1
|
Sanjurjo-Sánchez J, Alves C, Freire-Lista DM. Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168846. [PMID: 38036142 DOI: 10.1016/j.scitotenv.2023.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Biominerals deposition processes, also called biomineralisation, are intimately related to biodeterioration on stone surfaces. They include complex processes not always completely well understood. The study of biominerals implies the identification of organisms, their molecular mechanisms, and organism/rock/atmosphere interactions. Sampling restrictions of monument stones difficult the biominerals study and the in situ demonstrating of biodeterioration processes. Multidisciplinary works are required to understand the whole process. Thus, studies in heritage buildings have taken advantage of previous knowledge acquired thanks to laboratory experiments, investigations carried out on rock outcrops and within caves from some years ago. With the extrapolation of such knowledge to heritage buildings and the advances in laboratory techniques, there has been a huge increase of knowledge regarding biomineralisation and biodeterioration processes in stone monuments during the last 20 years. These advances have opened new debates about the implications on conservation interventions, and the organism's role in stone conservation and decay. This is a review of the existing studies of biominerals formation, biodeterioration on laboratory experiments, rocks, caves, and their application to building stones of monuments.
Collapse
Affiliation(s)
| | - Carlos Alves
- LandS/Lab2PT-Landscapes, Heritage and Territory Laboratory (FCT-UIDB/04509/2020) and Earth Sciences Department/School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - David M Freire-Lista
- Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências da Vida e do Ambiente, Quinta dos Prados, 5000-801 Vila Real, Portugal; Centro de Geociências, Universidade de Coimbra, Portugal
| |
Collapse
|
2
|
Wilhelm K, Woor S, Jackson M, Albini D, Young N, Karamched P, Policarpo Wright MC, Grau-Bove J, Orr SA, Longman J, de Kock T. Microplastic pollution on historic facades: Hidden 'sink' or urban threat? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123128. [PMID: 38097158 DOI: 10.1016/j.envpol.2023.123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Despite the increasing concerns surrounding the health and environmental risks of microplastics (MPs), the research focus has primarily been on their prevalence in air and the oceans, consequently neglecting their presence on urban facades, which are integral to our everyday environments. Therefore, there is a crucial knowledge gap in comprehending urban MP pollution. Our pioneering interdisciplinary study not only quantifies but also identifies MPs on historic facades, revealing their pervasive presence in a medium-sized urban area in the UK. In this case study, we estimated a mean density of 975,000 fibres/m^2 (0.10 fibres/mm^2) for fibre lengths between 30 and 1000 μm with a ratio of 1:5 for natural to artificial fibres. Our research identifies three groups of fibre length frequencies across varied exposure scenarios on the investigated urban facade. Sheltered areas (4m height) show a high prevalence of 60-120 μm and 180-240 μm fibres. In contrast, less sheltered areas at 3m exhibit lower fibre frequencies but similar lengths. Notably, the lowest area (2-1.5m) features longer fibres (300-1000 μm), while adjacent area S, near a faulty gutter, shows no fibres, highlighting the impact of exposure, altitude, and environmental variables on fibre distribution on urban facades. Our findings pave one of many necessary paths forward to determine the long-term fate of these fibres and provoke a pertinent question: do historic facades serve as an urban 'sink' that mitigates potentially adverse health impacts or amplifies the effects of mobile microplastics? Addressing MP pollution in urban areas is crucial for public health and sustainable cities. More research is required to understand the multi-scale factors behind MP pollution in large cities and to find mitigation strategies, paving the way for effective interventions and policies against this growing threat.
Collapse
Affiliation(s)
- Katrin Wilhelm
- Oxford Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK.
| | - Sam Woor
- Department of Geoscience, University of the Fraser Valley, 33844 Kings Road, Abbotsford, British Columbia, V2S 7M8, Canada; Department of Earth, Ocean and Atmospheric Sciences, Faculty of Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, V6T 1Z4, Canada.
| | - Michelle Jackson
- Department of Biology, University of Oxford, 11a Mansfield Road, OX1 3SZ, England, UK.
| | - Dania Albini
- Department of Biology, University of Oxford, 11a Mansfield Road, OX1 3SZ, England, UK.
| | - Neil Young
- David Cockayne Centre for Electron Microscopy, Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
| | - Phani Karamched
- David Cockayne Centre for Electron Microscopy, Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
| | | | - Josep Grau-Bove
- UCL Institute for Sustainable Heritage, Central House, 14 Upper Woburn Pl, WC1H 0NN, London, UK.
| | - Scott Allan Orr
- UCL Institute for Sustainable Heritage, Central House, 14 Upper Woburn Pl, WC1H 0NN, London, UK.
| | - Jack Longman
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK.
| | - Tim de Kock
- Antwerp Cultural Heritage Sciences (ARCHES), Faculty of Design, University of Antwerp, Mutsaardstraat 31, 2000, Antwerp, Belgium.
| |
Collapse
|
3
|
Wilhelm K, Longman J, Standish CD, De Kock T. The Historic Built Environment As a Long-Term Geochemical Archive: Telling the Time on the Urban "Pollution Clock". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12362-12375. [PMID: 37436401 PMCID: PMC10448721 DOI: 10.1021/acs.est.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
This study introduces a novel methodology for utilizing historic built environments as reliable long-term geochemical archives, addressing a gap in the reconstruction of past anthropogenic pollution levels in urban settings. For the first time, we employ high-resolution laser ablation mass spectrometry for lead isotope (206Pb/207Pb and 208Pb/206Pb) analysis on 350-year-old black crust stratigraphies found on historic built structures, providing insights into past air pollution signatures. Our findings reveal a gradual shift in the crust stratigraphy toward lower 206Pb/207Pb and higher 208Pb/206Pb isotope ratios from the older to the younger layers, indicating changes in lead sources over time. Mass balance analysis of the isotope data shows black crust layers formed since 1669 primarily contain over 90% Pb from coal burning, while other lead sources from a set of modern pollution including but not limited to leaded gasoline (introduced after 1920) become dominant (up to 60%) from 1875 onward. In contrast to global archives such as ice cores that provide integrated signals of long-distance pollution, our study contributes to a deeper understanding of localized pollution levels, specifically in urban settings. Our approach complements multiple sources of evidence, enhancing our understanding of air pollution dynamics and trends, and the impact of human activities on urban environments.
Collapse
Affiliation(s)
- Katrin Wilhelm
- Oxford
Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography
and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, U.K.
| | - Jack Longman
- Marine
Isotope Geochemistry, Institute for Chemistry and Biology of the Marine
Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Department
of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United
Kingdom
| | - Christopher D. Standish
- School
of Ocean & Earth Sciences, University
of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, U.K.
| | - Tim De Kock
- Antwerp
Cultural Heritage Sciences (ARCHES), Faculty of Design, University of Antwerp Blindestraat 9, 2000 Antwerp, Belgium
| |
Collapse
|
4
|
Surface Properties of Graffiti Coatings on Sensitive Surfaces Concerning Their Removal with Formulations Based on the Amino-Acid-Type Surfactants. Molecules 2023; 28:molecules28041986. [PMID: 36838974 PMCID: PMC9958821 DOI: 10.3390/molecules28041986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Water-in-oil (w/o) nanoemulsions stabilized with amino acid surfactants (AAS) are one example of nanotechnology detergents of the "brush on, wipe off"-type for removing graffiti coatings from different sensitive surfaces. The high-pressure homogenization (HPH) process was used to obtain the nanostructured fluids (NSFs), including the non-toxic and eco-friendly components such as AAS, esterified vegetable oils, and ethyl lactate. The most effective NSF detergent was determined by response surface methodology (RSM) optimization. Afterwards, several surface properties, i.e., topography, wettability, surface free energy, and the work of water adhesion to surfaces before and after their coverage with the black graffiti paint, as well as after the removal of the paint layers by the eco-remover, were determined. It was found that the removal of graffiti with the use of the NSF detergent is more dependent on the energetic properties and microporous structure of the paint coatings than on the properties of the substrates on which the layers were deposited. The use of NSFs and knowledge of the surface properties could enable the development of versatile detergents that would remove unwanted contamination from various surfaces easily and in a controlled way.
Collapse
|
6
|
Geochemical-Microscopical Characterization of the Deterioration of Stone Surfaces in the Cloister of Santa Maria in Vado (Ferrara, Italy). HERITAGE 2021. [DOI: 10.3390/heritage4040167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Santa Maria in Vado is a monument in the rich artistic heritage of the city of Ferrara (north of Italy). In this paper we want to investigate the state of conservation of tombstones, cloister and the entrance to the basilica, in order to keep them in the best possible state for the future generations. From the chemical characterization, the state of conservation was determined focusing on the biodeteriogenic and non-biodeteriogenic factors, which determine a series of unwanted changes in the physical, mechanical and above all aesthetic properties of the material, often closely connected with the environment and conservation conditions. On the macroscopic observation, the state of conservation of the tombstones appeared to be very deteriorated through aesthetic and structural damage. In detail, the stereo microscope observation of samples collected from the tombstones show the presence of efflorescence probably caused by the abundant of water that bring the salts present inside the rock into solution. Relating the columns, μ-XRF analysis confirm the carbonate composition of samples and presence of iron and sulfur. Finally, SEM observation highlighted the presence of black crust on arch samples and the presence of pollen on the black crust and spheroidal particles probably related to atmospheric pollution.
Collapse
|