1
|
Xiao X, Li X, Zhang X, Wang C, Liu X, Bai J, Zhang R, Cao S, Hu J, Liu Z, Shen J. Optimization strategy for Cr(VI) removal in coke-based modular constructed wetlands: A comprehensive analysis of purification efficiency, removal mechanisms, and practical feasibility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125231. [PMID: 40188748 DOI: 10.1016/j.jenvman.2025.125231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/27/2025]
Abstract
To address Cr(VI) contamination, this study designed a modular-filled constructed wetland (MFCW) by optimizing the sequence of coke, bio-ceramic, gravel and zeolite fillers. Results demonstrated that the "coke-bio-ceramic-gravel-zeolite" configuration achieved an average Cr(VI) removal efficiency of 90 %, with effluent concentrations stabilized at 0.16 mg/L (below China's discharge limit of 0.5 mg/L). The coke module contributed 52.1 % removal via adsorption (139.86 mg/kg capacity) and chemical reduction. Microbial analysis revealed Cr-resistant Proteobacteria dominance (30.4 % contribution), while plants (Acorus calamus) enhanced rhizosphere reduction (1.5 %). The system also removed NH4+-N (96.0 %), TP (63.0 %) and COD (71.0 %), with modular design reducing operational costs by 32.2 %. The study innovatively proposes a coke-dominated multi-fillers sequential synergistic mechanism, providing an efficient and low-cost ecological solution for industrial wastewater treatment.
Collapse
Affiliation(s)
- Xinlu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuhao Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Chen Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoting Liu
- PowerChina Hubei Electric Engineering Co., Ltd, Wuhan, 430040, China
| | - Jing Bai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Rong Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Shilong Cao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiezhou Hu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenchao Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Shen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Fang W, Wu H, Ma K, Zuo B, She D, Geng Z, Liang H. Efficient selective adsorption of Cr(VI) by S-doped porous carbon prepared from industrial lignin: Waste increment and wastewater treatment. Int J Biol Macromol 2024; 278:134765. [PMID: 39153671 DOI: 10.1016/j.ijbiomac.2024.134765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Industrial lignin is a waste product of the paper industry, which contains a large amount of oxygen group structure, and can be used to treat industrial wastewater containing Cr(VI). However, lignin has very low reactivity, so how to enhance its adsorption performance is a major challenge at present. In this study, a two-stage hydrothermal and activation strategy was used to activate the lignin activity and doping S element to prepare high-performance S-doped lignin-based polyporous carbon (S-LPC). The results show that the surface of S-LPC is rich in S and O groups and has a well-developed pore structure, which is very beneficial to Cr(VI) uptake -reduction and mass transfer on the material. In the wastewater, the utmost adsorption potential of Cr(VI) by S-LPC achieved 882.83 mg/g. After 7 cycles of regeneration, the adsorption of S-LPC decreased by only approximately 18 %. Ion competition experiments showed that S-LPC has excellent specificity for Cr(VI) adsorption. In factory wastewater, the adsorption performance of S-LPC for Cr(VI) remained above 95 %, which shows the excellent performance of S-LPC in practical applications. The results are of great significance for green chemical utilization of waste lignin, treatment of industrial wastewater and sustainable development.
Collapse
Affiliation(s)
- Wendi Fang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Bowen Zuo
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Diao She
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Nie Y, Zhang T, Xu Y, Du Y, Ai J, Xue N. Study on mechanism of removal of sudden Tetracycline by compound modified biological sand filtration process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120709. [PMID: 38537460 DOI: 10.1016/j.jenvman.2024.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
The removal of tetracycline from the sewage plant effluents through advanced treatment methods is key to controlling tetracycline levels in the water environment. In this study, modified quartz sands (QS) were used in a biological sand filter to remove tetracycline. The modified QS, with different surface characteristics, were prepared using glass etching technology combined with subsequent chemical modification methods, including hydroxylation treatment, metal ion modification, and amino modification. The adsorption efficiency of hydroxylated QS was higher than that of metal ion modified and amino modified QS, with adsorption efficiencies of 20.4331 mg/kg, 12.8736 mg/kg, and 10.1737 mg/kg, respectively. Results indicated that QS primarily reduce tetracycline through adsorption. Adsorption on ordinary QS fit the pseudo-first-order kinetic model, while adsorption on other modified QS and biofilm-coated QS fit the pseudo-second-order kinetics model. Biodegradation was identified as another mechanism for tetracycline reduction, which fit the zero-order kinetic model. Pseudomonas alcaligenes and unclassified Pseudomonas accounted for 96.6% of the total tetracycline-degrading bacteria. This study elucidates the effectiveness and mechanisms of five types of QS in treating tetracycline from sewage plant effluents. It provides a novel method for tetracycline reduction in real-world wastewater scenarios.
Collapse
Affiliation(s)
- Yudong Nie
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China; College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Tao Zhang
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China.
| | - Yufeng Xu
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Yunfei Du
- School of Foreign Languages, Chongqing University of Technology, Chongqing 400054, China.
| | - Junjie Ai
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Na Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
4
|
Mukhlish MZB, Nazibunnesa S, Islam S, Al Mahmood AS, Uddin MT. Preparation of chemically and thermally modified water caltrop epicarp ( Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution. Heliyon 2023; 9:e21862. [PMID: 38027613 PMCID: PMC10661450 DOI: 10.1016/j.heliyon.2023.e21862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The present study aims to prepare waste water caltrop (Trapanatans L.) epicarp (WCS)-based adsorbents such as raw WCS (WCS-Raw), citric acid-grafted WCS (WCS-CA), acrylamide-grafted WCS (WCS-AM), and calcined WCS (WCS-Si) for Ni(II) removal from aqueous solution in batch adsorption process. The physical and chemical properties of the prepared adsorbents were investigated by different characterization techniques such as scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, nitrogen adsorption-desorption analyses, and pH at the Point of Zero Charge (pHpzc) in order to assess the suitability and effectiveness of the adsorbents for the removal of Ni(II) by understanding their surface morphology, chemical composition, porosity, and surface charge properties. The experimental Ni(II) adsorption data followed both the Langmuir isotherm and the pseudo-second-order kinetic model suggesting the adsorption process on the prepared adsorbents is well-described by these models. The modified adsorbents WCS-CA, WCS-AM, and WCS-Si exhibited a maximum adsorption capacity of 52.08, 40.32, and 158.73 mg/g, respectively, while WCS-Raw had a capacity of 29.06 mg/g. The thermodynamic study revealed that the adsorption process was feasible, spontaneous, and endothermic. The desorption study demonstrated that the adsorbents could be reused for multiple cycles with minimal loss of activity. The present work evidenced the potential practical applicability and sustainability of the WCS-based adsorbents as promising adsorbents in treating and removing Ni(II) from wastewater.
Collapse
Affiliation(s)
- Muhammad Zobayer Bin Mukhlish
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shekh Nazibunnesa
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shariful Islam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Abu Saleh Al Mahmood
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Tamez Uddin
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
5
|
Wang T, Cao W, Wang Y, Qu C, Xu Y, Li H. Surface modification of quartz sand: A review of its progress and its effect on heavy metal adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115179. [PMID: 37356400 DOI: 10.1016/j.ecoenv.2023.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yingqi Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Chao Qu
- Handan Environmental Monitoring Center Station, Handan 056000, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China.
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
6
|
Zhang Y, He Y, Huang J, Chen J, Jia X, Peng X. Dimorphism of Candida tropicalis and its effect on nitrogen and phosphorus removal and sludge settleability. BIORESOURCE TECHNOLOGY 2023; 382:129186. [PMID: 37201869 DOI: 10.1016/j.biortech.2023.129186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Candida tropicalis PNY, a novel dimorphic strain with the capacity of simultaneous carbon, nitrogen and phosphorus removal in anaerobic and aerobic conditions, was isolated from activated sludge. Dimorphism of C. tropicalis PNY had effect on removing nitrogen and phosphorous and slightly affected COD removal under aerobic condition. Sample with high hypha formation rate (40 ± 5%) had more removal efficiencies of NH4+-N (50 mg/L) and PO43--P (10 mg/L), which could achieve 82.19% and 97.53%, respectively. High hypha cells dosage exhibited good settleability and filamentous overgrowth was not observed. According to label-free quantitative proteomics assays. Up-regulated proteins involved in the mitogen-activated protein kinase (MAPK) pathway indicated the active growth and metabolism process of sample with high hypha formation rate (40 ± 5%). And proteins concerning about glutamate synthetase and SPX domain-contain protein explain for the nutrient removal mechanism including assimilation of ammonia and polyphosphates synthesis.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Jiejing Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Mahanty B, Behera SK, Sahoo NK. Misinterpretation of Dubinin–Radushkevich isotherm and its implications on adsorption parameter estimates. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2189050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Naresh Kumar Sahoo
- Department of Chemistry, Environmental Science Program, (ITER), Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Xie S, Liu M, Zhang X, Yang C, Zhang Y, Qin Y, He C, Dou Y, Gao C, Yuan Y. Zeolite/ZnAl-layer double hydroxides with different Zn/Al ratios and intercalated anions as the substrate of constructed wetlands: synthesis, characterization and purification effect of Hexavalent chromium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19814-19827. [PMID: 36242668 DOI: 10.1007/s11356-022-23594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to synthesize novel zeolite substrates modified with four types of ZnAl-LDHs including Cl-LDHs(1:1), Cl-LDHs(3:1), CO3-LDHs(1:1), and CO3-LDHs(3:1); investigate Cr(VI) removal efficiencies in lab-scale constructed wetlands (CWs); and explore the effect of different Zn/Al ratios and intercalated anions on the removal efficiencies of Cr(VI) by modified zeolite. Different ZnAl-LDHs were prepared by co-precipitation method and coated onto the surface of original zeolite. Field emission scanning electron microscope and energy dispersive spectrometer were used to analyze physicochemical properties of zeolite/ZnAl-LDHs. Obtained results confirmed the successful LDHs-coating modification. The results of both X-ray diffraction and Fourier transform infrared suggested that the typical diffraction peak and functional groups of ZnAl-LDHs were detected in modified zeolites, and the peak of CO32- in CO3-LDHs at 1362 cm-1 was stronger and sharper than Cl-LDHs. It could be demonstrated by above results that the synthesis crystallinity and coating effect of CO3-LDHs was better than Cl-LDHs. Furthermore, it could be found that under the condition of same intercalated anion, LDHs with metal molar ratio of 1:1 had better crystallinity than LDHs with metal molar ratio of 3: 1. Subsequent determination of the removal performance of Cr(VI) by purification experiments revealed that zeolite/Cl-LDHs(3:1) showed the best Cr(VI) removal performance, and the removal rate of Cr(VI) was improved by 32.81% compared with the original zeolite, which suggested that could be an efficient substrate of CWs for Cr(VI) removal. The high crystallinity indicated that the structure of LDHs was stable and it was difficult to remove Cr(VI) by ion exchange. The above explained why the Cr(VI) removal efficiency by zeolite/Cl-LDHs is superior to that by zeolite/CO3-LDHs under the condition of same metal molar ratio. With the increase of metal molar ratio, the charge density of LDHs layers and intercalated anion increased, thus enhancing the electrostatic attraction of LDHs layers to Cr(VI) and the interlayer anion exchange capacity. However, the effect of charge density on Cr(VI) removal efficiency may be greater than crystallinity on removal efficiency, which could be responsible for the fact that zeolite/ZnAl-LDHs(3:1) had better Cr(VI) removal efficiency than zeolite/ZnAl-LDHs(1:1) under the condition of same intercalated anion.
Collapse
Affiliation(s)
- Shuqin Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Mingyang Liu
- China Construction Third Engineering Bureau Group Co., Ltd, Wuhan, 430072, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
- Hainan Research Institute, Wuhan University of Technology, Sanya, 572000, China.
| | - Chao Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yueling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yaojun Qin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuntao He
- China Construction Third Engineering Bureau Group Co., Ltd, Wuhan, 430072, China
| | - Yankai Dou
- Office Affairs Center of Changjiang River Administration of Navigational Affairs, Wuhan, 430014, China
| | - Chenguang Gao
- MCC South (Wuhan) Construction Design Consulting Co., Ltd, Wuhan, 430077, China
| | - Ye Yuan
- PowerChina ZhongNan Engineering Corporation Limited, Changsha, 410007, China
| |
Collapse
|
9
|
Study on adsorption of hexavalent chromium by composite material prepared from iron-based solid wastes. Sci Rep 2023; 13:135. [PMID: 36599914 DOI: 10.1038/s41598-023-27414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
A new adsorbent with chromium removal function was synthesized by carbon thermal method using iron-containing waste Fenton sludge and carbon-containing solid waste fly ash to treat high pH scoring wastewater generated from industrial processes. The results showed that the adsorbent used T = 273.15 K, pH = 10, t = 1200 min, C0 = 100 mg/L, had a removal rate of Cr(VI) of more than 80%, and the adsorption capacity could reach 393.79 mg/g. The characterization results show that the synthesized mesoporous nitrogen-doped composite material has a large specific surface area and mesoporous structure, and the surface of the material is rich in oxygen-containing functional groups and active sites. Compared with other studies, the adsorption capacity of the material is larger, which indicates that the removal effect of Cr(VI) in this study is better. The adsorption kinetic results show that the adsorption follows a pseudo second kinetic model, and the adsorption process is a chemisorption involving electron sharing or electron exchange. This experiment designed a simple method to synthesize mesoporous nitrogen-doped composites using industrial solid waste, with raw materials from cheap and easily available industrial solid waste, and solved the dual problems of heavy metals in wastewater and solid waste, providing a new idea for the resource utilization of Fenton sludge while not producing secondary pollution.
Collapse
|
10
|
Efficient Removal of Eriochrome Black T (EBT) Dye and Chromium (Cr) by Hydrotalcite-Derived Mg-Ca-Al Mixed Metal Oxide Composite. Catalysts 2022. [DOI: 10.3390/catal12101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Eriochrome Black T (EBT) and chromium (Cr) are considered to be potential pollutants due to their toxicity and severe impact on the environment. In the current study, hydrotalcite-derived Mg-Ca-Al-LDO mixed metal oxide composite was prepared using a conventional co-precipitation method and explored in terms of the removal of Cr and EBT dye from aqueous solution in a batch mode adsorption process. The prepared Mg-Ca-Al-LDH, Mg-Ca-Al-LDO and spent Mg-Ca-Al-LDO adsorbents were characterized to propose the adsorption mechanism. Different adsorption parameters were examined, such as adsorbent dosage, initial concentration, pH, reaction temperature and contact time. The EBT adsorption kinetic results matched strongly with the pseudo-second-order model for both Cr (R2 = 0.991) and EBT (R2 = 0.999). The Langmuir isotherm model exhibited a maximum adsorption capacity of 65.5 mg/g and 150.3 mg/g for Cr and EBT, respectively. The structure and morphology results obtained after Cr and EBT dye adsorption reveal that the adsorption mechanism is associated with electrostatic interactions and surface complexation of Cr and EBT dye with Mg-Ca-Al-LDO surface functional groups. Moreover, more than 84% of the initial adsorption capacity of EBT and Cr can be achieved on the Mg-Ca-Al-LDO surface after five adsorption/desorption cycles. Finally, the Mg-Ca-Al-LDO mixed metal oxide composite can be potentially used as a cost-effective adsorbent for wastewater treatment processes.
Collapse
|
11
|
Zhang Y, Yu Y, Qin H, Peng D, Chen X. Dynamic Adsorption Characteristics of Cr(VI) in Red-Mud Leachate onto a Red Clay Anti-Seepage Layer. TOXICS 2022; 10:606. [PMID: 36287886 PMCID: PMC9611786 DOI: 10.3390/toxics10100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Red-mud leachate from tailings ponds contains Cr(VI), which can pollute groundwater via infiltration through anti-seepage layers. This paper investigates leachate from a red-mud tailings pond in southwest China and the red clay in the surrounding area to simulate the adsorption of Cr(VI) onto clay at different pHs, using geochemical equilibrium software (Visual MINTEQ). We also performed dynamic adsorption testing of Cr(VI) on a clay anti-seepage layer. The dynamic adsorption behaviors and patterns in the dynamic column were predicted using the Thomas and Yoon-Nelson models. Visual MINTEQ predicted that Cr(VI) adsorption in red-mud leachate onto clay was 69.91%, increasing gradually with pH, i.e., adsorption increased under alkaline conditions. Cr(VI) concentration in the effluent was measured using the permeability test through a flexible permeameter when the adsorption saturation time reached 146 days. At a low seepage rate, Cr(VI) adsorption onto the clay anti-seepage layer took longer. Saturation adsorption capacity, q0, and adsorption rate constant, Kth, were determined using the Thomas model; the Yoon-Nelson model was used to determine when the effluent Cr(VI) concentration reached 50% of the initial concentration. The results provide parameters for the design and pollution prediction of the clay anti-seepage layer of red-mud tailings ponds.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Emergency Management, Xihua University, Chengdu 610039, China
| | - Yue Yu
- School of Emergency Management, Xihua University, Chengdu 610039, China
| | - Hao Qin
- School of Emergency Management, Xihua University, Chengdu 610039, China
| | - Daoping Peng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xing Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
12
|
Zhang L, He F, Guan Y. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128382. [PMID: 35739652 DOI: 10.1016/j.jhazmat.2022.128382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination by hexavalent chromium (Cr(VI)) poses great risks to human health and ecosystem safety. We introduced a new cheap and efficient layered double hydroxide intercalated with diethyldithiocarbamate (DDTC-LDH) for in-situ remediation of Cr(VI)-contaminated soil. The content of Cr(VI) in contaminated soil (134.26 mg kg-1) was rapidly reduced to 1.39 mg kg-1 within 10 days by 0.5% of DDTC-LDH. This result attains to or even exceeds the effectiveness of most of reported soil amendments for Cr(VI) removal in soils. The production cost of DDTC-LDH ($4.02 kg-1) was relatively low than some common materials, such as nano zero-valent iron ($22.80-140.84 kg-1). The growth of water spinach became better with the increase of DDTC-LDH dose from 0% to 0.5%, suggesting the recovery of soil function. DDTC-LDH significantly altered the structure and function of soil microbial communities. The species that have Cr(VI)-resistant or Cr(VI)-reductive ability were enriched in DDTC-LDH remediated soils. Network analysis revealed a significant functional niche differentiation of soil microbial communities. In addition to the enhancement of Cr(VI) reduction, the stimulation of plant growth promoting traits, including siderophore biosynthesis, oxidation resistance to reactive oxygen species, and phosphorus availability by DDTC-LDH was another essential mechanism for the immediate remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Fangxin He
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|