1
|
Xiong H, Wang J, Yang C, Li S, Li X, Xiong R, Wang Y, Ma C. Critical role of vegetation and human activity indicators in the prediction of shallow groundwater quality distribution in Jianghan Plain with LightGBM algorithm and SHAP analysis. CHEMOSPHERE 2025; 376:144278. [PMID: 40056819 DOI: 10.1016/j.chemosphere.2025.144278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Groundwater serves as an indispensable resource for freshwater, but its quality has experienced a notable decline over recent decades. Spatial prediction of groundwater quality (GWQ) can effectively assist managers in groundwater remediation, management, and risk control. Based on the traditional intrinsic groundwater vulnerability (IGV) model (DRASTIC) and three vegetation (V) indicators (NDVI, EVI, and kNDVI) and four human activity (H) indicators (land use, GDP, urbanization index, and nighttime light), we constructed four models for GWQ spatial prediction in the Jianghan Plain (JHP), namely DRASTI, DRASTIH, DRASTIV, and DRASTIVH, excluding the conductivity (C) indicator due to its uniformly low values. LightGBM algorithm, Tree-structured Parzen Estimator (TPE) optimization method, and SHapley Additive exPlanations (SHAP) analysis are used for model setting, calibration, and interpretation, respectively. The results show that nitrogen-related GWQ parameters have higher weights, and the model performs exceptionally well when considering all the indicators (accuracy = 0.840, precision = 0.824, recall = 0.832, F1 score = 0.828, AUROC = 0.914). Notably, the introduced indicators (NDVI, EVI, kNDVI, nighttime light, GDP, and urbanization index) rank as the top six in terms of importance, while traditional DRASTI and land use indicators show lower significance. Based on SHAP analysis, poor GWQ primarily occurs in areas with either extremely high or extremely low GDP and urbanization index values, and human activities are the primary cause of poor GWQ in JHP, potentially involving urbanization, industrial and agricultural activities, as well as fertilizer usage. Finally, the methodological framework proposed in this study is encouraged to be applied to diverse regions, such as plains, karst areas, mountainous regions, and coastal areas, to support effective future groundwater management.
Collapse
Affiliation(s)
- Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Jinghan Wang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Chi Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xiaobo Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Shandong Fifth Institute of Geology and Mineral Exploration, Tai'an, 250013, China
| | - Ruihan Xiong
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan, 430078, China
| | - Yuzhou Wang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuanming Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
2
|
Li J, Pan X, Chen H, Huang C, Cheng R. Dissolved Inorganic Carbon Evolution of Sediment Porewater in the Huixian Wetland, Southwest China. GROUND WATER 2025; 63:433-446. [PMID: 39821009 DOI: 10.1111/gwat.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/07/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Wetlands, as crucial terrestrial carbon reservoirs, have recently suffered severe degradation due to intense human activities. Lacustrine sediments serve as vital indicators for understanding wetland environmental changes. In the current paper, porewater samples were extracted from lacustrine sediment in three boreholes with a depth of ~75 cm in the Huixian karst wetland, southwest China, to study the chemical and dissolved inorganic carbon (DIC) evolution under anthropogenic influence. Two boreholes are situated beneath the Mudong Lake, while the other one is in the degraded wetland area. The results show that porewater in the central region of Mudong Lake is natural HCO3-Ca type water and recharged by karst groundwater as evidenced by depleted 2H -18O isotopes. Methanogenesis prevails in this area, suggested by positive δ13C values ranging from 4.29‰ to 7.05‰. However, shallow porewater at the western edge of Mudong Lake and porewater in the degraded wetland exhibit significantly higher concentrations of NO3 - and SO4 2-, resulting from the agricultural input and recharged groundwater influenced by oxidation of pyrite. These processes lead to a decrease in methane production and generate DIC through degradation of organic fertilizer and carbonate weathering by sulfuric acid, thereby significantly altering porewater δ13C values. Two types of DIC mixing processes were observed based on the increasing δ13C values with depth, which can be attributed to the unique karst groundwater subsystems. This work highlights the potential impact of human-induced porewater chemical variations on the fate of DIC, particularly in karst wetland environments.
Collapse
Affiliation(s)
| | - Xiaodong Pan
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
| | - Huanxiong Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Congming Huang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Ruirui Cheng
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
| |
Collapse
|
3
|
Zhang L, Wang H, Liu X, Zhan H, Schneidewind U, Krause S, Jin M, Liang X, Liu Y, Li P. Denitrification dominates nitrate attenuation and nitrous oxide effluxes under water table fluctuations. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138325. [PMID: 40273856 DOI: 10.1016/j.jhazmat.2025.138325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/02/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Agricultural soils in riparian zones near rivers often experience frequent water table fluctuations, which can lead to increased nitrogen losses and greenhouse gas emissions via the nitrogen biogeochemical processes. However, the influence of water table fluctuations on the multiple nitrogen transformation processes that dominate nitrate attenuation and nitrous oxide (N2O) effluxes remains poorly understood. In this study, the dynamic changes in depth-dependent nitrate attenuation and soil N2O effluxes, and the responses of microbial communities influenced by water table fluctuations were studied using a series of large column experiments. Our results revealed that dissolved oxygen (DO) concentrations at a depth of -10 cm in sand columns with three different grain sizes (fine→medium→coarse) oscillated, producing oxidizing conditions during drainage and reducing conditions during imbibition periods. DO micro-sensors installed in a layered (sand and sandy loam) column as well as in two sandy loam columns with different regimes in induced water table changes all revealed steady hypoxic conditions. The diversity of the microbial community was significantly correlated with total nitrogen, total organic carbon, and nitrate concentrations, as well as potential denitrification rates. The dominant microbial populations related to the nrfA gene were Methanothrix and Sedimentibacte, whereas those related to denitrification (nirK, nirS, and nosZ) were Pseudomonas and Sulfuricaulis. These findings improve our understanding of the effects of water table fluctuations on groundwater nitrate loss in riparian corridors.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helin Wang
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430078, China
| | - Xiaohan Liu
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430078, China
| | - Hongbin Zhan
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA
| | - Uwe Schneidewind
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Univ Lyon, Université Lyon 1 Claude Bernard, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue M. Audin, Vaulx-en-Velin Cedex 69518, France
| | - Menggui Jin
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430078, China.
| | - Xing Liang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanfeng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Ping Li
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430078, China.
| |
Collapse
|
4
|
Liang Y, Ma R, Prommer H, Fu QL, Jiang X, Gan Y, Wang Y. Unravelling Coupled Hydrological and Geochemical Controls on Long-Term Nitrogen Enrichment in a Large River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21315-21326. [PMID: 39478323 PMCID: PMC11619769 DOI: 10.1021/acs.est.4c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/08/2024]
Abstract
Many groundwater and surface water bodies around the world show a puzzling and often steady increase in nitrogen (N) concentrations, despite a significant decline of agricultural N inputs. This study uses a combination of long-term hydrogeochemical and hydraulic monitoring, molecular characterization of dissolved organic matter (DOM), column experiment, and reactive transport modeling to unravel the processes controlling N-reactive transport and mass budgets under the impacts of dynamic hydrologic conditions at a field site in the central Yangtze River Basin. Our analysis shows that the desorption of ammonium (NH4+) from sediments via cation exchange reactions dominates N mobilization and aqueous N concentrations, while the mineralization of organic N compounds plays only a minor role. The reactive transport modeling results illustrate the important role of cation exchange reactions that are induced by temporary NH4+ input and cation concentration changes under the impact of both seasonal and long-term hydrologic variations. Historically, cation exchangers have acted as efficient storage devices and mitigated the impacts of high levels of NH4+ input. The NH4+ residing on cation exchanger sites later acts as a long-term N source to waters with the delayed desorption of sediment-bound NH4+ induced by the change of hydrologic conditions. Our results highlight the complex linkages between highly variable hydrologic conditions and NH4+ partitioning in near-surface, river-derived sediments.
Collapse
Affiliation(s)
- Ying Liang
- Hubei
Key Laboratory of Yangtze River Basin Environmental Aquatic Science,
School of Environmental Studies, China University
of Geosciences, Wuhan 430074, China
- State
Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Rui Ma
- Hubei
Key Laboratory of Yangtze River Basin Environmental Aquatic Science,
School of Environmental Studies, China University
of Geosciences, Wuhan 430074, China
- State
Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Henning Prommer
- School
of Earth Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
| | - Qing-Long Fu
- Hubei
Key Laboratory of Yangtze River Basin Environmental Aquatic Science,
School of Environmental Studies, China University
of Geosciences, Wuhan 430074, China
| | - Xue Jiang
- Hubei
Key Laboratory of Yangtze River Basin Environmental Aquatic Science,
School of Environmental Studies, China University
of Geosciences, Wuhan 430074, China
| | - Yiqun Gan
- Hubei
Key Laboratory of Yangtze River Basin Environmental Aquatic Science,
School of Environmental Studies, China University
of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- Hubei
Key Laboratory of Yangtze River Basin Environmental Aquatic Science,
School of Environmental Studies, China University
of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Liu W, Du Y, Qiu W, Deng Y, Wang Y. Constraints on vertical variability of geogenic ammonium in multi-layered aquifer systems. WATER RESEARCH 2024; 268:122639. [PMID: 39427347 DOI: 10.1016/j.watres.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The elevated levels of geogenic (natural) ammonium in groundwater have been frequently documented in recent years. Although improving insights have been achieved in understanding the genesis of ammonium in the subsurface environment, the vertical variability of the geogenic ammonium in groundwater remains poorly understood. Here, we selected typical multi-layered aquifer systems in the central Yangtze River plain and characterized the vertical heterogeneity of geogenic ammonium through the hydrogeochemical analysis. Subsequently, the controlling factors were identified by examining the molecular composition of dissolved organic matter (DOM) and aquifer sediment features. The results indicated that the ammonium concentration in groundwater increased from the deep to shallow aquifers (2.13 to 9.88 mg/L as N), accompanied by a transition in organic matter (OM) degradation towards the methanogenic stage (δ13C-DIC: -23.07 to -0.34‰). Compared to the deeper aquifers, the DOM in the shallow aquifer was characterized by a higher abundance of the N-containing OM (15.1% > 13.13% > 12.76%) with a lower molecular lability index, corresponding to more thorough degradation extent. The characteristics of the soluble OM in depth-matched sediments were similar to those of the DOM in groundwater, suggesting the persistent water-rock interactions. Besides, the pumping tests revealed that the hydraulic conductivity decreased from deep to shallow aquifers (2.28 to 0.62 m/d), which further facilitated the more retention of geogenic ammonium in the shallow aquifer. That is, the combined effects of the abundant N-containing OM in sediments, strong degradation of the bioactive DOM, and long retention governed by hydrodynamics contributed to the increased ammonium enrichment in the shallow aquifer, thereby generating the vertical variability. The findings underscore the significance of the complex coupled factors in controlling the vertical distribution of geogenic ammonium in multi-layered aquifer systems, which was crucial for understanding the spatial heterogeneity of geogenic contaminated groundwater.
Collapse
Affiliation(s)
- Wenhui Liu
- Key Laboratory of Groundwater Quality and Health China University of Geosciences, Ministry of Education, Wuhan 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health China University of Geosciences, Ministry of Education, Wuhan 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Wenkai Qiu
- Key Laboratory of Groundwater Quality and Health China University of Geosciences, Ministry of Education, Wuhan 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health China University of Geosciences, Ministry of Education, Wuhan 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health China University of Geosciences, Ministry of Education, Wuhan 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
6
|
Jiang Y, Yang X, Zeng D, Su Y, Zhang Y. Nitrate recovery from groundwater and simultaneous upcycling into single-cell protein using a novel hybrid biological-inorganic system. WATER RESEARCH 2024; 263:122127. [PMID: 39094202 DOI: 10.1016/j.watres.2024.122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Nitrate pollution in groundwater is a serious problem worldwide, as its concentration in many areas exceeds the WHO-defined drinking water standard (50 mg/L). Hydrogen-oxidizing bacteria (HOB) are a group of microorganisms capable of producing single-cell protein (SCP) using hydrogen and oxygen. Furthermore, HOB can utilize various nitrogen sources, including nitrate. This study developed a novel hybrid biological-inorganic (HBI) system that coupled a new submersible water electrolysis system driven by renewable electricity with HOB fermentation for in-situ nitrate recovery from polluted groundwater and simultaneously upcycling it together with CO2 into single-cell protein. The performance of the novel HBI system was first evaluated in terms of bacterial growth and nitrate removal efficiency. With 5 V voltage applied and the initial nitrate concentration of 100 mg/L, the nitrate removal efficiency of 85.52 % and raw of 47.71 % (with a broad amino acid spectrum) were obtained. Besides, the HBI system was affected by the applied voltages and initial nitrogen concentrations. The water electrolysis with 3 and 4 V cannot provide sufficient H2 for HOB and the removal of nitrate was 57.12 % and 59.22 % at 180 h, while it reached 65.14 % and 65.42 % at 5 and 6 V, respectively. The nitrate removal efficiency reached 58.40 % and 50.72 % within 180 h with 200 and 300 mg/L initial nitrate concentrations, respectively. Moreover, a larger anion exchange membrane area promoted nitrate removal. The monitored of the determination of different forms of nitrogen indicated that around 60 % of the recovered nitrate was assimilated into cells, and 40 % was bio-converted to N2. The results demonstrate a potentially sustainable method for remediating nitrate contaminant in groundwater, upcycling waste nitrogen, CO2 sequestration and valorization of renewable electricity into food or feed.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Xiaoyong Yang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Danfei Zeng
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, 2500 Valby, Denmark.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Wu T, Li Z, Cui H, Liu W, Liu J, Cheng X, Liu M. Hydrochemical processes and inorganic nitrogen sources of shallow groundwater in the Sanjiang Plain, northeast China. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11121. [PMID: 39295203 DOI: 10.1002/wer.11121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
This study investigates the chemical characteristics, formation, and sources of inorganic nitrogen (IN) of shallow groundwater across the Sanjiang Plain, aiming to enhance drinking water safety management and pollution control. A total of 167 groundwater and 27 surface water samples were collected for constituents and isotopes (H2 and O18). The hydrogeochemical characteristics showed that the major type is HCO3- Ca·Mg, with low total dissolved solids and a neutral to weak alkaline nature. Rock weathering processes govern the hydrochemical composition of groundwater. Hydrogen and oxygen stable isotopes analyses revealed that precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO3-N concentrations, with sewage, manure, and fertilizers being the primary IN sources. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes, causing the loss of NO3-N and leaving NH4-N as the dominant IN form. Organic matter mineralization is likely a more significant contributor to NH4-N concentrations than ammonium fertilizers. These findings provide valuable information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions. PRACTITIONER POINTS: Rock weathering processes govern the hydrochemical composition of groundwater, and precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO3-N. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes. Organic matter mineralization is likely a more significant contributor to NH4-N concentrations than ammonium fertilizers. These findings provide references for water management and information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions.
Collapse
Affiliation(s)
- Tingwen Wu
- China University of Geosciences, Beijing, China
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, China
| | - Zhihong Li
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Huqun Cui
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Weipo Liu
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Jiangtao Liu
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Xuxue Cheng
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Mingzhu Liu
- China University of Geosciences, Beijing, China
| |
Collapse
|
8
|
Duan L, Liu X, Sun Y, Wu Y. Elucidating biogeochemical characterization of nitrogen in the vadose zone integrating geochemistry, microorganism, and numerical simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174687. [PMID: 38997026 DOI: 10.1016/j.scitotenv.2024.174687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
A thorough comprehension of nitrogen biogeochemical processes in the vadose zone is crucial for the effective prevention and remediation of soil-groundwater system contamination. Despite the growing research on this subject, the full scope of nitrogen biogeochemical characterization in different geological environments remains poorly understood. This study addresses this knowledge gap by integrating geochemical, microbiological and numerical simulation approaches to gain a deeper insight into nitrogen biogeochemistry in agriculture. Our findings indicate the biogeochemical behavior of nitrogen in the vadose zone is mediated by microorganisms, driven by hydraulics, influenced by geological conditions and environmental factors. Along the groundwater flow, NH4+-N was found to be heavily accumulated in the topsoil of 0-40 cm, while NO3--N was transported and driven by hydrodynamics from both vertical and horizontal directions. Microbial diversity, species composition and functional microorganisms were significantly influenced by soil depth, rather than geomorphological types. Oxidation-reduction potential (ORP), total organic carbon (TOC), soil moisture (MOI), bicarbonate (HCO3-), and ferrous (Fe2+) were identified as the principal environmental factors that regulate nitrogen metabolism and the dominant biochemical processes, encompassing nitrogen fixation, nitrification, and denitrification. Driven by hydrodynamics, NH4+-N, NO2--N and NO3--N tend to form distinct biochemical reaction zones in the vertical vadose zone. These areas are dynamic and subject to geomorphologies. It should be noted that NO3--N can migrate towards groundwater from the clayey sand in the Alluvial Plain, which presents a potential risk of groundwater contamination. The fissure structure of loess may serve as the major transport pathway for groundwater nitrogen contamination in the Loess Tableland. This finding highlights the importance of integrating microbiology, geochemistry and hydraulics to elucidate the biogeochemical processes of nitrogen in the vadose zone with a dynamic mindset.
Collapse
Affiliation(s)
- Lei Duan
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China.
| | - Xiaobang Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Yaqiao Sun
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Yakun Wu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
9
|
Li Y, Liu M, Wu X. Insights into biogeochemistry and hot spots distribution characteristics of redox-sensitive elements in the hyporheic zone: Transformation mechanisms and contributing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170587. [PMID: 38309342 DOI: 10.1016/j.scitotenv.2024.170587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Biogeochemical hot spots play a crucial role in the cycling and transport of redox-sensitive elements (RSEs) in the hyporheic zone (HZ). However, the transformation mechanisms of RSEs and patterns of RSEs hot spots in the HZ remain poorly understood. In this study, hydrochemistry and multi-isotope (N/C/S/O) datasets were collected to investigate the transformation mechanisms of RSEs, and explore the distribution characteristics of RSEs transformation hot spots. The results showed that spatial variability in key drivers was evident, while temporal change in RSEs concentration was not significant, except for dissolved organic carbon. Bacterial sulfate reduction (BSR) was the primary biogeochemical process for sulfate and occurred throughout the area. Ammonium enrichment was mainly caused by the mineralization of nitrogenous organic matter and anthropogenic inputs, with adsorption serving as the primary attenuation mechanism. Carbon dynamics were influenced by various biogeochemical processes, with dissolved organic carbon mainly derived from C3 plants and dissolved inorganic carbon from weathering of carbonate rocks and decomposition of organic matter. The peak contribution of dissolved organic carbon decomposition to the DIC pool was 46.44 %. The concentration thresholds for the ammonium enrichment and BSR hot spots were identified as 1.5 mg/L and 8.84 mg/L, respectively. The distribution pattern of RSEs hot spots was closely related to the hydrogeological conditions. Our findings reveal the complex evolution mechanisms and hot spots distribution characteristics of RSEs in the HZ, providing a basis for the safe utilization and protection of groundwater resources.
Collapse
Affiliation(s)
- Yu Li
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Mingzhu Liu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Xiong Wu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
10
|
Martín MT, Valdepeñas Polo L, González Yélamos J, Cuevas Rodríguez J. Ammonium concentration in stream sediments resulting from decades of discharge from a wastewater treatment plant. Heliyon 2023; 9:e21860. [PMID: 38027734 PMCID: PMC10660492 DOI: 10.1016/j.heliyon.2023.e21860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
A study of ammonium pollution in the sediments of a stream that receives wastewater treatment plant (WWTP) discharge has been carried out. It is urgently necessary to find environmental indicators that can help prevent and detect potential contamination of water, as water is an increasingly scarce resource. To understand the behaviour of ammonium ions introduced by a historical (50-year) contamination process, vertical boreholes were drilled in the stream banks to depths between 30 and 120 cm. Moisture, pH, ammonium (soluble and exchangeable), and clay fraction content were analysed. The variation profile of these parameters was evaluated as a function of depth to determine factors related to the distribution of ammonium in several locations along the stream banks. The ammonium concentration was asymmetrically distributed among samples collected in near-surface locations, with ammonium concentrations between 0.3048 mmol/kg soil and 0.0007 mmol/kg soil. Ammonium was typically concentrated at sediment depths of 30-40 cm, which also exhibited the highest clay fraction content. High positive correlations were detected (r > 0.8; p < 0.0001) among the different ammonium variables (exchanged and dissolved species). No contamination effect was observed below 60-70 cm depth, which was due to ammonium retention in a natural barrier layer of clayey sediment. The clays in our study area (previously identified as smectite, a 2:1 sheet silicate) were able to control the contamination by retaining ammonium in the interlayers, which retarded nitrification. It is suggested that clay could serve as a geo-indicator of ammonium pollution evolution.
Collapse
Affiliation(s)
- María Tijero Martín
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lucía Valdepeñas Polo
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Javier González Yélamos
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jaime Cuevas Rodríguez
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
11
|
Ye F, Duan L, Sun Y, Yang F, Liu R, Gao F, Wang Y, Xu Y. Nitrogen removal in freshwater sediments of riparian zone: N-loss pathways and environmental controls. Front Microbiol 2023; 14:1239055. [PMID: 37664113 PMCID: PMC10469909 DOI: 10.3389/fmicb.2023.1239055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
The riparian zone is an important location of nitrogen removal in the terrestrial and aquatic ecosystems. Many studies have focused on the nitrogen removal efficiency and one or two nitrogen removal processes in the riparian zone, and less attention has been paid to the interaction of different nitrogen transformation processes and the impact of in situ environmental conditions. The molecular biotechnology, microcosm culture experiments and 15N stable isotope tracing techniques were used in this research at the riparian zone in Weinan section of the Wei River, to reveal the nitrogen removal mechanism of riparian zone with multi-layer lithologic structure. The results showed that the nitrogen removal rate in the riparian zone was 4.14-35.19 μmol·N·kg-1·h-1. Denitrification, dissimilatory reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) jointly achieved the natural attenuation process of nitrogen in the riparian zone, and denitrification was the dominant process (accounting for 59.6%). High dissolved organic nitrogen and nitrate ratio (DOC:NO3-) would promote denitrification, but when the NO3- content was less than 0.06 mg/kg, DNRA would occur in preference to denitrification. Furthermore, the abundances of functional genes (norB, nirS, nrfA) and anammox bacterial 16S rRNA gene showed similar distribution patterns with the corresponding nitrogen transformation rates. Sedimentary NOX-, Fe(II), dissolved organic carbon (DOC) and the nitrogen transformation functional microbial abundance were the main factors affecting nitrogen removal in the riparian zone. Fe (II) promoted NO3- attenuation through nitrate dependent ferrous oxidation process under microbial mediation, and DOC promotes NO3- attenuation through enhancing DNRA effect. The results of this study can be used for the management of the riparian zone and the prevention and control of global nitrogen pollution.
Collapse
Affiliation(s)
- Fei Ye
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Lei Duan
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yaqiao Sun
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Fan Yang
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Rui Liu
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Fan Gao
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Yike Wang
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yirong Xu
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| |
Collapse
|
12
|
Zhuo T, Wan Q, Chai B, Ren D, Lei X, He L, Chen B. Eutrophic water remediation efficiency of algicidal bacteria, Cellvibrio sp. G1 and Chitinimonas sp. G2, and their influence on microbial community structure. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Panagopoulos GP, Katsanou KN, Barouchas PE. Assessment of groundwater vulnerability to nitrates using the GIS-based DRASTIC and SI methods: a case study in Zacharo area, Greece. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:286. [PMID: 36626097 DOI: 10.1007/s10661-022-10882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
A vulnerability assessment of the aquifers in the agricultural area of Zacharo in SW, Peloponnese, Greece, was conducted using the DRASTIC index and the susceptibility index (SI). Sensitivity analysis was conducted and thematic maps for each parameter were generated to analyse the impact of individual parameter on the collective groundwater vulnerability. Results derived from the DRASTIC and SI maps revealed that the extremely highly vulnerable zones are concentrated at three coastal sites in the western part of the study area. Data from these maps also indicate low vulnerability areas throughout the eastern part of the region. The distribution of nitrate concentrations in groundwater is better correlated with the DRASTIC (79.2%) compared to SI (60.2%). Neither method takes into consideration the impact of dilution and nitrate to ammonium reduction, on the nitrate content of groundwater, thus overestimating the vulnerability index. Moreover, the SI method overestimates the impact of olive groves' land use type on the susceptibility index, thus resulting to a lower correlation with the observed nitrate concentrations.
Collapse
Affiliation(s)
| | - Konstantina N Katsanou
- Department of Water Resources and Ecosystems, IHE Delft, Westvest 7, Delft, 2611 AX, Netherlands.
| | | |
Collapse
|
14
|
Huang S, Chen L, Li J, Xu J, Xie W, Zhang C. The effects of colloidal Fe and Mn on P distribution in groundwater system of Jianghan Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158739. [PMID: 36108844 DOI: 10.1016/j.scitotenv.2022.158739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Many studies have confirmed groundwater phosphorus (P) enrichment by anthropogenic and geogenic sources. However, the effects of colloidal iron (Fe) and manganese (Mn) on the groundwater P distribution remain poorly-understood. This study investigated the spatial distribution of three forms of Fe, Mn, and P (particulate, colloidal, and truly soluble) in aquifers based on groundwater monitoring data and sediment core samples for the Jianghan Plain. High proportions of colloidal Fe, Mn, and P of up to 52%, 58%, and 76%, respectively were found in the phreatic and confined aquifers. Particulate and truly soluble P dominated the phreatic aquifer and the confined aquifer, respectively. However, the truly soluble Fe and Mn were dominant among the three forms in both the phreatic and confined aquifers. The distributions of Fe, Mn, and P in colloids and sediments were also studied by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). A comparison of the distributions of Fe, Mn, and P between site SD01 (riparian zones) and site SD02 (farmland) showed that both external inputs and the reduced release of Fe/Mn oxides/minerals from sediments contributed to the distributions of colloidal Fe, Mn, and P. Correlation analysis showed a strong relationship between colloidal Fe/Mn and P in both groundwater and sediment, implying that colloidal Fe/Mn play a role in regulating the distribution of P in the study area. This study provides a new understanding of the effects of colloidal Fe and Mn on the P distribution among the phreatic and confined aquifers.
Collapse
Affiliation(s)
- Shuxin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Lu Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Jiasen Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Jiawei Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Weiying Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan 430074, China.
| |
Collapse
|
15
|
Shen S, Luo K, Ma T, Du Y, Liang X, Zhang J, Han Z, Ye X. Nitrogen burial characteristics of Quaternary sediments and its controls on high ammonium groundwater in the Central Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156659. [PMID: 35709994 DOI: 10.1016/j.scitotenv.2022.156659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
As the strata sedimentary process proceeds, considerable amounts of nitrogen (N) is buried in sediments, which controls the sources and fate of N in the "groundwater-sediment" system. However, there is little concern regarding N burial characteristics in continuous sediment profiles from surface layer to deep aquifer thus far. In this study, lithology, grain size, geochronology, exchangeable N contents and geochemical proxies of sediments were analyzed to reveal the controlling mechanisms of N burial characteristics in Quaternary sediments and to interpret the enrichment of N in groundwater of central Yangtze River Basin. The results demonstrated a similar distribution trend for buried N in two sedimentary cores, which were high in the surface layer and decreased to stable in the deep aquifer. Excessive exchangeable N (EX-N) contents in sediments were mainly attributed to geologic origin. The N burial characteristics were controlled by the evolution of depositional environment: sedimentary facies determined the concentrations of total organic nitrogen (TON), further affecting the mineralization capacity of sediments; while paleoclimate regulated the intensity of the N transformation processes, ultimately influencing the actual concentrations of EX-N in sediments. In addition, due to the fast accumulation of alluvial deposits after Last Glacial Maximum and rapid development of Jianghan Lake Groups during Holocene, abundant organic matter (with high TON contents) was buried in sediments, which were still able to produce more ammonium or nitrate, and further posing continuous threats to groundwater quality. This study provided a new interpretation for the formation of high-ammonium aquifer in terms of depositional evolution.
Collapse
Affiliation(s)
- Shuai Shen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kewen Luo
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yao Du
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Xing Liang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingwei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zhihui Han
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xinyao Ye
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
16
|
Stüeken EE, Prave AR. Diagenetic nutrient supplies to the Proterozoic biosphere archived in divergent nitrogen isotopic ratios between kerogen and silicate minerals. GEOBIOLOGY 2022; 20:623-633. [PMID: 35749131 PMCID: PMC9544726 DOI: 10.1111/gbi.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen isotopes and abundances in sedimentary rocks have become an important tool for reconstructing biogeochemical cycles in ancient ecosystems. There are two archives of nitrogen in the rock record, namely kerogen-bound amines and silicate-bound ammonium, and it is well documented that the isotopic ratios of these two archives can be offset from one another. This offset has been observed to increase with metamorphic grade, suggesting that it may be related to the bonding environment in differing nitrogen host phases and associated equilibrium isotope fractionation. However, theoretical bounds for this effect have not been established, and it remains possible that some isotopic offsets predate metamorphism. In support of this hypothesis, we report an unexpectedly large isotopic offset of 4-5‰ in siltstones of very low metamorphic grade from the late Mesoproterozoic Diabaig Formation in NW Scotland (1.0 Ga). Carbon to nitrogen ratios of bulk rocks are 2-3 times lower than in other Mesoproterozoic sections. The rocks also contain early-formed phosphate concretions and display wrinkled surfaces on bedding planes, indicative of fossilised microbial mats. Collectively, these data are most parsimoniously interpreted as evidence of diagenetic ammonium release from microbial mats into porewaters, followed by partial oxidation to nitrite or nitrate at the sediment-water interface. This process would render residual ammonium in clays isotopically heavy, while the resulting nitrite or nitrate would be relatively lighter and captured in new biomass, leading to the observed isotopic divergence. The same diagenetic degradation pathway likely also liberated phosphate that was trapped within concretions. Diagenetic release of nutrients is known to occur in modern settings, and our data suggest that nitrogen isotopes may be a way to track this local sedimentary nutrient source in past environments. Lastly, we speculate that diagenetic nutrient recycling within Proterozoic microbial mats may have created a favourable niche for eukaryotic organisms in shallow waters.
Collapse
Affiliation(s)
- Eva E. Stüeken
- School of Earth & Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| | - Anthony R. Prave
- School of Earth & Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|