1
|
Chen W, Liu Z, Xie Y, Guo X, Xie H, Chen J, Zhang Z, Ding L. Synthesis of ZIF-67 composite lignin hydrogel and its catalytic degradation of naphthalene by PMS in wastewater. Int J Biol Macromol 2025; 298:139700. [PMID: 39826725 DOI: 10.1016/j.ijbiomac.2025.139700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The incorporation of ZIF-67 into hydrogels for wastewater pollutant remediation has been widely studied, but the synthesis often requires organic solvents such as methanol or ethanol, which can result in the generation of toxic liquid waste. In this study, a novel hydrogel (ZIF-67@SL) was synthesized by integrating ZIF-67 into a dual-network system of sodium lignosulfonate (SL) and acrylamide (AM) using an in situ precipitation method in water. The material was characterized by XRD, FTIR, XPS, SEM, TEM, BET, and TGA analyses. ZIF-67@SL was used to activate peroxymonosulfate (PMS) for degrading naphthalene (NAP) in aqueous solutions. Results showed that ZIF-67@SL effectively activated PMS, achieving an 85.43 % removal rate of NAP within 60 min at 30 °C, with an initial NAP concentration of 10 mg·L-1, ZIF-67@SL dosage of 800 mg·L-1, PMS concentration of 1000 mg·L-1, and pH 7.0. The catalytic efficiency remained high after five recycling cycles. Quenching experiments and EPR spectra revealed that the degradation of NAP in the ZIF-67@SL/PMS system occurred through both free radical pathways (SO4•-, •OH, and O2•-) and a non-radical pathway (1O2). XPS analysis indicated that the activation of PMS and generation of radicals were influenced by Co2+, Co3+, Co0, nitrogen elements, and adsorbed oxygen in the ZIF-67@SL composite. Furthermore, the ZIF-67@SL/PMS system demonstrated strong resistance to low-concentration anions and humic acid (HA) interference and effectively removed multiple polycyclic aromatic hydrocarbons (PAHs) in mixed wastewater. Maximum removal rates for NAP, ACN, ACT, PHE, and FLU were 95.26 %, 99.9 %, 99.79 %, 99.04 %, and 75.69 %, respectively. This study provides an environmentally friendly strategy for wastewater treatment by synthesizing ZIF-67 hydrogel in water and utilizing it as an efficient catalyst.
Collapse
Affiliation(s)
- Wu Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Zhuozhuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.
| | - Yuansha Xie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China.
| | - Xianzhe Guo
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Huijia Xie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Jianghao Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Zheng Zhang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Ling Ding
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| |
Collapse
|
2
|
Qiu L, Yan C, Zhang Y, Chen Y, Nie M. Hypochlorite-mediated degradation and detoxification of sulfathiazole in aqueous solution and soil slurry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124039. [PMID: 38670426 DOI: 10.1016/j.envpol.2024.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Although various activated sodium hypochlorite (NaClO) systems were proven to be promising strategies for recalcitrant organics treatment, the direct interaction between NaClO and pollutants without explicit activation is quite limited. In this work, a revolutionary approach to degrade sulfathiazole (STZ) in aqueous and soil slurry by single NaClO without any activator was proposed. The results demonstrated that 100% and 94.11% of STZ could be degraded by 0.025 mM and 5 mM NaClO in water and soil slurry, respectively. The elimination of STZ was shown to involve superoxide anion (O2•-), chlorine oxygen radical (ClO•), and hydroxyl radical (•OH), according to quenching experiments and the analysis of electron paramagnetic resonance. The addition of Cl-, HCO3-, SO42-, and humic acid (HA) marginally impeded the decomposition of STZ, while NO3-, Fe3+, and Mn2+ facilitated the process. The NaClO process exhibited significant removal effectiveness at a neutral initial pH. Moreover, the NaClO facilitated application in various soil samples and water matrices, and the procedure was also successful in effectively eliminating a range of sulfonamides. The suggested NaClO degradation mechanism of STZ was based on the observed intermediates, and the majority of the products exhibited lower ecotoxicity than STZ. Besides, the experiment results by using X-ray diffraction (XRD) and a fourier transform infrared spectrometer (FTIR) indicated the negligible effects on the composition and structure of soil by the treatment of NaClO. Simultaneously, the experimental results also illustrated that the bioavailability of heavy metals and the physiochemical characteristics of the soil before and after the remediation did not change to a significant extent. Following the remediation of NaClO, the phytotoxicity tests showed reduced toxicity to wheat and cucumber seeds. As a result, treating soil and water contaminated with STZ by using NaClO was a reasonably practical and eco-friendly method.
Collapse
Affiliation(s)
- Longhui Qiu
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yue Zhang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yabing Chen
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
3
|
Liang J, Duan X, Xu X, Zhang Z, Zhang J, Zhao L, Qiu H, Cao X. Critical Functions of Soil Components for In Situ Persulfate Oxidation of Sulfamethoxazole: Inherent Fe(II) Minerals-Coordinated Nonradical Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:915-924. [PMID: 38088029 DOI: 10.1021/acs.est.3c07253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Naturally occurring iron (Fe) minerals have been proved to activate persulfate (PS) to generate reactive species, but the role of soil-inherent Fe minerals in activating PS as well as the underlying mechanisms remains poorly understood. Here, we investigated sulfamethoxazole (SMX) degradation by PS in two Fe-rich soils and one Fe-poor soil. Unlike with the radical-dominant oxidation processes in Fe-poor soil, PS was effectively activated through nonradical pathways (i.e., surface electron-transfer) in Fe-rich soils, accounting for 68.4%-85.5% of SMX degradation. The nonradical mechanism was evidenced by multiple methods, including electrochemical, in situ Raman, and competition kinetics tests. Inherent Fe-based minerals, especially those containing Fe(II) were the crucial activators of PS in Fe-rich soils. Compared to Fe(III) minerals, Fe(II) minerals (e.g., ilmenite) were more liable to form Fe(II) mineral-PS* complexes to initiate the nonradical pathways, oxidizing adjacent SMX via electron transfer. Furthermore, mineral structural Fe(II) was the dominant component to coordinate such a direct oxidation process. After PS oxidation, low-crystalline Fe minerals in soils were transformed into high-crystalline Fe phases. Collectively, our study shows that soil-inherent Fe minerals can effectively activate PS in Fe-rich soils, so the addition of exogenous iron might not be required for PS-based in situ chemical oxidation. Outcomes also provide new insights into the activation mechanisms when persulfate is used for the remediation of contaminated soils.
Collapse
Affiliation(s)
- Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA5005, Australia
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Chen Y, Shi R, Hu Y, Xu W, Zhu NM, Xie H. Alkali-thermal activated persulfate treatment of tetrabromobisphenol A in soil: Parameter optimization, mechanism, degradation pathway and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166477. [PMID: 37625715 DOI: 10.1016/j.scitotenv.2023.166477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
The continued accumulation of halogenated organic pollutants in soil posed a potential threat to ecosystems and human health. In this study, tetrabromobisphenol A (TBBPA) was used as a typical representative of halogenated organic pollutants in soil, for alkali-thermal activated persulfate (PS) treatment. The results of response surface methodology (RSM) showed a optimal debromination efficiency of TBBPA was 88.99 % under the optimum reaction conditions. Quenching experiments and electron paramagnetic resonance (EPR) confirmed that SO4-•, HO•, O2-• and 1O2 existed simultaneously in the oxidation process. SO4-• played a major role in the initial stage of the reaction, and O2-• played a major role in the the last stage. Based on density functional theory (DFT) and intermediate products, two degradation pathways were proposed, including debromination reaction and β bond scission. Moreover, the basic physical and chemical properties of the soil were affected to a certain extent, while the soil surface structure, elements and functional group composition rarely changed. In addition, the T.E.S.T. analysis and biotoxicity tests proved that alkali-thermal activated PS can effectively reduce the toxicity of TBBPA-contaminated soil, which is conducive to the subsequent safe secondary utilization of soil.
Collapse
Affiliation(s)
- Yushuang Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Rui Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yafei Hu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Wenlai Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Neng-Min Zhu
- Biogas Institute of Ministry of Agriculture, Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu, 610041, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310003, China
| |
Collapse
|
5
|
Zhan M, Wu L, Xu X, Wang J, Shan Y, Yin Y, Jiao W, Giesy JP. Synergetic degradation of perfluorooctanoic acid (PFOA) in soil using electrical resistance heating induced persulfate activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165497. [PMID: 37451438 DOI: 10.1016/j.scitotenv.2023.165497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Due to wastes from production of fluorinated materials and use of aqueous fire-fighting foams (AFFF), soils contaminated with perfluorooctanoic acid (PFOA) is of concern. However, current PFOA-contaminated soil disposal techniques have relatively low degradation efficiencies and are not suitable for on-site remediation. In this study, an electrical resistance heating (ERH) device and a box experimental device were used to study whether ERH induced persulfate activation (ERH/PS) could degrade PFOA in the soil. The results indicated that single ERH and single PS addition could not effectively degrade PFOA (with approximately 0.3 % and 3.9 % degradation after 9 h, respectively), while the degradation efficiency of PFOA with coupled ERH/PS could reach 87.3 % after 9 h of reaction. Moreover, effects of PS content, heating temperature, and soil organic matter on the degradation of PFOA were explored. During the ERH/PS process, PFOA was gradually transformed into short chain perfluorinated compounds and finally mineralized to fluoride ions. Finally, using a box experimental device, PS was effectively transported to the target contaminated area through electrokinetic (EK)-assisted delivery. After activating PS through ERH, the degradation rate of PFOA could reach 95.5 %. This is a novel study demonstrating the feasibility of ERH induced PS activation to degrade PFOA in soil, which provides a potential on-site strategy for remediation of PFOA-contaminated soil.
Collapse
Affiliation(s)
- Mingxiu Zhan
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liutao Wu
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Xu Xu
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Jinqing Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China.
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|
6
|
Menacherry SPM, Kodešová R, Fedorova G, Sadchenko A, Kočárek M, Klement A, Fér M, Nikodem A, Chroňáková A, Grabic R. Dissipation of twelve organic micropollutants in three different soils: Effect of soil characteristics and microbial composition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132143. [PMID: 37531764 DOI: 10.1016/j.jhazmat.2023.132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The dissipation kinetics and half-lives of selected organic micropollutants, including pharmaceuticals and others, were systematically investigated and compared among different soil types. While some pollutants (e.g., atorvastatin, valsartan, and bisphenol S) disappeared rapidly in all the tested soils, many of them (e.g., telmisartan, memantine, venlafaxine, and azithromycin) remained persistent. Irrespective of the soil characteristics, venlafaxine showed the lowest dissipation kinetics and the longest half-lives (250 to approximately 500 days) among the stable compounds. The highest first and second-order kinetics were, however, recorded for valsartan (k1; 0.262 day-1) and atorvastatin (k2; 33.8 g μg-1 day-1) respectively. Nevertheless, more than 90% (i.e., DT90) of all the rapidly dissipated compounds (i.e., atorvastatin, bisphenol S, and valsartan) disappeared from the tested soils within a short timescale (i.e., 5-36 days). Dissipation of pollutants that are more susceptible to microbial degradation (e.g., atorvastatin, bisphenol S, and valsartan) seems to be slower for soils possessing the lowest microbial biomass C (Cmic) and total phospholipid fatty acids (PLFAtotal), which also found statistically significant. Our results revealing the persistence of several organic pollutants in agricultural soils, which might impact the quality of these soils, the groundwater, and eventually on the related biota, is of high environmental significance.
Collapse
Affiliation(s)
- Sunil Paul M Menacherry
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic.
| | - Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Alina Sadchenko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre CAS, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| |
Collapse
|
7
|
Tang X, Guo J, Gao Y, Zhen K, Sun H, Wang C. Efficient remediation of the field soil contaminated with PAHs by amorphous porous iron material activated peroxymonosulfate. CHEMOSPHERE 2023; 327:138516. [PMID: 36972874 DOI: 10.1016/j.chemosphere.2023.138516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
An amorphous porous iron material (FH) was firstly self-synthesized using a simple coprecipitation approach and then utilized to activate peroxymonosulfate (PMS) for the catalytic degradation of pyrene and remediation of PAHs contaminated soil on site. FH exhibited more excellent catalytic activity than traditional hydroxy ferric oxide and possessed stability at a pH range of 3.0-11.0. According to quenching studies and electron paramagnetic resonance (EPR) analyses, non-radicals (Fe(IV) = O and 1O2) were the major reactive oxygen species (ROS) in the FH/PMS system's degradation of pyrene. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) of FH before and after the catalytic reaction, as well as active site substitution experiments and electrochemical analysis all verified that PMS adsorbed on FH could produce more abundant bonded hydroxyl groups (Fe-OH) which dominated the radical and non-radical oxidation reactions. Then, a possible pathway for pyrene degradation was presented according to gas chromatography-mass spectrometry (GC-MS). Furthermore, the FH/PMS system exhibited excellent catalytic degradation in the remediation of PAH-contaminated soil at real sites. This work provides a remarkable potential remediation technology of persistent organic pollutants (POPs) in environmental and will contribute to understanding the mechanism of Fe-based hydroxides in advanced oxidation processes.
Collapse
Affiliation(s)
- Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Jiacheng Guo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Kai Zhen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Ibrahim AO, Huang Y, Liu H, Mustapha NA. On-site generation of reactive oxidative radicals from dithionite treated oxic soil slurry. ENVIRONMENTAL TECHNOLOGY 2023; 44:1751-1762. [PMID: 34842053 DOI: 10.1080/09593330.2021.2012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Whereas dithionite has been extensively used as a reducing agent in soil and sediment remediation, here, we demonstrate that it can be used as a potential source of oxidizing radical in oxic soils with potential application in organic pollutant remediation. Benzoic acid was used as a probe compound and the generation of its oxidative product para-hydroxybenzoic acid (p-HBA) was detected to quantify the production of oxidative radicals (ROS). By increasing the dithionite concentration from 2.5-10 Mm, the accumulated P-HBA concentration in 120 min increased from 15.0-27 µM. Whereas, above 10 mM, the p-HBA concentration decreased due to radical scavenging. Increasing soil dosage from 2.5-15 g/100 mL the accumulated p-HBA amount increased from 22.8-33.7 µM. Temperature 25-35 oC and pH 6.2-7.5 were favoured for p-HBA generation. Furthermore, we investigated the roles of different active intermediates in the reaction system and proposed the mechanism behind the ROS genearation. This study suggested that dithionite can be used as an active reagent for advanced oxidation remediation in oxic soil medium.
Collapse
Affiliation(s)
- Abdullateef Omeiza Ibrahim
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Yao Huang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Nasiru Abba Mustapha
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Guo Z, Wang D, Yan Z, Qian L, Yang L, Yan J, Chen M. Efficient Remediation of p-chloroaniline Contaminated Soil by Activated Persulfate Using Ball Milling Nanosized Zero Valent Iron/Biochar Composite: Performance and Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091517. [PMID: 37177062 PMCID: PMC10180579 DOI: 10.3390/nano13091517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
In this study, efficient remediation of p-chloroaniline (PCA)-contaminated soil by activated persulfate (PS) using nanosized zero-valent iron/biochar (B-nZVI/BC) through the ball milling method was conducted. Under the conditions of 4.8 g kg-1 B-nZVI/BC and 42.0 mmol L-1 PS with pH 7.49, the concentration of PCA in soil was dramatically decreased from 3.64 mg kg-1 to 1.33 mg kg-1, which was much lower than the remediation target value of 1.96 mg kg-1. Further increasing B-nZVI/BC dosage and PS concentration to 14.4 g kg-1 and 126.0 mmol L-1, the concentration of PCA was as low as 0.15 mg kg-1, corresponding to a degradation efficiency of 95.9%. Electron paramagnetic resonance (EPR) signals indicated SO4•-, •OH, and O2•- radicals were generated and accounted for PCA degradation with the effect of low-valence iron and through the electron transfer process of the sp2 hybridized carbon structure of biochar. 1-chlorobutane and glycine were formed and subsequently decomposed into butanol, butyric acid, ethylene glycol, and glycolic acid, and the degradation pathway of PCA in the B-nZVI/BC-PS system was proposed accordingly. The findings provide a significant implication for cost-effective and environmentally friendly remediation of PCA-contaminated soil using a facile ball milling preparation of B-nZVI/BC and PS.
Collapse
Affiliation(s)
- Zihan Guo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| | - Zichen Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Pan X, Wei J, Wang M, Zhang J, Xu Z, Wei H, Lai N, Nian K, Zhang R, Zhang X. Comparative studies of transformation behaviors and mechanisms of halophenols in multiple chemical oxidative systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161756. [PMID: 36690111 DOI: 10.1016/j.scitotenv.2023.161756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Due to wide applications, halophenols (HPs), especially bromophenols, chlorophenols, and fluorophenols, are commonly detected but resistant to biological removal in wastewater treatment plants (WWTPs). This study investigated the overall transformation behaviors of three representative HPs (2,4-dichlorophenol: 24-DCP, 2,4-dibromophenol: 24-DBP, 2,4-difluorophenol: 24-DFP) in six chemical oxidative systems (KMnO4, K2FeO4, NaClO, O3, UV, and persulfate (PS)). The results revealed fast removal of selected HPs by O3, PS and K2FeO4, while a large discrepancy in their removal efficiencies occurred under UV irradiation, KMnO4 oxidation and particularly chlorination. Based on the analysis of the identified intermediates and products, coupling among the five routes was the general route, and dimers were the main intermediates for HP oxidation. The effect of the halogen atom on the transformation pathways of HPs was highly reaction type dependent. Among the six chemical treatments, PS could induce HPs to yield relatively low-molecular-weight polymers and obtain the highest coupling degree. Transition state (TS) calculations showed that the H atom linked to the phenoxy group of HPs was the most easily abstracted by hydroxyl radicals to form the coupling precursor, i.e., phenoxy radicals. This high coupling behavior further resulted in the increased toxicity to green algae. Characterization revealed that HP reaction solutions treated with PS had a severely negative effect on algae growth, photosynthetic pigment synthesis, and the antioxidant enzyme system. These findings can shed light on the reaction mechanisms of advanced oxidation technologies and some risk management and control of PS technique may be considered when treating phenolic pollutants.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China.
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, China
| | - Min Wang
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Jie Zhang
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Zhiming Xu
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Haojie Wei
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Nami Lai
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Kainan Nian
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xuesheng Zhang
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China.
| |
Collapse
|
11
|
Liu SS, Jia YW, Guo XY, Zhao JL, Gao Y, Sweetman AJ, Ying GG, Xu L, Tu C, Chen CE. Insights into the release of triclosan from microplastics in aquatic environment assessed with diffusive gradient in thin-films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163601. [PMID: 37087021 DOI: 10.1016/j.scitotenv.2023.163601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Organic chemicals associated with microplastics (MPs) can be released and thus pose potential risks during weathering processes. However, the thermodynamics and kinetics of their release processes still need to be better understood. Herein, the adsorption and desorption kinetics of triclosan on polystyrene (PS) and polyvinyl chloride (PVC) were investigated by using both batch experiments and diffusive gradients in thin-films (DGT) technique. The pseudo-second-order model fitted the data best, implying that both intraparticle diffusion and external liquid film diffusion influence the adsorption and desorption processes. DGT continuously accumulated triclosan from MP suspensions but slower than theoretical values, indicating some restrictions to desorption. The DGT-induced fluxes in Soils/Sediment (DIFS) model, employed to interpret DGT data, gave distribution coefficients for labile species (Kdl) of 5000 mL g-1 (PS) and 1000 mL g-1 (PVC) and the corresponding response times (Tc) were 10 s and 1000 s, respectively. Higher Kdl but smaller Tc for PS than PVC showed that more triclosan adsorbed on PS could be rapidly released, while there were some kinetic limitations for triclosan on PVC. A novel finding was that pH and ionic strength individually and interactively affected the supply of triclosan to DGT. This is the first study to quantify interactions of organics with MPs by using DGT, aiding our understanding of MPs' adsorption/desorption behavior in the aquatic environment.
Collapse
Affiliation(s)
- Si-Si Liu
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yu-Wei Jia
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Xiao-Yuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macau
| | - Jian-Liang Zhao
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Andy J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Guang-Guo Ying
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chang-Er Chen
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Zeng S, Kan E. Escherichia coli inactivation in water by sulfate radical-based oxidation process using FeCl 3-activated biochar/persulfate system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160561. [PMID: 36574557 DOI: 10.1016/j.scitotenv.2022.160561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Pathogenic microbes in water present great risks to environments, water resources, and human health. In the present study, for the first time, a FeCl3-activated bermudagrass-derived biochar (FA-BC) was applied to activate persulfate (PS) for E. coli inactivation. The PS activation was ascribed to the presence of Fe0 and Fe3O4 on the surface of FA-BC, and SO4·- radicals were proved to be the main role for E. coli inactivation using FA-BC activated PS system (FA-BC/PS). Decreasing the pH (5-9) and increasing the PS concentration (50-300 mg/L), reaction temperature (20-50 °C), and FA-BC dosage (100-500 mg/L) resulted in the enhancement of disinfection efficiency of E. coli using FA-BC/PS. 6.21 log reductions of E. coli were achieved within 20 min under the optimal conditions (500 mg/L FA-BC, 200 mg/L PS, pH 7, and 20 °C with 107 CFU/mL E. coli in DI water). The FA-BC/PS effectively eliminated various initial concentrations of E. coli (105-108 CFU/mL). The E. coli inactivation rate decreased from 0.1426 min-1 to 0.0883, 0.1268 min-1, and 0.1093 min-1 with the presence of 10 mg/L humic acid, 100 mg/L Cl-, and 100 mg/L HCO3-, respectively. In addition, after three cycles of disinfection tests using FA-BC/PS, the E. coli inactivation rate only slightly decreased from 0.1426 to 0.1288 min-1. The FA-BC/PS also effectively removed the E. coli in real stormwater with a 99.2 % inactivation efficiency within 180 min. The FA-BC/PS in fixed-bed column tests revealed the continuous and high inactivation of E. coli in water. Increasing the FA-BC amount (1.5 %-5 %) and PS concentration (50-200 mg/L) and decreasing the flow rate (2-4 mL/min) caused the lower E. coli concentration in effluent. Therefore, the FA-BC/PS can be considered as a promising and efficient technique for water disinfection.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering, Texas A&M University, TX 77843, USA; Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering, Texas A&M University, TX 77843, USA; Department of Wildlife, and Natural Resources, Tarleton State University, TX 76401, USA; Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA.
| |
Collapse
|
13
|
Chen Y, Shi R, Luo H, Zhang R, Hu Y, Xie H, Zhu NM. Alkali-catalyzed hydrothermal oxidation treatment of triclosan in soil: Mechanism, degradation pathway and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159187. [PMID: 36202363 DOI: 10.1016/j.scitotenv.2022.159187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The continuous accumulation of chlorinated organic pollutants in soil poses a potential threat to ecosystems and human health alike. Alkali-catalyzed hydrothermal oxidation (HTO) can successfully remove chlorinated organic pollutants from water, but it is rarely applied to soil remediation. In this work, we assessed this technique to degrade and detoxify triclosan (TCS) in soil and we determined the underlying mechanisms. The results showed a dechlorination efficiency of TCS (100 mg per kg soil) of 49.03 % after 120 min reaction (H2O2/soil ratio 25 mL·g-1, reaction temperature 180 °C in presence of 1 g·L-1 NaOH). It was found that soil organic constituents (humic acid, HA) and inorganic minerals (SiO2, Al2O3, and CaCO3) suppressed the dechlorination degradation of TCS, with HA having the strongest inhibitory effect. During alkali-catalyzed HTO, the TCS molecules were effectively destroyed and humic acid-like or fulvic acid-like organics with oxygen functional groups were generated. Fluorescence spectroscopy analysis showed that hydroxyl radicals (OH) were the dominant reactive species of TCS degradation in soil. On the basis of the Fukui function and the degradation intermediates, two degradation pathways were proposed. One started with cleavage of the ether bond between the benzene rings of TCS, followed by dechlorination and the opening of benzene via oxidation. The other pathway started with direct hydroxylation of the benzene rings of TCS, after which they were opened and dechlorinated through oxidation. Analysis of the soil structure before and after treatment revealed that the soil surface changed from rough to smooth without affecting soil surface elements. Finally, biotoxicity tests proved that alkali-catalyzed HTO effectively reduced the toxicity of TCS-contaminated soil. This study suggests that alkali-catalyzed hydrothermal oxidation provides an environmentally friendly approach for the treatment of soil contaminated with chlorinated organics such as TCS.
Collapse
Affiliation(s)
- Yushuang Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Rui Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Hongjun Luo
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Rong Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yafei Hu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou 310003, China
| | - Neng-Min Zhu
- Biogas Institute of Ministry of Agriculture, Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
| |
Collapse
|
14
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Chen K, Liang J, Xu X, Zhao L, Qiu H, Wang X, Cao X. Roles of soil active constituents in the degradation of sulfamethoxazole by biochar/persulfate: Contrasting effects of iron minerals and organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158532. [PMID: 36075408 DOI: 10.1016/j.scitotenv.2022.158532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The biochar/persulfate (BC/PS) has been extensively applied in the degradation of organic contaminants in the aqueous solutions. However, much less work has been done on the degradation of organic contaminants in soil by BC/PS, especially on the unclear roles of soil active constituents in the degradation. This study was conducted to investigate the degradation of sulfamethoxazole (SMX) in two soils through PS oxidation activated by biochar. Biochar was produced via the pyrolysis of peanut shell at 400 °C and 700 °C, which was denoted as BC400 and BC700, respectively. Two soils used were red soil and paddy soil, mainly differing in iron minerals and organic matter. Both biochar promoted SMX degradation (42.6 %-90.7 %) in two soils, compared to PS alone (20.9 %-41.7 %). In BC400/PS system, the free radicals were the dominant reactive species for SMX degradation, while the electron transfer pathway played a vital role in the SMX degradation by BC700/PS. Higher SMX degradation was observed in red soil (41.7 %-97.8 %) than that in paddy soil (20.3 %-94.8 %), which was ascribed to the promotion of iron minerals in red soil yet the inhibition of organic matter in paddy soil. Specifically, the reaction between ≡Fe(III)/≡Fe(II) and PS on the surface of iron minerals in red soil generated more SO4•- and •OH, resulting in the enhanced SMX degradation. However, the consumption of free radicals and suppression of electron transfer pathway by organic matter in paddy soil inhibited SMX degradation. As the comparative carbonaceous materials to biochar, graphite exerted no obvious degradation effect, whereas activated carbon exhibited the comparable promoting efficacy to BC700. Both biochar, especially BC700, significantly (p < 0.05) alleviated the adverse effects of PS treatment on wheat (Triticum aestivum L.) growth. Overall, this study demonstrates that biochar/persulfate was effective in SMX degradation in soil and the degradation was affected by soil iron minerals and organic matter, which should be paid more attention in the persulfate remediation of organic contaminated soils at a specific site.
Collapse
Affiliation(s)
- Kexin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinbing Wang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Mechanistic insight into manganese oxidation induced by sulfite under aerobic condition: Implication of triclosan degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Wei Y, Chen S, Ren T, Chen L, Liu Y, Gao J, Li Y. Effectiveness and mechanism of cyanide remediation from contaminated soils using thermally activated persulfate. CHEMOSPHERE 2022; 292:133463. [PMID: 34974037 DOI: 10.1016/j.chemosphere.2021.133463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Persulfate (PS)-based advanced oxidation processes have been frequently employed for contaminant remediation, but the effectiveness of PS oxidation for the elimination of cyanide-bearing contaminants from soil, and the underlying mechanisms, have rarely been explored. This study investigated the degradation of two iron-cyanide (Fe-CN) complexes (ferricyanide and ferrocyanide) with thermally activated PS via two remediation strategies, namely one-step oxidation (direct PS oxidation) and two-step oxidation (alkaline extraction followed by PS oxidation). The two-step oxidation process was more effective for the elimination of cyanide pollutants from soil, reaching >94% remediation efficiency for both Fe-CN complexes studied. The presence of dissolved soil components, especially soil organic matter, increased consumption of PS during the remediation process. A combined analysis based on electron paramagnetic resonance (EPR), free radical scavenging, and degradation product identification revealed that SO4- and HO were the principal reactive radicals responsible for Fe-CN degradation. Based on the determination of radical species and identification of decomposition products, a transformation pathway for Fe-CN complexes during thermally activated PS oxidation is proposed. Overall, this study demonstrates the effectiveness of the thermally activated PS oxidation technique for cyanide elimination from polluted soil. Further study is required to verify the feasibility of this method for field applications.
Collapse
Affiliation(s)
- Yunmei Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Shuang Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Tingting Ren
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Lianying Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Yuanyuan Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Junmin Gao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
18
|
Shen Y, Zhao S, Lu Y, Yang J, Wang J, Zhang S. Effective degradation of VOCs from wood by Fe 2+ chelate activated dual oxidant (H 2O 2-PS). CHEMOSPHERE 2022; 291:132882. [PMID: 34780731 DOI: 10.1016/j.chemosphere.2021.132882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Wood is rich in extractives and volatile oils that emit unpleasant odors and some harmful volatile organic compounds (VOCs). Chemical oxidation technologies processes high efficiency on the destruction of aqueous organic components via oxidation by radicals, however, wood block treatment scenarios suffer from the low availability of radicals in aqueous conditions owing to the special structure of the wood blocks, limitations of mass transfer and the short life of free radicals. Herein, ethylenediaminetetraacetic acid (EDTA) is selected as a chelating agent to synthesize EDTA-Fe2+ chelate, thus introducing Fe2+ into the wood by vacuum impregnation. The Fe2+ is evenly distributed and immobilized in the wood to form a chemical oxidation system via in-situ activation of the dual oxidant (H2O2-PS), which truncates the contact distance between free radicals and extractives/volatile oils thus enhancing the removal efficiency. Various controlling factors, including EDTA/Fe2+ molar ratio, Fe2+dosage, PS/H2O2 molar ratio, and persulfate (PS) dosage are evaluated. The degradation products of VOCs by headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) indicate that the wood VOC removal rate is ∼80%. The Electron paramagnetic resonance (EPR) analysis further reveals that SO4-· and ·OH are the primary reactive species. The characterization of wood properties illustrates that the process has no destructive effect. The results of this work may provide a theoretical basis for feasibility of the practical application of the EDTA-Fe2+/H2O2-PS system.
Collapse
Affiliation(s)
- Yulin Shen
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shujun Zhao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yutong Lu
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jisheng Yang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jilin Wang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|