of cryospheric water resources due to geographical segregation can be regulated by virtual water flows from water-saving to water-intensive sectors. Such decisions can affect the balance between socioeconomic development and environment conservation for long-term sustainability.
Collapse
|
7
|
Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. SUSTAINABILITY 2021. [DOI: 10.3390/su13073992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Snow cover is an important water resource in arid and semi-arid regions of Central Asia, and is related to agricultural and livestock production, ecosystems, and socio-economic development. The snowline altitude (SLA) is a significant indicator for monitoring the changes in snow cover in mountainous regions under the changing climate. Here, we investigate the spatiotemporal variation of SLA in the Tienshan Mountains (TS) during 2001–2019 using Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products on a grid-by-grid basis. The potential influence of topographic factors (slope gradient and aspect) on SLA and the correlation between SLA, temperature, precipitation, and solar radiation are also investigated. The results are as follows: (1) The annual cycle of SLA shows strong seasonal fluctuations (from about 2000 m in late December to 4100 m in early August). The SLA over the TS exhibits a large spatiotemporal heterogeneity. (2) SLA increases with a steeper slope gradient. The SLA of the northerly aspect is generally less than the southerly. (3) The SLA over the TS generally shows an increasing trend in the recent years (2001–2019). The change trend of SLA varies in different months. Except for a slight decrease in June, the SLA increased in almost all months, especially at the start of the melt season (March and April) and the end of melting season (July and August). (4) The SLA increases with increased temperature/radiation in the TS, and decreases with increased precipitation. Solar radiation is the dominant climatic factor affecting the changes of SLA in the TS. Compared with precipitation, temperature is more correlated to SLA dynamics.
Collapse
|