1
|
Zhao W, Hou Y, Wei L, Wei W, Zhang K, Duan H, Ni BJ. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. WATER RESEARCH 2025; 274:123092. [PMID: 39787839 DOI: 10.1016/j.watres.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process. The results indicated that chlorination could induce genetic mutations and promote horizontal gene transfer through multiple pathways, including increased reactive oxygen species, enhanced membrane permeability, stimulation of the SOS response, and activation of efflux pumps. In addition, this work delves into significant discoveries regarding the factors affecting ARG transmission in drinking water, such as chlorine concentration, reaction time, disinfection byproducts, pipe materials, biofilms, and the water matrix. A series of effective strategies from water source to point-of-use were proposed aimed at mitigating ARGs transmission risks in the drinking water system. Finally, we address existing challenges and outline future research directions to overcome these bottlenecks. Overall, this review aims to advance our understanding of the role of chlorination in the dissemination of ARGs and to inspire innovative research ideas for optimizing disinfection techniques, minimizing the risks of antibiotic resistance transmission, and enhancing the safety of drinking water.
Collapse
Affiliation(s)
- Weixin Zhao
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanan Hou
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Hu Y, Jiang K, Xia S, Zhang W, Guo J, Wang H. Amoeba community dynamics and assembly mechanisms in full-scale drinking water distribution networks under various disinfectant regimens. WATER RESEARCH 2025; 271:122861. [PMID: 39615115 DOI: 10.1016/j.watres.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/14/2025]
Abstract
Free-living amoebae (FLA) are prevalent in drinking water distribution networks (DWDNs), yet our understanding of FLA community dynamics and assembly mechanisms in DWDNs remains limited. This study characterized the occurrence patterns of amoeba communities and identified key factors influencing their assembly across four full-scale DWDNs in three Chinese cities, each utilizing different disinfectants (chlorine, chloramine, and chlorine dioxide). High-throughput sequencing of full-length 18S rRNA genes revealed highly diverse FLA communities and an array of rare FLA species in DWDNs. Unique FLA community structures and higher gene copy numbers of three amoeba taxa of concern (Vermamoeba vermiformis, Acanthamoeba, and Naegleria fowleri) were observed in the chloraminated DWDN, highlighting the distinct impact of chloramine on shaping the amoeba community. The FLA communities in DWDNs were primarily driven by deterministic processes, with disinfectant and nitrogen compounds (nitrate, nitrite, and ammonia) identified as the main influencing factors. Machine learning models revealed high SHapley Additive exPlanations (SHAP) values of dominant amoeba genera (e.g., Vannella and Vermamoeba), indicating their critical ecological roles in shaping broader bacterial and eukaryotic communities. Correlation analyses between amoeba genera and bacterial taxa revealed that 82 % of the bacterial taxa exhibiting a negative correlation with amoebae were gram-negative, suggesting the preferred predation of amoebae toward gram-negative bacteria. Network analysis revealed the presence of only one to two amoebae in distinct modules, suggesting that individual amoebae might be selective in grazing. These findings provide insight into the amoeba community dynamics, assembly mechanisms and ecological roles of amoebae in drinking water, which can aid in risk assessments and mitigation strategies within DWDNs.
Collapse
Affiliation(s)
- Yuxing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kaiyang Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Cedeño-Muñoz JS, Aransiola SA, Reddy KV, Ranjit P, Victor-Ekwebelem MO, Oyedele OJ, Pérez-Almeida IB, Maddela NR, Rodríguez-Díaz JM. Antibiotic resistant bacteria and antibiotic resistance genes as contaminants of emerging concern: Occurrences, impacts, mitigations and future guidelines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175906. [PMID: 39226958 DOI: 10.1016/j.scitotenv.2024.175906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Jeffrey Saúl Cedeño-Muñoz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Sesan Abiodun Aransiola
- Department of Microbiology, Faculty of Science, University of Abuja, PMB 117, Abuja, Nigeria
| | - Kondakindi Venkateswar Reddy
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | - Pabbati Ranjit
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | | | - Olusegun Julius Oyedele
- Bioresources Development Centre, National Biotechnology Development Agency, Ogbomoso, Nigeria
| | - Iris B Pérez-Almeida
- Center for Sustainable Development Studies (CEDS), Ecotec University, Samborondón, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| |
Collapse
|
4
|
Yu Y, Hossain MM, Sikder R, Qi Z, Huo L, Chen R, Dou W, Shi B, Ye T. Exploring the potential of machine learning to understand the occurrence and health risks of haloacetic acids in a drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175573. [PMID: 39153609 DOI: 10.1016/j.scitotenv.2024.175573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Determining the occurrence of disinfection byproducts (DBPs) in drinking water distribution system (DWDS) remains challenging. Predicting DBPs using readily available water quality parameters can help to understand DBPs associated risks and capture the complex interrelationships between water quality and DBP occurrence. In this study, we collected drinking water samples from a distribution network throughout a year and measured the related water quality parameters (WQPs) and haloacetic acids (HAAs). 12 machine learning (ML) algorithms were evaluated. Random Forest (RF) achieved the best performance (i.e., R2 of 0.78 and RMSE of 7.74) for predicting HAAs concentration. Instead of using cytotoxicity or genotoxicity separately as the surrogate for evaluating toxicity associated with HAAs, we created a health risk index (HRI) that was calculated as the sum of cytotoxicity and genotoxicity of HAAs following the widely used Tic-Tox approach. Similarly, ML models were developed to predict the HRI, and RF model was found to perform the best, obtaining R2 of 0.69 and RMSE of 0.38. To further explore advanced ML approaches, we developed 3 models using uncertainty-based active learning. Our findings revealed that Categorical Boosting Regression (CAT) model developed through active learning substantially outperformed other models, achieving R2 of 0.87 and 0.82 for predicting concentration and the HRI, respectively. Feature importance analysis with the CAT model revealed that temperature, ions (e.g., chloride and nitrate), and DOC concentration in the distribution network had a significant impact on the occurrence of HAAs. Meanwhile, chloride ion, pH, ORP, and free chlorine were found as the most important features for HRI prediction. This study demonstrates that ML has the potential in the prediction of HAA occurrence and toxicity. By identifying key WQPs impacting HAA occurrence and toxicity, this research offers valuable insights for targeted DBP mitigation strategies.
Collapse
Affiliation(s)
- Ying Yu
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen city, Xiamen 361005, China
| | - Md Mahjib Hossain
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rabbi Sikder
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Zhenguo Qi
- Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixin Huo
- Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| | - Wenyue Dou
- Key Laboratory of Industrial Pollution Control and Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Baoyou Shi
- Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| |
Collapse
|
5
|
Gholipour S, Nikaeen M, Mehdipour M, Mohammadi F, Rabbani D. Occurrence of chlorine-resistant Pseudomonas aeruginosa in hospital water systems: threat of waterborne infections for patients. Antimicrob Resist Infect Control 2024; 13:111. [PMID: 39334230 PMCID: PMC11437889 DOI: 10.1186/s13756-024-01468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Several healthcare-associated infection outbreaks have been caused by waterborne Pseudomonas aeruginosa exhibiting its ability to colonize water systems and resist conventional chlorine treatment. This study aims to investigate the occurrence of Pseudomonas aeruginosa in hospital drinking water systems and the antimicrobial resistance profiles (antibiotic and chlorine resistance) of isolated strains. METHODS We investigated the presence of Pseudomonas aeruginosa in water and biofilms developed in nine hospital water systems (n = 192) using culture-based and molecular methods. We further assessed the survival of isolated strains after exposure to 0.5 and 1.5 ppm concentrations of chlorine. The profile of antibiotic resistance and presence of antibiotic resistance genes in isolated strains were also investigated. RESULTS Using direct PCR method, Pseudomonas aeruginosa was detected in 22% (21/96) of water and 28% (27/96) of biofilm samples. However, culturable Pseudomonas aeruginosa was isolated from 14 samples. Most of P. aeruginosa isolates (86%) were resistant to at least one antibiotic (mainly β-lactams), with 50% demonstrating multidrug resistance. Moreover, three isolates harbored intI1 gene and two isolates contained blaOXA-24,blaOXA-48, and blaOXA-58 genes. Experiments with chlorine disinfection revealed that all tested Pseudomonas aeruginosa strains were resistant to a 0.5 ppm concentration. However, when exposed to a 1.5 ppm concentration of chlorine for 30 min, 60% of the strains were eliminated. Interestingly, all chlorine-resistant bacteria that survived at 30-minute exposure to 1.5 ppm chlorine were found to harbor the intI1 gene. CONCLUSIONS The detection of antimicrobial resistant Pseudomonas aeruginosa in hospital water systems raises concerns about the potential for infections among hospitalized patients. The implementation of advanced mitigation measures and targeted disinfection methods should be considered to tackle the evolving challenges within hospital water systems.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadmehdi Mehdipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran.
- Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Gholipour S, Nikaeen M, Mohammadi F, Rabbani D. Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. J Infect Public Health 2024; 17:102469. [PMID: 38838607 DOI: 10.1016/j.jiph.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Moreno Y, Moreno-Mesonero L, Soler P, Zornoza A, Soriano A. Influence of drinking water biofilm microbiome on water quality: Insights from a real-scale distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171086. [PMID: 38382601 DOI: 10.1016/j.scitotenv.2024.171086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Biofilms, constituting over 95 % of the biomass in drinking water distribution systems, form an ecosystem impacting both the aesthetic and microbiological quality of water. This study investigates the microbiome of biofilms within a real-scale drinking water distribution system in eastern Spain, utilizing amplicon-based metagenomics. Forty-one biofilm samples underwent processing and sequencing to analyze both bacterial and eukaryotic microbiomes, with an assessment of active biomass. Genus-level analysis revealed considerable heterogeneity, with Desulfovibrio, Ralstonia, Bradyrhizobium, Methylocystis, and Bacillus identified as predominant genera. Notably, bacteria associated with corrosion processes, including Desulfovibrio, Sulfuricella, Hyphomicrobium, and Methylobacterium, were prevalent. Potentially pathogenic bacteria such as Helicobacter, Pseudomonas, and Legionella were also detected. Among protozoa, Opisthokonta and Archaeplastida were the most abundant groups in biofilm samples, with potential pathogenic eukaryotes (Acanthamoeba, Naegleria, Blastocystis) identified. Interestingly, no direct correlation between microbiota composition and pipe materials was observed. The study suggests that the usual concentration of free chlorine in bulk water proved insufficient to prevent the presence of undesirable bacteria and protozoa in biofilms, which exhibited a high concentration of active biomass.
Collapse
Affiliation(s)
- Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Laura Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Patricia Soler
- Empresa Mixta Valenciana de Aguas, S.A. (EMIVASA), Av. del Regne de València, 28, 46005, Valencia, Spain
| | - Andrés Zornoza
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; H2OCITIES, SL, Arte Mayor de la Seda, 15, 46950 Xirivella, Valencia, Spain
| | - Adela Soriano
- Empresa Mixta Valenciana de Aguas, S.A. (EMIVASA), Av. del Regne de València, 28, 46005, Valencia, Spain
| |
Collapse
|
8
|
Ke Y, Sun W, Liu S, Zhu Y, Yan S, Chen X, Xie S. Seasonal variations of biofilm C, N and S cycling genes in a pilot-scale chlorinated drinking water distribution system. WATER RESEARCH 2023; 247:120759. [PMID: 37897999 DOI: 10.1016/j.watres.2023.120759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Biofilms in drinking water distribution systems (DWDS) host diverse microorganisms. However, the functional attributes of DWDS biofilms and their associations with seasonality remain unclear. This study aims to characterize variations in the microbial metabolic traits of DWDS biofilms collected during different seasons, using a pilot-scale DWDS in dark under plug-flow conditions during one-year operation period. Network analysis was used to predict the functional gene hosts. The overall functional attributes determined by shotgun metagenomics exhibited significant differences among seasons. Genes associated with aromatic metabolism, fatty acid biosynthesis and degradation, and capsular extracellular polymeric substance (EPS) were significantly upregulated in summer owing to the higher temperatures and chlorine in the influent of the DWDS. Moreover, the pathways associated with nitrogen, sulfur, glycolysis, and tricarboxylic acid (TCA) cycling, as well as carbon fixation were reconstructed and displayed according to the sampling season. Nitrogen reduction pathways [dissimilatory nitrate reduction to ammonium (DNRA) 73 %, assimilatory nitrate reduction to ammonium (ANRA) 21 %] were identified in DWDS biofilms, but nitrogen oxidation pathways were not. Sulfur cycling were involved in diverse pathways and genes. Glycolysis and TCA cycling offered electron donors and energy sources for nitrogen and sulfur reduction in biofilms. Carbon fixation was observed in DWDS biofilms, with the predominant pathway for fixing carbon dioxide being the reductive citrate cycle (38 %). Constructed functional gene networks composed of carbon, nitrogen, and sulfur cycling-related genes demonstrated synergistic effects (Positive proportion: 63.52-71.09 %). In addition, from spring to autumn, the network complexity decreased and network modularity increased. The assembly mechanism of carbon, nitrogen and sulfur cycling-related genes was driven by stochastic processes for all samples. These results highlight the diverse functional genes in DWDS biofilms, their synergetic interrelationships, and the seasonality effect on functional attributes.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Shuming Liu
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Mehdipour M, Gholipour S, Mohammadi F, Hatamzadeh M, Nikaeen M. Incidence of co-resistance to antibiotics and chlorine in bacterial biofilm of hospital water systems: Insights into the risk of nosocomial infections. J Infect Public Health 2023; 16 Suppl 1:210-216. [PMID: 37951730 DOI: 10.1016/j.jiph.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) in healthcare settings poses a considerable risk to the biological security of water, particularly when the biofilm bacteria demonstrate antimicrobial resistance characteristics. This study aimed to investigate the occurrence of antibiotic-resistant bacteria (ARB) in biofilms within DWDS of hospitals. The chlorine resistance of the isolated ARB was analyzed, and then chlorine-resistant bacteria (CRB) were identified using molecular methods. Additionally, the presence of several antibiotic resistance genes (ARGs) was monitored in the isolated ARB. Out of the 41 biofilm samples collected from hospitals, ARB were detected in 32 (78%) of the samples. A total of 109 colonies of ARB were isolated from DWDS of hospitals, with β-lactam resistant bacteria, including ceftazidime-resistant and ampicillin-resistant bacteria, being the most frequently isolated ARB. Analyzing of ARGs revealed the highest detection of aac6, followed by sul1 gene. However, the β-lactamase genes blaCTX-M and blaTEM were not identified in the ARB, suggesting the presence of other β-lactamase genes not included in the tested panel. Exposure of ARB to free chlorine at a concentration of 0.5 mg/l showed that 64% of the isolates were CRB. However, increasing the chlorine concentration to 4 mg/l decreased the high fraction of ARB (91%). The dominant CRB identified were Sphingomonas, Brevundimonas, Stenotrophomonas, Bacillus and Staphylococcus with Bacillus exhibiting the highest frequency. The results highlight the potential risk of biofilm formation in the DWDS of hospitals, leading to the dissemination of ARB in hospital environments, which is a great concern for the health of hospitalized patients, especially vulnerable individuals. Surveillance of antimicrobial resistance in DWDS of hospitals can provide valuable insights for shaping antimicrobial use policies and practices that ensure their efficacy.
Collapse
Affiliation(s)
- Mohammadmehdi Mehdipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hatamzadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Gholipour S, Shamsizadeh Z, Gwenzi W, Nikaeen M. The bacterial biofilm resistome in drinking water distribution systems: A systematic review. CHEMOSPHERE 2023; 329:138642. [PMID: 37059195 DOI: 10.1016/j.chemosphere.2023.138642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Li S, Niu Z, Zhang Y. The prevalence of extra- and intra- cellular antibiotic resistance genes and the relationship with bacterial community in different layers of biofilm in the simulated drinking water pipelines. JOURNAL OF WATER PROCESS ENGINEERING 2023; 53:103780. [DOI: 10.1016/j.jwpe.2023.103780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Wang M, Zhang Y, Niu Z, Miao Q, Fu W. Study on the distribution characteristics and metabolic mechanism of chlorine-resistant bacteria in indoor water supply networks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121640. [PMID: 37059174 DOI: 10.1016/j.envpol.2023.121640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
The presence and attachment of chlorine-resistant bacteria on the surface of water distribution network will deteriorate water quality and threaten human health. Chlorination is critical in drinking water treatment to ensure the biosafety of drinking water. However, how disinfectants affect the structures of dominant flora during biofilm development and whether the changes are consistent with the free flora remain unclear. Therefore, we investigated changes in species diversity and relative abundance of different bacterial communities in planktonic and biofilm samples at different chlorine residual concentrations (blank, 0.3 mg/L, 0.8 mg/L, 2.0 mg/L and 4.0 mg/L), and the main reasons for the development of chlorine resistance in bacteria was also discussed. The results showed that the richness of microbial species in the biofilm was higher than that in planktonic microbial samples. In the planktonic samples, Proteobacteria and Actinobacteria were the dominant groups regardless of the chlorine residual concentration. For biofilm samples, the dominant position of Proteobacteria bacteria was gradually replaced by actinobacteria bacteria with the increase of chlorine residual concentration. In addition, at higher chlorine residual concentration, Gram-positive bacteria were more concentrated to form biofilms. There are three main reasons for the generation of chlorine resistance of bacteria: enhanced function of efflux system, activated bacterial self-repair system, and enhanced nutrient uptake capacity.
Collapse
Affiliation(s)
- Mengyuan Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; The International Joint Institute of Tianjin University, Fuzhou, 350207, China
| | - Qinkui Miao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Fu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
13
|
Ke Y, Sun W, Jing Z, Zhao Z, Xie S. Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city. J Environ Sci (China) 2023; 127:714-725. [PMID: 36522100 DOI: 10.1016/j.jes.2022.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue for drinking water safety. However, the seasonal variation of ARGs in drinking water distribution systems (DWDS) is still unclear. This work revealed the tempo-spatial changes of microbial community, ARGs, mobile genetic elements (MGEs) co-occurring with ARGs, ARG hosts in DWDS bulk water by means of metagenome assembly. The microbial community and antibiotic resistome varied with sampling season and site. Temperature, ammonia, chlorite and total plate count (TPC) drove the variations of microbial community structure. Moreover, environmental parameters (total organic carbon (TOC), chlorite, TPC and hardness) shifted antibiotic resistome. ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn, which might be attributed to detached pipe biofilm. In particular, ARG-bacitracin and plasmid were the predominant ARG and MGE, respectively. ARG hosts changed with season and site and were more diverse in summer and autumn. In winter and spring, Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community. In addition, in summer and autumn, high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone (0.4 km from the water treatment plant). Compared with MGEs, microbial community had a greater contribution to the variation of antibiotic resistome. This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes. DIVERSITY 2023. [DOI: 10.3390/d15030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Community composition and antibiotic resistance of tap water bacteria are still not known well enough. This study fills the gaps in knowledge regarding this matter. To provide representativeness of collected samples, tap water bacteria were concentrated from huge amounts of water, using filtration membranes monthly during the continuous, semi-annual study, covering winter and spring seasons. Biomass was investigated both using a culture-based method (for total and antibiotic-resistant culturable bacteria counts) and metagenomic DNA sequencing (for taxonomic identification of bacteria). The results showed that bacteria resistant to ceftazidime were the most prevalent among the studied resistance phenotypes, whereas bacteria resistant to amoxicillin, ciprofloxacin, and tetracycline were scarce. On average, 20,059 and 26,200 CFU/mL per month was counted in the winter and spring season, respectively, whereas in terms of antibiotic-resistant bacteria, average counts were 14,270 and 9435 CFU/mL per month in the winter and spring season, respectively. In terms of bacterial community composition, Cyanobacteria, Proteobacteria and Actinobacteria were the most abundant phyla, reaching up to 77.71%, 74.40% and 21.85%, respectively, which is supported by previous studies conducted on the same water supply network and other drinking water distribution systems across the world. No season-dependent variations were observed for culturable antibiotic-resistant bacteria or bacterial community composition. The prevalence of culturable antibiotic-resistant bacteria was not correlated with any of the identified taxa.
Collapse
|
15
|
Bonetta S, Di Cesare A, Pignata C, Sabatino R, Macrì M, Corno G, Panizzolo M, Bonetta S, Carraro E. Occurrence of antibiotic-resistant bacteria and resistance genes in the urban water cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35294-35306. [PMID: 36527555 DOI: 10.1007/s11356-022-24650-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e., tetA, blaTEM, and sulII) and intI1 gene were measured using quantitative real-time PCR (qPCR). Higher concentrations of ARB and ARGs were observed in the WWTPs with respect to the DWTPs identifying the WWTP as hotspot for the spread of antibiotic resistances. Although a significant reduction of ARB and ARGs was observed in WWTPs and DWTPs after the treatment, none of the detected ARB or ARGs was completely removed in drinking water. The stability of the antibiotic-resistant rates between inlet and outlet associated with the reduction of relative ARG abundances underlined that both the treatments (WWTs and DWTs) did not apply any selective pressure. The overall results highlighted the importance to investigate the antibiotic resistance dynamics in aquatic ecosystems involved in urban water cycle integrating the information obtained by culture-dependent method with the culture-independent one and the need to monitor the presence of ARB and ARGs mainly in drinking water that represents a potential route of transmission to human.
Collapse
Affiliation(s)
- Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Gianluca Corno
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
16
|
Jing Z, Lu Z, Zhao Z, Cao W, Wang W, Ke Y, Wang X, Sun W. Molecular ecological networks reveal the spatial-temporal variation of microbial communities in drinking water distribution systems. J Environ Sci (China) 2023; 124:176-186. [PMID: 36182128 DOI: 10.1016/j.jes.2021.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/16/2023]
Abstract
Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies. However, previous studies have focused on the microbial composition and diversity of the drinking water distribution systems (DWDSs), with little discussion on microbial molecular ecological networks (MENs) in different water supply networks. MEN analysis explores the potential microbial interaction and the impact of environmental stress, to explain the characteristics of microbial community structures. In this study, the random matrix theory-based network analysis was employed to investigate the impact of seasonal variation including water source switching on the networks of three DWDSs that used different disinfection methods. The results showed that microbial interaction varied slightly with the seasons but was significantly influenced by different DWDSs. Proteobacteria, identified as key species, play an important role in the network. Combined UV-chlorine disinfection can effectively reduce the size and complexity of the network compared to chlorine disinfection alone, ignoring seasonal variations, which may affect microbial activity or control microbial regrowth in DWDSs. This study provides new insights for analyzing the dynamics of microbial interactions in DWDSs.
Collapse
Affiliation(s)
- Zibo Jing
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenfeng Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weibo Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
17
|
Zuo X, Xu Q, Li Y, Zhang K. Antibiotic resistance genes removals in stormwater bioretention cells with three kinds of environmental conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128336. [PMID: 35091189 DOI: 10.1016/j.jhazmat.2022.128336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistance genes (ARGs) in stormwater runoff. However, there is still no available literature about ARGs removals through stormwater bioretention cells. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) removals under three environmental conditions, including substrate (weight ratios of sand to soil), hydraulic loading rate (HLR) and submerged area depth. The target ARGs removals were the largest (more than 5 log in the bottom outlets) in bioretention cells with 8:2 ratio of sand to soil, HLR 0.044 cm3/cm2/min and 150 mm of submerged area depth. The proportion for both iARGs and eARGs had little effect on target ARGs removals (expect extracellular blaTEM), although distributions of target ARGs were different in substrate layers. Adsorption behavior tests indicated that both kinetics and isotherms of target ARGs adsorption by biofilms were more suitable to explain their best removals for bioretention cells with 8:2 ratio of sand to soil than that by substrate. At phylum and genus levels, there were respectively 6 dominant microflora related significantly to target ARGs levels, and their relationships changed obviously under different environmental conditions, suggesting that regulating the dominant microflora (like Verrucomicrobia and Actinobacteria) could be feasible to change ARGs removals.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - QiangQiang Xu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yang Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - KeFeng Zhang
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| |
Collapse
|
18
|
Wu X, Nan J, Shen J, Kang J, Li D, Yan P, Wang W, Wang B, Zhao S, Chen Z. Regrowth potential of chlorine-resistant bacteria in drinking water under chloramination. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128264. [PMID: 35051770 DOI: 10.1016/j.jhazmat.2022.128264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The regrowth of chlorine-resistant bacteria in drinking water can deteriorate water quality. The study evaluated the relationship between organic carbon and the regrowth potential of chlorine-resistant bacteria remaining in chloraminated water samples. The results showed that the community structure of bacteria changed with the increase of chloramine dosage. The order in which organic carbon utilized by bacteria was affected by the composition of bacterial community. The biodegradable dissolved organic carbon (BDOC), assimilable organic carbon (AOC), bacterial regrowth potential (BRP) and total cell concentration (TCC) in cultivated water sample after disinfection with 1.8 mg/L chloramine increased form 0.22 mg/L, 33.68 µg/L, 2.70 × 105 cells/mL and 3.48 × 104 cells/mL before cultivation to 1.20 mg/L, 193.90 µg/L, 4.74 × 105 cells/mL and 1.46 × 105 cells/mL, respectively. The increase of TCC did not result in the decrease of BDOC, AOC and BRP in the cultivated water samples. The results showed that other biodegradable organic carbon in chloraminated water samples assimilated by residual chlorine-resistant bacteria besides AOC, BDOC, and organic carbon assimilated by indigenous bacteria. AOC, BDOC, and BRP indicators used to characterize the biostability of drinking water were not enough to accurately assess the regrowth potential of chlorine-resistant bacteria remaining in drinking water. It is suggested to supplement the index of TCC in cultivated water samples, which might be able to more accurately evaluate the regrowth potential of chlorine-resistant bacteria remaining in drinking water.
Collapse
Affiliation(s)
- Xiaofei Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Dapeng Li
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Weiqiang Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
19
|
Rationale for the Combined Use of Biological Processes and AOPs in Wastewater Treatment Tasks. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper aims to form a unified concept of the integrated use of different wastewater treatment methods to form a resistant biological treatment stage of technological systems under the influence of such toxic factors as antibiotics and surfactants. The processes of mechanical treatment, ozonation, UV irradiation, and electrolytic anodic oxidation were implemented in an electrotechnological wastewater treatment facility. Wastewater treatment quality was determined by the concentration of nitrogen compounds in aqueous solutions according to the method of Lurie. Biodiagnostics of the investigated activated sludge via surfactant action was carried out at polyethylene oxide concentrations of 10, 30, and 50 mg/dm3. As a result of experiments on wastewater treatment after aquaculture, an improvement in the reduction of pollutants only by the indicator “nitrate concentration” was determined: by 20% after anodic oxidation, and by 15% after photolysis. At almost all surfactant concentrations studied, the activated sludge was not completely recovered, which was expressed in a decrease in its quantity and in the inability to aggregate flakes of activated sludge. The diameter of the growth retardation of the standard disk with antibiotic (amoxiclav) by the accumulative culture of activated sludge was 17.3 ± 2 mm at a concentration of 4 mg/dm3 and 31.3 ± 3 mm at a concentration of 6 mg/dm3. In the process of studying the state of the activated sludge’s biocenosis under the influence of such toxicants, several regularities were revealed. The directions of using combined approaches of water treatment and wastewater treatment were defined. The structural model of treatment facilities using aerobic and anaerobic bioprocesses together with advanced oxidative technologies was substantiated.
Collapse
|