1
|
Bian Y, Guo X, He X, Xu R, Yang Z, Chen R, Sheng K, Zhang Y. Study on adsorption and desorption characteristics of lead pollution by biofilm in drinking water pipeline from multi-factor perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138284. [PMID: 40239519 DOI: 10.1016/j.jhazmat.2025.138284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/21/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
This study investigates lead adsorption and desorption behaviors in biofilms on drinking water pipeline materials (PVC, 304 stainless steel, copper) under varying flow rate, pH, and residual chlorine. Biofilms on stainless steel exhibited the highest adsorption capacity (450.81 μmol/m2), whereas PVC biofilms had the greatest desorption potential (25.30 μmol/m2). Optimal lead adsorption occurred at neutral pH (7.5), low flow velocity (0.10 m/s), and moderate chlorine concentration (0.3 mg/L). Optimal lead adsorption occurred at neutral pH (7.5), low flow velocity (0.10 m/s), and moderate chlorine concentration (0.3 mg/L). In contrast, higher flow velocities, acidic conditions, and elevated chlorine levels promoted desorption or inhibited interactions. PVC biofilms exhibited the highest biomass (1.58 × 106 CFU/cm2) and extracellular polymeric substances (EPS) (348 mg/m2), correlating with increased lead adsorption. Functional analysis revealed a higher abundance of ion-transport-related (functions associated with the movement of ions such as heavy metals across microbial cell membranes) functions in PVC biofilms, contributing to enhanced stability. The study offers valuable insights for optimizing pipe material selection and operational strategies to reduce lead contamination in water systems.
Collapse
Affiliation(s)
- Yihao Bian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xun He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruotong Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ziyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Keshu Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yongji Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Malla MA, Nomalihle M, Featherston J, Kumar A, Amoah ID, Ismail A, Bux F, Kumari S. Comprehensive profiling and risk assessment of antibiotic resistomes in surface water and plastisphere by integrated shotgun metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137180. [PMID: 39847933 DOI: 10.1016/j.jhazmat.2025.137180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
The ever-increasing microplastics (MPs) and antibiotic-resistance genes (ARGs) in aquatic ecosystems has become a serious global challenging issue. However, the impact of different pollution sources on microbiome and antibiotic resistome in surface water (SW) and plastisphere (PS) remains largely elusive. Here, shotgun metagenomics was used to analyze microbiome structure and antibiotic resistome in SW and PS under the influence of different pollution sources. Pseudomonas were the most abundant genus, followed by Flavobacterium, Acinetobacter, Acidovorax, and Limnohabitans. However, their relative abundance varied significantly both across the sampling sites and habitats i.e. SW and PS (p < 0.05). Additionally, various ARGs were detected in SW and PS, with PS (372) having significantly more potential ARGs than SW (293). The results further showed significant variations in the relative abundance of potential pathogenic bacteria across the sampling sites and habitats (p < 0.05). Further moreover, significant differences were observed in antibiotic resistome risk scores, ARGs and MGEs across different habitats. Over all, this study suggests that pollution source and water quality parameters had a significant impact on microbiome composition and antibiotic resistome in SW and PS.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Malambule Nomalihle
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Jonathan Featherston
- Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Department of Environmental Science, The University of Arizona, Shantz Building Rm10 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Arshad Ismail
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa.
| |
Collapse
|
3
|
Pourrostami Niavol K, Andaluri G, Achary MP, Suri RPS. How does carbon to nitrogen ratio and carrier type affect moving bed biofilm reactor (MBBR): Performance evaluation and the fate of antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124619. [PMID: 39987875 DOI: 10.1016/j.jenvman.2025.124619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
With the spread of antibiotic resistance genes (ARGs) in the environment, monitoring and controlling ARGs have become an emerging issue of concern in biological processes. Moving bed biofilm reactors (MBBR) have been gaining attention for application in wastewater treatment. Since the performance of MBBR depends on operational parameters and biocarriers, selection of suitable biocarriers and start-up conditions are vital for efficiency of MBBRs. This study investigates the effects of different carbon-to-nitrogen (C/N) ratios and carrier types on the fate of selected ARGs and microbial communities in four MBBR systems using two conventional (K3 and sponge biocarrier (SB)) and two modified carriers (Fe-Ca@SB and Ze-AC@SB). Results showed that the modified biocarriers achieved higher NH4-N removal and better simultaneous nitrification and denitrification (SND) performance (90%) at C/N of 20. However, as the C/N ratio decreased to 10 and 7, the performance of all bioreactors was approximately similar. Moreover, COD removal of 90% was achieved in all reactors regardless of C/N ratio and carrier type. Further studies on the fate of selected ARGs (tetA, blaTEM, ampR) showed that the C/N ratio could affect the abundance of target ARGs, especially for K3 biocarrier, with tetA being the most abundant gene. Also, as the C/N ratio decreased, intl1 was enriched using K3 and SB. However, for Ze-AC@SB, the increase in the abundance of ARGs and intl1 was the lowest making it a reliable carrier not only in MBBR performance but in the control of ARGs. Metagenomic studies showed that the C/N ratio and carrier type could alter the diversity and structure of the bacterial communities in different MBBR systems, with Proteobacteria being the most abundant phylum in all four systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Gangadhar Andaluri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Mohan P Achary
- Department of Radiation Oncology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Rominder P S Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
4
|
Yu W, Tang S, Wong JWC, Luo Z, Li Z, Thai PK, Zhu M, Yin H, Niu J. Degradation and detoxification of 6PPD-quinone in water by ultraviolet-activated peroxymonosulfate: Mechanisms, byproducts, and impact on sediment microbial community. WATER RESEARCH 2024; 263:122210. [PMID: 39106621 DOI: 10.1016/j.watres.2024.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) has been identified to induce acute toxicity to multifarious aquatic organisms at exceptionally low concentrations. The ubiquity and harmful effects of 6PPD-Q emphasize the critical need for its degradation from water ecosystems. Herein, we explored the transformation of 6PPD-Q by an ultraviolet-activated peroxymonosulfate (UV/PMS) system, focusing on mechanism, products and toxicity variation. Results showed that complete degradation of 6PPD-Q was achieved when the initial ratio of PMS and 6PPD-Q was 60:1. The quenching experiments and EPR tests indicated that SO4•- and •OH radicals were primarily responsible for 6PPD-Q removal. Twenty-one degradation products were determined through high-resolution orbitrap mass spectrometry, and it was postulated that hydroxylation, oxidative cleavage, quinone decomposition, ring oxidation, as well as rearrangement and deamination were the major transformation pathways of 6PPD-Q. Toxicity prediction revealed that all identified products exhibited lower acute and chronic toxicities to fish, daphnid and green algae compared to 6PPD-Q. Exposure experiments also uncovered that 6PPD-Q considerably reduced the community diversity and altered the community assembly and functional traits of the sediment microbiome. However, we discovered that the toxicity of 6PPD-Q degradation solutions was effectively decreased, suggesting the superior detoxifying capability of the UV/PMS system for 6PPD-Q. These findings highlight the underlying detrimental impacts of 6PPD-Q on aquatic ecosystems and enrich our understanding of the photochemical oxidation behavior of 6PPD-Q.
Collapse
Affiliation(s)
- Wenyan Yu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zongrui Li
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Minghan Zhu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
5
|
Chen M, Li W, Teng H, Hu W, Dong Z, Zhang D, Liu T, Zheng Q. Impact of Combined Pollution of Ciprofloxacin and Copper on the Diversity of Archaeal Communities and Antibiotic-Resistance Genes. Antibiotics (Basel) 2024; 13:734. [PMID: 39200034 PMCID: PMC11350791 DOI: 10.3390/antibiotics13080734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to explore the response of archaeal communities and antibiotic-resistance genes (ARGs) to ciprofloxacin (CIP, 0.05-40 mg/L) and copper (Cu, 3 mg/L) combined pollution during stress- and post-effect periods in an activated sludge system. With the increase in the CIP concentration, the diversity of archaea decreased, but the richness increased under the stress of 10 mg/L CIP. Under stress and post effects, the change in unknown archaeal community structure was more significant than that of the known archaea. The relative abundance of unknown archaea was significantly reduced with the increase in CIP concentration. Meanwhile, there were certain archaea that belonged to abundant and rare taxa with different resistance and recovery characteristics. Among them, Methanosaeta (49.15-83.66%), Methanoculleus (0.11-0.45%), and Nitrososphaera (0.03-0.36%) were the typical resistant archaea to combined pollution. And the resistance of the abundant taxa to combined pollution was significantly higher than that of the rare taxa. Symbiotic and competitive relationships were observed between the known and the unknown archaea. The interactions of abundant known taxa were mainly symbiotic relationships. While the rare unknown taxa were mainly competitive relationships in the post-effect period. Rare archaea showed an important ecological niche under the stress-effect. Some archaea displayed positive correlation with ARGs and played important roles as potential hosts of ARGs during stress- and post-periods. Methanospirillum, Methanosphaerula, Nitrososphaera and some rare unknown archaea also significantly co-occurred with a large number of ARGs. Overall, this study points out the importance of interactions among known and unknown archaeal communities and ARGs in a wastewater treatment system under the stress of antibiotics and heavy metal combined pollution.
Collapse
Affiliation(s)
- Meijuan Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
| | - Haibo Teng
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Wenxin Hu
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Zhiqiang Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
| | - Dawei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
| | - Tianyi Liu
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Quan Zheng
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| |
Collapse
|
6
|
Gao Z, Cao M, Ma S, Geng H, Li J, Xu Q, Sun K, Wang F. Sulfadiazine proliferated antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa: Insights from bacterial communities and microalgal metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134679. [PMID: 38795485 DOI: 10.1016/j.jhazmat.2024.134679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The phycosphere is an essential ecological niche for the proliferation of antibiotic resistance genes (ARGs). However, how ARGs' potential hosts change and the driving mechanism of metabolites under antibiotic stress in the phycosphere have seldom been researched. We investigated the response of Chlorella pyrenoidosa and the structure and abundance of free-living (FL) and particle-attached (PA) bacteria, ARGs, and metabolites under sulfadiazine by using real-time quantitative PCR, 16 S rRNA high-throughput. The linkage of key bacterial communities, ARGs, and metabolites through correlations was established. Through analysis of physiological indicators, Chlorella pyrenoidosa displayed a pattern of "low-dose promotion and high-dose inhibition" under antibiotic stress. ARGs were enriched in the PA treatment groups by 117 %. At the phylum level, Proteobacteria, Bacteroidetes, and Actinobacteria as potential hosts for ARGs. At the genus level, potential hosts included Sphingopyxis, SM1A02, Aquimonas, Vitellibacter, and Proteiniphilum. Middle and high antibiotic concentrations induced the secretion of metabolites closely related to potential hosts by algae, such as phytosphingosine, Lysophosphatidylcholine, and α-Linolenic acid. Therefore, changes in bacterial communities indirectly influenced the distribution of ARGs through alterations in metabolic products. These findings offer essential details about the mechanisms behind the spread and proliferation of ARGs in the phycosphere.
Collapse
Affiliation(s)
- Ziqi Gao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qing Xu
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
7
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
8
|
Zhang T, Liao P, Fang L, Zhang D. Effect of booster disinfection on the prevalence of microbial antibiotic resistance and bacterial community in a simulated drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122902. [PMID: 37949160 DOI: 10.1016/j.envpol.2023.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (rs = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water.
Collapse
Affiliation(s)
- Tuqiao Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Pubin Liao
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Lei Fang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Dongyang Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Riley R, Bowers RM, Camargo AP, Campbell A, Egan R, Eloe-Fadrosh EA, Foster B, Hofmeyr S, Huntemann M, Kellom M, Kimbrel JA, Oliker L, Yelick K, Pett-Ridge J, Salamov A, Varghese NJ, Clum A. Terabase-Scale Coassembly of a Tropical Soil Microbiome. Microbiol Spectr 2023; 11:e0020023. [PMID: 37310219 PMCID: PMC10434106 DOI: 10.1128/spectrum.00200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Petabases of environmental metagenomic data are publicly available, presenting an opportunity to characterize complex environments and discover novel lineages of life. Metagenome coassembly, in which many metagenomic samples from an environment are simultaneously analyzed to infer the underlying genomes' sequences, is an essential tool for achieving this goal. We applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 terabases (Tbp) of metagenome data from a tropical soil in the Luquillo Experimental Forest (LEF), Puerto Rico. The resulting coassembly yielded 39 high-quality (>90% complete, <5% contaminated, with predicted 23S, 16S, and 5S rRNA genes and ≥18 tRNAs) metagenome-assembled genomes (MAGs), including two from the candidate phylum Eremiobacterota. Another 268 medium-quality (≥50% complete, <10% contaminated) MAGs were extracted, including the candidate phyla Dependentiae, Dormibacterota, and Methylomirabilota. In total, 307 medium- or higher-quality MAGs were assigned to 23 phyla, compared to 294 MAGs assigned to nine phyla in the same samples individually assembled. The low-quality (<50% complete, <10% contaminated) MAGs from the coassembly revealed a 49% complete rare biosphere microbe from the candidate phylum FCPU426 among other low-abundance microbes, an 81% complete fungal genome from the phylum Ascomycota, and 30 partial eukaryotic MAGs with ≥10% completeness, possibly representing protist lineages. A total of 22,254 viruses, many of them low abundance, were identified. Estimation of metagenome coverage and diversity indicates that we may have characterized ≥87.5% of the sequence diversity in this humid tropical soil and indicates the value of future terabase-scale sequencing and coassembly of complex environments. IMPORTANCE Petabases of reads are being produced by environmental metagenome sequencing. An essential step in analyzing these data is metagenome assembly, the computational reconstruction of genome sequences from microbial communities. "Coassembly" of metagenomic sequence data, in which multiple samples are assembled together, enables more complete detection of microbial genomes in an environment than "multiassembly," in which samples are assembled individually. To demonstrate the potential for coassembling terabases of metagenome data to drive biological discovery, we applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 Tbp of reads from a humid tropical soil environment. The resulting coassembly, its functional annotation, and analysis are presented here. The coassembly yielded more, and phylogenetically more diverse, microbial, eukaryotic, and viral genomes than the multiassembly of the same data. Our resource may facilitate the discovery of novel microbial biology in tropical soils and demonstrates the value of terabase-scale metagenome sequencing.
Collapse
Affiliation(s)
- Robert Riley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Robert M. Bowers
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Antonio Pedro Camargo
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Ashley Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Rob Egan
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | | | - Brian Foster
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Steven Hofmeyr
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marcel Huntemann
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Matthew Kellom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Leonid Oliker
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katherine Yelick
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, California, USA
| | - Asaf Salamov
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Neha J. Varghese
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Alicia Clum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| |
Collapse
|
10
|
Ke Y, Sun W, Chen X, Zhu Y, Guo X, Yan W, Xie S. Seasonality Determines the Variations of Biofilm Microbiome and Antibiotic Resistome in a Pilot-Scale Chlorinated Drinking Water Distribution System Deciphered by Metagenome Assembly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11430-11441. [PMID: 37478472 DOI: 10.1021/acs.est.3c01980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Understanding the biofilm microbiome and antibiotic resistome evolution in drinking water distribution systems (DWDSs) is crucial to ensure the safety of drinking water. We explored the 10 month evolution of the microbial community, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) co-existing with ARGs and pathogenic ARG hosts, and the ARG driving factors in DWDS biofilms using metagenomics assembly. Sampling season was critical in determining the microbial community and antibiotic resistome shift. Pseudomonas was the primary biofilm colonizer, and biofilms diversified more as the formation time increased. Most genera tended to cooperate to adapt to an oligotrophic environment with disinfectant stress. Biofilm microbial community and antibiotic resistome assembly were mainly determined by stochastic processes and changed with season. Metagenome assembly provided the occurrence and fates of MGEs co-existing with ARGs and ARG hosts in DWDS biofilms. The abundance of ARG- and MGE-carrying pathogen Stenotrophomonas maltophilia was high in summer. It primarily harbored the aph(3)-IIb, multidrug transporter, smeD, and metallo-beta-lactamase ARGs, which were transferred via recombination. The microbial community was the most crucial factor driving the antibiotic resistance shift. We provide novel insights about the evolution of pathogens and ARGs and their correlations in DWDS biofilms to ensure the safety of drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xu Guo
- Fangshan District Water Bureau, Beijing 102445, China
| | - Weixin Yan
- Beijing BiSheng United Water Company, Beijing 102400, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Gholipour S, Shamsizadeh Z, Gwenzi W, Nikaeen M. The bacterial biofilm resistome in drinking water distribution systems: A systematic review. CHEMOSPHERE 2023; 329:138642. [PMID: 37059195 DOI: 10.1016/j.chemosphere.2023.138642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Uprety S, Sherchan SP, Narayanan P, Dangol B, Maggos M, Celmer A, Shisler J, Amarasiri M, Sano D, Nguyen TH. Microbial assessment of water, sanitation, and hygiene (WaSH) in temporary and permanent settlements two years after Nepal 2015 earthquake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162867. [PMID: 36931512 DOI: 10.1016/j.scitotenv.2023.162867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Disaster-induced displacement often causes people to live in temporary settlements that have limited infrastructure and access to water, sanitation, and hygiene (WaSH). Reducing the risk of diarrheal diseases in such situations requires knowing how housing influences the presence of pathogens in water and the interaction between human settlements and exposure to pathogens. A cross-sectional study was conducted in May 2017 in two communities hard-hit by the Nepal 2015 earthquake: one recovered with newly reconstructed houses, and one recovered with residents still living in sheet metal temporary shelters constructed after the earthquake. We collected 60 water (30 drinking water and 30 cleaning water), 30 hand rinse, and 90 environmental swab samples (30 toilet handles, 30 utensils, and 30 water vessels) from selected households in each location and quantified 22 bacterial pathogens using microfluidic quantitative polymerase chain reaction (mfqPCR). A total of 59 samples were randomly selected for amplicon-based sequencing of the 16S rRNA, and it identified bacterial community profiles between these two settlements and their association with target genes of pathogenic bacteria. Target genes like uidA of Escherichia coli and the mip gene of Legionella pnuemophila showed significantly high frequency in specific sample types in temporary settlements than in permanent settlements. A significantly high concentration was observed in temporary settlements for Enterococcus spp. and S. typhimurium, specifically in swab samples. There was a sharp distinction of microbial community profiles between water and hand rinse samples with environmental swab samples, with a large abundance of potentially pathogenic bacteria in swab samples in both settlements. This observation highlighted that fomite could be an important transmission route for pathogens in rural settings and designing key interventions to target different stages of transmission pathways is essential. Overall findings from this study suggest that the recovered settlement with higher quality housing may be less impacted by fecal contamination than recovering settlements and that interventions should be designed to disrupt multiple transmission pathways to reduce pathogen exposure.
Collapse
Affiliation(s)
- Sital Uprety
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA; Department of Sanitation, Water and Solid Waste for Development (Sandec), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Zurich, Switzerland; Department of Civil and Environmental Engineering, Tohoku University, Sendai, Japan.
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Preeti Narayanan
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Bipin Dangol
- Environment and Public Health Organization (ENPHO), Kathmandu, Nepal
| | - Marika Maggos
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Alex Celmer
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Joanna Shisler
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Mohan Amarasiri
- Department of Health Science, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Japan
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
13
|
Effect of domestic pipe materials on microbiological safety of drinking water: Different biofilm formation and chlorination resistance for diverse pipe materials. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
14
|
Hilal MG, Han B, Yu Q, Feng T, Su W, Li X, Li H. Insight into the dynamics of drinking water resistome in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121185. [PMID: 36736566 DOI: 10.1016/j.envpol.2023.121185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance (AR) is a serious environmental hazard of the current age. Antibiotic resistance genes (ARGs) are the fundamental entities that spread AR in the environment. ARGs are likely to be transferred from the non-pathogenic to pathogenic microbes that might ultimately be responsible for the AR in humans and other organisms. Drinking water (DW) is the primary interaction route between ARGs and humans. Being the highest producer and consumer of antibiotics China poses a potential threat to developing superbugs and ARGs dissemination. Herein, we comprehensively seek to review the ARGs from dominant DW sources in China. Furthermore, the origin and influencing factors of the ARGs to the DW in China have been evaluated. Commonly used methods, both classical and modern, are being compiled. In addition, the risk posed and mitigation strategies of DW ARGs in China have been outlined. Overall, we believe this review would contribute to the assessment of ARGs in DW of China and their dissemination to humans and other animals and ultimately help the policymakers and scientists in the field to counteract this problem on an emergency basis.
Collapse
Affiliation(s)
- Mian Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Ke Y, Sun W, Jing Z, Zhu Y, Zhao Z, Xie S. Antibiotic resistome alteration along a full-scale drinking water supply system deciphered by metagenome assembly: Regulated by seasonality, mobile gene elements and antibiotic resistant gene hosts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160887. [PMID: 36521611 DOI: 10.1016/j.scitotenv.2022.160887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Both drinking water treatment processes and distribution can lead to antibiotic resistome variation, yet the variation of antibiotic resistome in the whole drinking water supply system (DWSS) combined with seasonality remains unknown. In this study, microbial community, antibiotic resistome, mobile genetic elements (MGEs) co-existing with antibiotic resistance genes (ARGs) and ARG hosts would be explored along a DWSS for four seasons with metagenome assembly. Multidrug and bacitracin ARGs were dominant ARGs in DWSS. Integrase, plasmids, recombinase and transposase were major MGEs co-existing with ARGs. Filtration and disinfection treatments could alter the ARG relative abundance, mainly via changing the abundance of ARG hosts (Limnohabitans and Polynucleobacter), which was influenced by water total organic carbon (TOC) content. When TOC was relatively high, filtration could proliferate ARGs via promoting antibiotic resistance bacteria (ARB) but chlorine dioxide could decrease ARGs via killing ARB. Filtration played an important role in controlling ARGs by reducing ARB when TOC was relatively low. The stimulation effect of disinfection on ARGs existed in more oligotrophic environment. Distribution could enrich ARGs in higher temperature by increasing MGEs co-occurring with ARGs and diversifying ARG hosts. MGEs co-occurring with ARGs became more abundant and diverse in disinfected water in warmer seasons. Microbial community was the most important factor determining the antibiotic resistome along a DWSS. These findings extend the knowledge about how and why water treatment processes and pipe distribution shape drinking water antibiotic resistome in different seasons.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Zhang J, Zhang Q, Zhang Z, Zhou Z, Lu T, Sun L, Qian H. Evaluation of phoxim toxicity on aquatic and zebrafish intestinal microbiota by metagenomics and 16S rRNA gene sequencing analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63017-63027. [PMID: 35449330 DOI: 10.1007/s11356-022-20325-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Phoxim is one of the main organophosphorus pesticides used in agricultural production. However, little information is known about how it affects the aquatic microbial community and the intestinal microbiota of fish. Herein, we utilized shotgun metagenomics and 16S rRNA gene sequencing to reveal the aquatic eco-risk of phoxim. Seven days of phoxim exposure significantly changed the composition of aquatic microbial community, obliterated the interactions between microorganisms, and thus reduced the complexity and stability of the microbial community. During long-time exposure (i.e., 14 days), most of the ecological functions were restored due to the redundancy of the microbial community. However, phoxim exposure promoted the dissemination of elfamycin resistance gene. The zebrafish gut microbial community also recovered from a temporary ecological disorder of aquatic microbiota, but phoxim continually affected zebrafish growth and swimming behavior. Overall, our results demonstrated that phoxim exposure significantly changed the structure and function of the microbial community and displayed a negative impact on freshwater ecosystems in a short exposure time.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
17
|
Zhao JR, Fan XY, Li X, Gao YX, Zhang ZX. Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundant-rare taxa and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2022; 349:126882. [PMID: 35217161 DOI: 10.1016/j.biortech.2022.126882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge.
Collapse
Affiliation(s)
- Jun-Ru Zhao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yu-Xi Gao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong-Xing Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
18
|
Li N, Li X, Fan XY. Storage tank as a pretreatment unit for rainwater cleaner production: Role of biofilm bacterial communities and functional genera in water quality improvement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114118. [PMID: 34838388 DOI: 10.1016/j.jenvman.2021.114118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the water purification function and mechanism of biofilm in storage tank, with a view to using it as a pretreatment unit for rainwater cleaner production. Shortening the hydraulic retention time (HRT) of storage tank from 12 to 4 h improved the pollutants removal performance and reduced the suspended bacteria counts. The accumulation of abundant taxa and succession of rare taxa were observed with biofilm development. Positive correlations within and across different bacterial taxa were dominant in the network, and some rare genera (Ralstonia and Micropruina) were identified as hub bacteria. Candidatus Nitrospira nitrosa and Nitrospira sp. ENR4 were two identified complete ammonia oxidizers. Denitrifying bacteria tended to enrich and formed more complex interactions over time. The main nitrogen metabolism pathways may be ammonia assimilatory, complete denitrification and dissimilatory/assimilatory nitrate reduction. HRT was negatively correlated with most dominant genera, and contributed 20.35% to the variation of functional taxa. This study highlights the self-purification function and micro-ecology of storage tank, and provides a new insight for its role in rainwater cleaner production process.
Collapse
Affiliation(s)
- Na Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
19
|
Kim Y, Oh S. Machine-learning insights into nitrate-reducing communities in a full-scale municipal wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113795. [PMID: 34560468 DOI: 10.1016/j.jenvman.2021.113795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
This study carried out machine-learning (ML) modeling using activated sludge microbiome data to predict the operational characteristics of biological unit processes (i.e., anaerobic, anoxic, and aerobic) in a full-scale municipal wastewater treatment plant. An ML application pipeline with optimization strategies (e.g., model selection, input data preprocessing, and hyperparameter tuning) could significantly improve prediction performance. Comparative analysis of the ML prediction performance suggested that linear models (support vector machine and logistic regression) had a high prediction performance (93% accuracy), comparable to that of non-linear models such as random forest. Feature importance analysis using the linear ML models identified the microbial taxa that were specifically associated with anoxic processes, many of which (e.g., Ferruginibacter) were found to have ecologically important genomic and phenotypic characteristics (e.g., for nitrate reduction). Time-series microbial community dynamics demonstrated that the taxa identified using ML were frequently occurring and dominating in the anoxic process over time, thus representing the core nitrate-reducing community. Despite the general dominance of the core community over time, the analysis further revealed successional seasonal patterns of distinct sub-groups, indicating differences in the functional contribution of sub-groups by season to the overall nitrate-reducing potential of the system. Overall, the results of this study suggest that ML modeling holds great promise for the predictive identification and understanding of key microbial players governing the functioning and stability of biological wastewater systems.
Collapse
Affiliation(s)
- Youngjun Kim
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
20
|
Liu C, Yan H, Sun Y, Chen B. Contribution of enrofloxacin and Cu 2+ to the antibiotic resistance of bacterial community in a river biofilm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118156. [PMID: 34530240 DOI: 10.1016/j.envpol.2021.118156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Pollutants discharged from wastewater are the main cause of the spread of antibiotic resistance in river biofilms. There is controversy regarding the primary contribution of environmental selectors such as antibiotics and heavy metals to the development of antibiotic resistance in bacterial communities. Here, this study compared the effect of environmental safety concentration Cu2+ and enrofloxacin (ENR) on the evolution of antibiotic resistance by examining phenotypic characteristics and genotypic profiles of bacterial communities in a river biofilm, and then distinguished the major determinants from a comprehensive perspective. The pollution induced community tolerance in ENR-treated group was significantly higher than that in Cu2+-treated group (at concentration levels of 100 and 1000 μg/L). Metagenomic sequencing results showed that ENR significantly increased the number and total abundance of antibiotic resistance genes (ARGs), but there was no significant change in the Cu2+- treated group. Compared with Cu2+, ENR was the major selective agent in driving the change of taxonomic composition because the taxonomic composition in ENR was the most different from the original biofilm. Comparing and analyzing the prokaryotic composition, the phylum of Proteobacteria was enriched in both ENR and Cu2+ treated groups. Among them, Acidovorax and Bosea showed resistance to both pollutants. Linking taxonomic composition to ARGs revealed that the main potential hosts of fluoroquinolone resistance genes were Comamonas, Sphingopyxis, Bradyrhizobium, Afipia, Rhodopseudomonas, Luteimonas and Hoeflea. The co-occurrence of ARGs and metal resistance genes (MRGs) showed that the multidrug efflux pump was the key mechanism connecting MRGs and ARGs. Network analysis also revealed that the reason of Cu2+ selected for fluoroquinolones resistant bacterial communities was the coexistence of multidrug efflux gene and MRGs. Our research emphasizes the importance of antibiotics in promoting the development of antibiotic resistant bacterial communities from the perspective of changes in community structure and resistome in river biofilms.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Yang Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Gao YX, Li X, Zhao JR, Zhang ZX, Fan XY. Response of microbial communities based on full-scale classification and antibiotic resistance genes to azithromycin and copper combined pollution in activated sludge nitrification laboratory mesocosms at low temperature. BIORESOURCE TECHNOLOGY 2021; 341:125859. [PMID: 34523571 DOI: 10.1016/j.biortech.2021.125859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the short-term response of abundant-rare genera and antibiotic resistance genes (ARGs) to azithromycin (AZM, 0.05-40 mg/L) and copper (1 mg/L) combined pollution in activated sludge nitrification system at low temperature. Nitrification was as expected inhibited in stress- and post-effects periods under AZM concentration higher than 5 mg/L. Abundant and rare taxa presented dissimilar responses based on full-scale classification. Conditionally rare or abundant taxa (CRAT) were keystone taxa. Relative abundance of ammonia-oxidizing archaea increased, and three aerobic denitrifying bacteria (Brevundimonas, Comamonas and Trichococcus) were enriched (from 9.83% to 68.91% in total). Ammonia nitrogen assimilating into Org-N and denitrification may be nitrogen pathways based on predict analysis. 29 ARGs were found with more co-occurrence patterns and high concentration of AZM (greater than 5 mg/L) caused their proliferation. Importantly, expect for some abundant taxa, rare taxa, potential pathogens and nitrogen-removal functional genera were the main potential hosts of ARGs.
Collapse
Affiliation(s)
- Yu-Xi Gao
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Xing Li
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Jun-Ru Zhao
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Zhong-Xing Zhang
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Xiao-Yan Fan
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|