1
|
Qiu Y, Liu Y, Yang L, Yang Z, Wang Z, Wei C. Construction of immobilized functional microflora system and research on mechanism of enhanced degradation of aromatic compounds in coal chemical wastewater. WATER RESEARCH 2025; 283:123876. [PMID: 40412029 DOI: 10.1016/j.watres.2025.123876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/20/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Aiming to address the practical challenges of aromatic compound degradation in the biochemical treatment system of coal chemical wastewater (CCW), this study constructed an immobilized functional microflora system using modified zeolite as a bacterial carrier. The study evaluated the system's continuous efficacy in degrading aromatic compounds and explored the underlying mechanisms of the immobilized microflora system in enhancing degradation. The findings demonstrated that zeolite material modified by calcination at 300 °C exhibited the highest immobilization capacity for the microflora, achieving a microorganism immobilization amount of 0.81 mg/g. Additionally, when the chemical oxygen demand (COD) concentration stabilized at 1250 ± 20 mg/L, COD removal was maintained steadily above 65 %. The removal efficiencies for phenols and polycyclic aromatic hydrocarbons were 76.85 % and 52.52 %, respectively, representing enhancements of 19.17 % and 23.15 % compared to the control group (activated sludge alone). The secretion characteristics of microbial extracellular polymeric substances and the variation in protein secondary structure and hydrogen bonding structure were further analyzed. The results indicated enhanced secretion of the protein and the polysaccharide, an increased α-helix to (β-sheet + random coil) ratio, and stronger intermolecular hydrogen bonding. These findings suggest that the immobilized microflora system improved microbial adaptability to environmental stress. Additionally, increased expression of key enzymes such as Dehydrogenase, Catechol 1,2-dioxygenase, and Catechol 2,3-dioxygenase, alongside enhanced levels of dominant bacteria like Candidatus_Competibacter, Luteococcus and Flavobacterium underscored the critical role of immobilized functional genera in the degradation of aromatic compounds. The results of the study are of great practical significance for the regulation of the operation stability of the biochemical treatment system of CCW and the realization of the completely harmless treatment of CCW.
Collapse
Affiliation(s)
- Yao Qiu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| |
Collapse
|
2
|
Zhou T, Guo J, Zhang S, Liu Y, Yin G, Wu W, Wang Y, Peng Y. Metabolic products comparison in autotrophic and heterotrophic nitrogen removal: Insights into membrane fouling. WATER RESEARCH 2025; 282:123619. [PMID: 40245801 DOI: 10.1016/j.watres.2025.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Metabolic products play a significant role in membrane fouling during biological wastewater treatment. However, the differences in metabolic product composition and membrane fouling potentials between autotrophic (anammox, AN) and heterotrophic (denitrification, DN) nitrogen removal systems are not well understood. This study cultivated autotrophic and heterotrophic nitrogen removal systems and analyzed the compositions of their metabolic products. The analysis methods included fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography coupled with organic carbon and nitrogen detection (SEC-OCD-OND), and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Subsequently, the membrane fouling potential of these metabolic products was evaluated by dead-end membrane filtration experiments with microfiltration (MF) and ultrafiltration (UF) membranes. Significant differences in metabolic product composition existed between AN and DN nitrogen removal systems, which led to a distinct impact on membrane fouling. In the AN nitrogen removal system, membrane fouling was relatively mild despite the high abundance of polysaccharides (with C-O-C ring vibrations) and tannin-like substances in metabolic products. Its fouling was primarily caused by the rejection of humic substances. Conversely, in the DN nitrogen removal system, the high rejection of proteins and polysaccharides in SMP (52 % and 62 %) and EPS (18 % and 59 %) caused a pronounced flux decline, greatly increasing membrane fouling potential. These findings enhance understanding of membrane fouling mechanisms in autotrophic and heterotrophic nitrogen removal systems, providing actionable strategies to mitigate membrane fouling in biological nitrogen removal coupled with MBR process.
Collapse
Affiliation(s)
- Tong Zhou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Jin Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, PR China
| | - Yuru Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Guangshuo Yin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Wenjun Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yufei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
3
|
Jin S, Ren Y, Cai H, Chen B, Cheng Y, Liu W, Peng C, Fu Y, Lv C, Li H. One-pot green and sustainable process for the biotransformation of sophoricoside to genistein from Fructus Sophorae with magnetic cellulose spheres immobilized Aspergillus oryzae on cellulose using deep eutectic solvent assisted. Prep Biochem Biotechnol 2025:1-11. [PMID: 40013622 DOI: 10.1080/10826068.2025.2471892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study introduces a green, sustainable, and efficient approach for biotransforming sophoricoside into genistein from Fructus Sophorae using Aspergillus oryzae by removal of one molecule of glucose by β-glucosidase, an edible microorganism immobilized on magnetic cellulose and treated with deep eutectic solvents (DES). The goal was to enhance the biotransformation ratio by optimizing reaction conditions and selecting the most suitable DES. Various DESs, including natural deep eutectic solvents (NADES), were assessed for their ability to improve catalytic performance. Among them, the NADES system comprising choline chloride (CHCL) and glycerol (G) exhibited the highest catalytic efficiency (32.19 mg/g) under optimal conditions: temperature 33 °C, time 65 hours, pH 5.5, and a liquid-to-solid ratio of 45:1 (mL/g). This yield was 10.60 times greater than the genistein yield from untreated F. Sophorae. This combination notably increased cell membrane permeability, aiding the bioconversion process. The cellulose immobilization technique provided a stable and reusable microreactor and maintained microbial activity (80.37%) over 10 cycles. These findings validate the bioconversion method as a promising and sustainable strategy for genistein production from plant-derived sophoricoside, with potential applications in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Shuang Jin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yubin Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Hongyao Cai
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Biqiong Chen
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yupeng Cheng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Weili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Cailiang Peng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Chen Lv
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Huiling Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| |
Collapse
|
4
|
Zhao J, Peng L, Ma X. Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects. ENVIRONMENTAL RESEARCH 2025; 266:120560. [PMID: 39647683 DOI: 10.1016/j.envres.2024.120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products. Microalgae offer potential for highly efficient and cost-effective mariculture wastewater treatment, with particularly noteworthy advancements in the application of combined microalgae technologies. This paper explores the research hotspots in this field through bibliometric analysis and systematically discusses the following aspects: (1) summarizing the current pollution status of mariculture wastewater, including the types and sources of pollutants in various forms of mariculture wastewater, treatment methods, and associated treatment efficiencies; (2) analyzing the factors contributing to the gradual replacement of single microalgae technology with combined microalgae technology, highlighting its synergistic effects, enhanced pollutant removal efficiencies, resource recovery potential, and alignment with sustainable development goals; (3) exploring the mechanisms of pollutant removal by combined microalgae technologies, focusing on their technical advantages in bacterial-algal coupling, immobilized microalgae systems, and microalgal biofilm technologies; (4) discussing the challenges faced by the three main categories of combined microalgae technologies and proposing future improvement strategies to further enhance their application effectiveness. In conclusion, this paper offers a detailed analysis of these emerging technologies, providing a forward-looking perspective on the future development of microalgae-based mariculture wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinjin Zhao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/School of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, China.
| |
Collapse
|
5
|
Hou L, Hu K, Huang F, Pan Z, Jia X, Liu W, Yao X, Yang Z, Tang P, Li J. Advances in immobilized microbial technology and its application to wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 413:131518. [PMID: 39321941 DOI: 10.1016/j.biortech.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The use of immobilized microbial technology in wastewater treatment has drawn extensive attention due to its advantages of high colony density, rapid reaction speed, and good stability. Immobilization carriers are the core of immobilization technology. This review summarizes the types of immobilization carriers and their advantages and disadvantages, focusing on the potential for utilizing novel immobilization carriers (composite carriers, nanomaterials, metal-organic frameworks (MOFs), and biochar materials) in wastewater applications. The basic principles and technical advantages and disadvantages of novel immobilization methods (layer-by-layer self-assembly (LBL) and electrostatic spinning) are then summarized. Additionally, the research progress and application characteristics of immobilized anaerobic ammonia oxidizing (Anammox) and aerobic denitrifying (AD) bacteria for enhanced wastewater nitrogen removal are discussed. Finally, the current challenges of immobilized microbial technology are discussed, and its future development trends are summarized and prospected. This review provides guidance and theoretical support for the practical engineering application of immobilized microbial technology.
Collapse
Affiliation(s)
- Liangang Hou
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Kaiyao Hu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China.
| | - Feng Huang
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Xiang Jia
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Wanqi Liu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Xingrong Yao
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Zongyi Yang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Peng Tang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Liu Y, Li J, Su J, Li X, Li X. Simultaneous removal of ammonia nitrogen, calcium and cadmium in a biofilm reactor based on microbial-induced calcium precipitation: Optimization of conditions, mechanism and community biological response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120912. [PMID: 38636417 DOI: 10.1016/j.jenvman.2024.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
With the enhancement of environmental governance regulations, the discharge requirements for reverse osmosis wastewater have become increasingly stringent. This study proposes an innovative approach utilizing heterotrophic nitrification and aerobic denitrification (HNAD)-based biomineralization technology, combined with coconut palm silk loaded biochar, to offer a novel solution for resource-efficient and eco-friendly treatment of reverse osmosis wastewater. Zobellella denitrificans sp. LX16 were loaded onto modified coir silk and showed removal efficiencies of up to 97.38, 94.58, 86.24, and 100% for NH4+-N (65 mg L-1), COD (900 mg L-1), Ca2+ (180 mg L-1), and Cd2+ (25 mg L-1). Analysis of the metabolites of microorganisms reveals that coconut palm silk loaded with deciduous biochar (BCPS) not only exerts a protective effect on microorganisms, but also enhances their growth, metabolism, and electron transfer capabilities. Characterization of precipitation phenomena elucidated the mechanism of Cd2+ removal via ion exchange, precipitation, and adsorption. Employing high-throughput and KEGG functional analyses has confirmed the biota environmental response strategies and the identification of key genes like HNAD.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xue Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
7
|
Li G, Yu Y, Li X, Jia H, Ma X, Opoku PA. Research progress of anaerobic ammonium oxidation (Anammox) process based on integrated fixed-film activated sludge (IFAS). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13235. [PMID: 38444262 PMCID: PMC10915381 DOI: 10.1111/1758-2229.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
The integrated fixed-film activated sludge (IFAS) process is considered one of the cutting-edge solutions to the traditional wastewater treatment challenges, allowing suspended sludge and attached biofilm to grow in the same system. In addition, the coupling of IFAS with anaerobic ammonium oxidation (Anammox) can further improve the efficiency of biological denitrification. This paper summarises the research progress of IFAS coupled with the anammox process, including partial nitrification anammox, simultaneous partial nitrification anammox and denitrification, and partial denitrification anammox technologies, and describes the factors that limit the development of related processes. The effects of dissolved oxygen, influent carbon source, sludge retention time, temperature, microbial community, and nitrite-oxidising bacteria inhibition methods on the anammox of IFAS are presented. At the same time, this paper gives an outlook on future research focus and engineering practice direction of the process.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Yunyong Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xingyu Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Hongsheng Jia
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xiaoning Ma
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | | |
Collapse
|
8
|
Tang L, Gao M, Liang S, Wang S, Wang X. Enhanced biological phosphorus removal sustained by aeration-free filamentous microalgal-bacterial granular sludge. WATER RESEARCH 2024; 253:121315. [PMID: 38382289 DOI: 10.1016/j.watres.2024.121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
The microalgal-bacterial granular sludge (MBGS) based enhanced biological phosphorus removal (EBPR) (MBGS-EBPR) was recently proposed as a sustainable wastewater treatment process. Previous work showed the possibility of obtaining an MBGS-EBPR process starting from mature MBGS and phosphate-accumulating organisms (PAOs) enriched aerobic granular sludge (AGS) and validated the effectiveness of removing carbon/nitrogen/phosphorus with mechanical aeration. The present work evaluated whether the same could be achieved starting from conventional activated sludge and operating under aeration-free conditions in an alternating dark/light photo-sequencing batch reactor (PSBR). We successfully cultivated filamentous MBGS with a high settling rate (34.5 m/h) and fast solid-liquid separation performance, which could be attributed to the proliferation of filamentous cyanobacteria and stimulation of extracellular polymeric substances (EPS) production. The process achieved near-complete steady-state removal of carbon (97.2 ± 1.9 %), nitrogen (93.9 ± 0.7 %), and phosphorus (97.7 ± 1.7 %). Moreover, improved phosphorus release/uptake driven by photosynthetic oxygenation under dark/light cycles suggests the enrichment of PAOs and the establishment of MBGS-EBPR. Batch tests showed similar phosphorus release rates in the dark but significantly lower phosphorus uptake rates in the presence of light when the filamentous granules were disrupted. This indicates that the filamentous structure of MBGS has minor limitations on substrate mass transfer while exerting protective effects on PAOs, thus playing an important role in sustaining the function of aeration-free EBPR. Microbial assays further indicated that the enrichment of filamentous cyanobacteria (Synechocystis, Leptoolybya, and Nodosilinea), putative PAOs and EPS producers (Hydrogenophaga, Thauera, Flavobacterium, and Bdellovibrio) promoted the development of filamentous MBGS and enabled the high-efficient pollutant removal. This work provides a feasible and cost-effective strategy for the startup and operation of this innovative process.
Collapse
Affiliation(s)
- Liaofan Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
9
|
Wang X, Li J, Xu L, Su J, Wang Z, Li X. Simultaneous removal of calcium, cadmium and tetracycline from reverse osmosis wastewater by sycamore deciduous biochar, shell powder and polyurethane sponge combined with biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 394:130215. [PMID: 38122995 DOI: 10.1016/j.biortech.2023.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The treatment of reverse osmosis concentrate generated from urban industrial sewage for resource recovery has been hot. In this research, a biofilm reactor was constructed by combining sycamore deciduous biochar, shell powder, and polyurethane sponge loaded with Zobellella denitrificans sp. LX16. For ammonia nitrogen (NH4+-N), calcium (Ca2+), chemical oxygen demand (COD), cadmium (Cd2+), and tetracycline (TC), the removal efficiencies were 98.69 %, 83.95 %, 97.26 %, 98.34 %, and 69.12 % at a hydraulic retention time (HRT) of 4 h, pH of 7.0, and influent salinity, Ca2+, and TC concentrations of 1.0, 180.0, and 3.0 mg/L, respectively. The biofilm reactor packing has a three-dimensional structure to ensure good loading of microorganisms while promoting electron transfer and metabolic activity of microorganisms and increasing the pollutant tolerance and removal efficiency. The reactor provides a practical reference for the sedimentation of reverse osmosis concentrate to remove Cd2+ and TC by microbial induced calcium precipitation (MICP).
Collapse
Affiliation(s)
- Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
10
|
Lin L, Zhang Y, Li YY. Enhancing start-up strategies for anammox granular sludge systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166398. [PMID: 37604370 DOI: 10.1016/j.scitotenv.2023.166398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been developed as one of the optimal alternatives to the conventional biological nitrogen removal process because of its high nitrogen removal capacity and low energy consumption. However, the slow growth rate of anammox bacteria and its high sensitivity to environmental changes have resulted in fewer anammox sludge sources for process start-up and a lengthy start-up period. Given that anammox microorganisms tend to aggregate, granular-anammox sludge is a frequent byproduct of the anammox process. In this study, we review state-of-the-art strategies for promoting the formation of anammox granules and the start-up of the anammox process based on the literature of the past decade. These strategies are categorized as the transformation of alternative sludge, the addition of accelerators, the introduction of functional carriers, and the implementation of other physical methods. In addition, the formation mechanism of anammox granules, the operational performance of various strategies, and their promotion mechanisms are introduced. Finally, prospects are presented to indicate the gaps in contemporary research and the potential future research directions. This review functions as a summary guideline and theoretical reference for the cultivation of granular-anammox sludge, the start-up of the anammox process, and its practical application.
Collapse
Affiliation(s)
- Lan Lin
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
11
|
Wang P, Lu B, Liu X, Chai X. Accelerating the granulation of anammox sludge in wastewater treatment with the drive of "micro-nuclei": A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160238. [PMID: 36402322 DOI: 10.1016/j.scitotenv.2022.160238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Anammox granule sludge (AnGS) has great potential in the field of wastewater nitrogen removal, but its development and promotion have been limited by the slow granulation speed and fragile operating stability. Based on the reviews about the AnGS formation mechanism in this paper, "micro-nuclei" was found to play an important role in the granulation of AnGS, and adding "micro-nuclei" directly into the reactor may be an efficient way to accelerate the formation of AnGS. Then, accelerating AnGS granulation with inert particles, multivalent positive ions, and broken granule sludge as "micro-nuclei" was summarized and discussed. Among inert particles, iron-based particles may be a more advantageous candidate for "micro-nuclei" due to their ability to provide attachment sites and release ferric/ferrous ions. The precipitations of multivalent positive ions are also a potential option for "micro-nuclei" that can be generated in-situ, but a suitable dosing strategy is necessary. About broken granular sludge, the broken active AnGS may have advantages in terms of anaerobic ammonium oxidation bacteria-affinity and granulation speed, while using inactive granular sludge as "micro-nuclei" can avoid interfering bacterial invasion and has a higher cost performance than broken active AnGS. In addition, possible research directions for accelerating the formation of AnGS by dosing "micro-nuclei" were highlighted. This paper is intended to provide a possible pathway for the rapid start-up of AnGS systems, and references for the optimization and promotion of the AnGS process.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xiaoji Liu
- China Energy Conservation and Environmental Protection Group (CECEP) Feixi WTE Co., Ltd., Anhui 230000, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Li J, Ali A, Su J, Huang T, Zhai Z, Xu L. Synergistic removal of nitrate by a cellulose-degrading and denitrifying strain through iron loaded corn cobs filled biofilm reactor at low C/N ratio: Capability, enhancement and microbiome analysis. BIORESOURCE TECHNOLOGY 2023; 369:128433. [PMID: 36473584 DOI: 10.1016/j.biortech.2022.128433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Optimization of nitrate removal rate under low carbon-to-nitrogen ratio has always been one of the research hotspots. Biofilm reactor based on functional carrier and using interspecific synergic effect of strains provides an insight. In this study, iron-loaded corn cob was used as a functional carrier that can contribute to the cellulose degradation, iron cycling, and collaborative denitrification process of microorganisms. During biofilm reactor operation, the maximum nitrate removal efficiency was 99.30% and could reach 81.73% at no carbon source. Dissolved organic carbon and carrier characterization showed that strain ZY7 promoted the release of carbon source. The crystallinity of cellulose I and II in carrier of experimental group increased by 31.26% and decreased by 21.83%, respectively, in comparison to the control group. Microbial community showed the synergistic effect among different strains. The vitality and metabolic activity of the target microorganisms in bioreactor were increased through interspecific bacterial cooperation.
Collapse
Affiliation(s)
- Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
13
|
Sun C, Li C, Zhang K, Ma X, Zhang Y. Six complex microbial inoculants for removing ammonia nitrogen from waters. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10823. [PMID: 36544243 DOI: 10.1002/wer.10823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
To determine the effect of microbial inoculants on the removal of ammonia nitrogen (NH4 + -N), six different complex microbial inoculants were studied. In this study, their effectiveness on NH4 + -N removal was compared, and their microbial community composition was determined. High-throughput sequencing results showed that Proteobacteria and Firmicutes were the dominant phyla in six samples. Before the reaction, Bacillus, Cyanobacteria, and Mitochondria genera were the dominant genera. The dominant genera were significantly different after the reaction with the addition of bacterial agents. The six water samples were Massilia, Escherichia-Shigella, Brevibacillus, Mitsuaria, Bacillus, and Ralstonia. Among the six complex microbial inoculants, "Gandu nitrifying bacteria (NR4 )" have the best removal effect on NH4 + -N. In addition, the removal effect of six different bacterial agents on chemical oxygen demand (COD) was compared. The results showed that "Bilaiqing ammonia nitrogen removal bacteria agent (NR5 )" has the best removal effect on COD. Single-factor experiments suggested that the optimal conditions for NR4 bacteria were pH 7, 30°C, 1.0 g/L of bacterial agent dosage and a wide range of NH4 + -N from 30 to 300 mg/L. PRACTITIONER POINTS: The nitrogen removal effects of six different microbial agents were compared. High-throughput sequencing provides important insights into the study of ammonia nitrogen removal by microbial communities. Analysis of six different complex bacterial agents by high-throughput sequencing. The relative abundance of microorganisms is not proportional to the ability to remove NH4 + -N Good application effect in urban landscape water body.
Collapse
Affiliation(s)
- Chunmeng Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13830. [PMID: 36360710 PMCID: PMC9657116 DOI: 10.3390/ijerph192113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In the field of environmental science and engineering, microorganisms, enzymes and algae are promising biomass materials that can effectively degrade pollutants. However, problems such as poor environmental adaptability, recycling difficulties, and secondary pollution exist in the practical application of non-immobilized biomass materials. Biomass immobilization is a novel environmental remediation technology that can effectively solve these problems. Compared with non-immobilized biomass, immobilized biomass materials have the advantages of reusability and stability in terms of pH, temperature, handling, and storage. Many researchers have studied immobilization technology (i.e., methods, carriers, and biomass types) and its applications for removing refractory organic pollutants. Based on this, this paper reviews biomass immobilization technology, outlines the mechanisms and factors affecting the removal of refractory organic pollutants, and introduces the application of immobilized biomass materials as fillers for reactors in water purification. This review provides some practical references for the preparation and application of immobilized biomass materials and promotes further research and development to expand the application range of this material for water purification.
Collapse
Affiliation(s)
- Danxia Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaolong Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiyan Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Zhihong Tu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxiang Zhu
- Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin 541006, China
| |
Collapse
|
15
|
Zhang Q, Lin JG, Kong Z, Zhang Y. A critical review of exogenous additives for improving the anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155074. [PMID: 35398420 DOI: 10.1016/j.scitotenv.2022.155074] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Anammox achieves chemoautotrophic nitrogen removal under anaerobic and anoxic conditions and is a low-carbon wastewater biological nitrogen removal process with broad application potential. However, the physiological limitations of AnAOB often cause problems in engineering applications, such as a long start-up time, unstable operation, easily inhibited reactions, and difficulty in long-term strain preservation. Exogenous additives have been considered an alternative strategy to address these issues by retaining microbes, shortening the doubling time of AnAOB and improving functional enzyme activity. This paper reviews the role of carriers, biochar, intermediates, metal ions, reaction substrates, redox buffers, cryoprotectants and organics in optimizing anammox. The pathways and mechanisms of exogenous additives, which are explored to solve problems, are systematically summarized and analyzed in this article according to operational performance, functional enzyme activity, and microbial abundance to provide helpful information for the engineering application of anammox.
Collapse
Affiliation(s)
- Qi Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China.
| |
Collapse
|
16
|
Chen H, Yang E, Tu Z, Wang H, Liu K, Chen J, Wu S, Kong Z, Hendrik Sanjaya E, Yang M. Dual inner circulation and multi-partition driving single-stage autotrophic nitrogen removal in a bioreactor. BIORESOURCE TECHNOLOGY 2022; 355:127261. [PMID: 35526709 DOI: 10.1016/j.biortech.2022.127261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The single-stage autotrophic nitrogen removal (ANR) process is impeded by a long start-up cycle and unstable operation performance. In this study, an airlift inner-circulation partition bioreactor (AIPBR) was operated continuously for 215 days to explore methods of strengthening the performance and stable operation of the single-stage ANR system. AIPBR start-up period took around 38 days, the total nitrogen removal efficiency was > 85% on day 35. With the decrease of hydraulic retention time and the increase of aeration rate, the nitrogen removal rate increased to 0.85 ± 0.02 kg-N/m3/day. The sludge morphology gradually changed into dark-red floc-coupled granular sludge. Nitrosomonas (9.95%) and Candidatus Brocadia (6.41%) were dominant in the sludge. During long-term operation, AIPBR achieved the dual inner circulation of sewage and sludge and then formed effective dissolved oxygen and sludge partitions to provide a suitable growth environment for various functional bacteria, promote synergy between them, and strengthen the ANR performance.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Ke Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Min Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China.
| |
Collapse
|
17
|
Application of Carrier Materials in Self-Healing Cement-Based Materials Based on Microbial-Induced Mineralization. CRYSTALS 2022. [DOI: 10.3390/cryst12060797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microbially induced calcium carbonate precipitation (MICP) technology has attracted widespread research attention owing to its application in crack healing for cement-based materials in an intelligent and environmentally friendly manner. However, the high internal alkalinity, low nutrient content, and dense structure of cement-based materials have restricted its application in self-healing cement-based materials. Various carrier materials have been widely used for the immobilization of microorganisms in recent years. Carrier materials have significantly increased the ability of microorganisms to withstand extreme conditions (high temperature, high alkali, etc.) and have provided new ideas for the compatibility of microorganisms with cement-based materials. In this study, the basic principles of microbial self-healing technology in cement-based materials and microbial immobilization methods and the influencing factors are introduced, followed by a review of the research progress and application effects of different types of carrier materials, such as aggregate, low-alkali cementitious materials, organic materials, and microcapsules. Finally, the current problems and promising development directions of microbial carrier materials are summarized to provide useful references for the future development of microbial carriers and self-healing cement-based materials.
Collapse
|
18
|
Waterborne Polyurethane Acrylates Preparation towards 3D Printing for Sewage Treatment. MATERIALS 2022; 15:ma15093319. [PMID: 35591656 PMCID: PMC9104063 DOI: 10.3390/ma15093319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Conventional immobilized nitrifying bacteria technologies are limited to fixed beds with regular shapes such as spheres and cubes. To achieve a higher mass transfer capacity, a complex-structured cultivate bed with larger specific surface areas is usually expected. Direct ink writing (DIW) 3D printing technology is capable of preparing fixed beds where nitrifying bacteria are embedded in without geometry limitations. Nevertheless, conventional bacterial carrier materials for sewage treatment tend to easily collapse during printing procedures. Here, we developed a novel biocompatible waterborne polyurethane acrylate (WPUA) with favorable mechanical properties synthesized by introducing amino acids. End-capped by hydroxyethyl acrylate and mixed with sodium alginate (SA), a dual stimuli-responsive ink for DIW 3D printers was prepared. A robust and insoluble crosslinking network was formed by UV-curing and ion-exchange curing. This dual-cured network with a higher crosslinking density provides better recyclability and protection for cryogenic preservation. The corresponding results show that the nitrification efficiency for printed bioreactors reached 99.9% in 72 h, which is faster than unprinted samples and unmodified WPUA samples. This work provides an innovative immobilization method for 3D printing bacterial active structures and has high potential for future sewage treatment.
Collapse
|
19
|
Using nanomaterials to increase the efficiency of chemical production in microbial cell factories: A comprehensive review. Biotechnol Adv 2022; 59:107982. [DOI: 10.1016/j.biotechadv.2022.107982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
|
20
|
Application of microbial immobilization on chitosan composite membrane for manganese removal in water treatment. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Ma H, Zhao Y, Yang K, Wang Y, Zhang C, Ji M. Application oriented bioaugmentation processes: Mechanism, performance improvement and scale-up. BIORESOURCE TECHNOLOGY 2022; 344:126192. [PMID: 34710609 DOI: 10.1016/j.biortech.2021.126192] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an optimization method with great potential to improve the treatment effect by introducing specific strains into the biological treatment system. In this study, a comprehensive review of the mechanism of bioaugmentation from the aspect of microbial community structure, the optimization methods facilitating application as well as feasible approaches of scale-up application has been provided. The different contribution of indigenous and exogenous strains was critically analyzed, the relationship between microbial community variation and system performance was clarified. Operation regulation and immobilization technologies are effective methods to deal with the possible failure of bioaugmentation. The gradual expansion from lab-scale, pilot scale to full-scale, the transformation and upgrading of wastewater treatment plants through the combination of direct dosing and biofilm, and the application of side-stream reactors are feasible ways to realize the full-scale application. The future challenges and prospects in this field were also proposed.
Collapse
Affiliation(s)
- Huilin Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Bai Y, Su J, Ali A, Wen Q, Chang Q, Gao Z, Wang Y. Efficient removal of nitrate, manganese, and tetracycline in a novel loofah immobilized bioreactor: Performance, microbial diversity, and functional genes. BIORESOURCE TECHNOLOGY 2022; 344:126228. [PMID: 34732371 DOI: 10.1016/j.biortech.2021.126228] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The remediation of multiple pollutants in water, for instance, nitrate, heavy metals, and antibiotics is urgent and necessary for the global water resources protection. Herein, a modified loofah bioreactor was designed for simultaneous denitrification, manganese (Mn) oxidation, and tetracycline (TC) removal. The maximum removal efficiencies of NO3--N (91.97%), Mn(II) (71.25%), and TC (57.39%) were achieved at a hydraulic retention time (HRT) of 9 h, Mn(II) concentration of 20 mg L-1, and TC concentration of 1 mg L-1. SEM and XRD were carried out to characterize the bioprecipitation in the operation of bioreactor. TC addition affected the gaseous denitrification products, dissolved organic matter, as well as reduced the OTU in the bioreactor. The Zoogloea were regarded as the dominant species in the microbial community and played an essential role in the operation of bioreactor. Metagenomic analysis proved the great potential for denitrification, manganese oxidation, and antibiotic removal of loofah bioreactor.
Collapse
Affiliation(s)
- Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
23
|
Zhou S, Zhang Z, Sun Z, Song Z, Bai Y, Hu J. Responses of simultaneous anammox and denitrification (SAD) process to nitrogen loading variation: Start-up, performance, sludge morphology and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148911. [PMID: 34328926 DOI: 10.1016/j.scitotenv.2021.148911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The effects of loading variation on the efficiency, EPS, sludge morphology and microbial population of simultaneous anammox and denitrification (SAD) were thoroughly investigated with the low-abundance SAD sludge. Results indicated that the first stage lasted the longest (33d), and the average removal rate of TN can be maintained above 95%. The specific anammox activity (SAA), specific denitrification activity and PN/PS continued to increase, but the excessive loading caused the effluent to deteriorate rapidly, and SAA and PN/PS also decreased slightly, but it could be recovered quickly. The contribution rate of anammox and denitrification to N removal reached 87.6% and 12.4% eventually, respectively. The abundance of AnAOB was 10.68%-18.01%, 9.01%-15.54%, 5.74%-12.88% in the upper, middle and lower layers, respectively. Candidatus Kuenenia was always the dominant AnAOB, especially after high loading inhibition. The abundance of denitrifying bacteria (mainly Bacillus, Comamonas and Denitratisoma) gradually became the highest.
Collapse
Affiliation(s)
- Shun Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Zhulong Sun
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhuangzhuang Song
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
24
|
Start-up Strategies for Anaerobic Ammonia Oxidation (Anammox) in In-Situ Nitrogen Removal from Polluted Groundwater in Rare Earth Mining Areas. SUSTAINABILITY 2021. [DOI: 10.3390/su13084591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.
Collapse
|