1
|
Yang L, Pan R, Wang S, Zhu Z, Li H, Yang R, Sun X, Ge B. Macrofaunal biodiversity and trophic structure varied in response to changing environmental properties along the Spartina alterniflora invasion stages. MARINE POLLUTION BULLETIN 2025; 214:117756. [PMID: 40020395 DOI: 10.1016/j.marpolbul.2025.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Spartina alterniflora has significantly altered coastal ecosystems. Understanding macrofaunal responses to its invasion is crucial for managing coastal wetlands. Five invasion stages over 16 years were analyzed: no invasion, initial, young, mature, and senescing. Macrofaunal biodiversity initially increased but later declined. Environmental properties varied by stages, creating distinct habitats. The impact on macrofauna depended on species traits and invasion stage. Key species accounting for 49.54 % of dissimilarity were Stenothyra glabra, Bullacta caurina, Pseudomphala latericea, and Potamocorbula laevis. Trophic structure initially remained stable but shifted later. Organic carbon (OC), total nitrogen (TN), and C/N ratio correlated with S. alterniflora development. Height of S. alterniflora was a key environmental indicator, while OC content and C/N ratio were crucial for shaping the macrofaunal community, indicating food source changes. This study provides valuable insights for managing coastal environments.
Collapse
Affiliation(s)
- Li Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Rui Pan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Shuang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhangyan Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Hongshan Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ruiping Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Xiaoping Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Baoming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
2
|
He Y, Li J, Siemann E, Li B, Xu Y, Wang Y. Plant Invasion Increases Soil Microbial Biomass Carbon: Meta-Analysis and Empirical Tests. GLOBAL CHANGE BIOLOGY 2025; 31:e70109. [PMID: 40025797 DOI: 10.1111/gcb.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Soil organic carbon (SOC) is a vital component of the global carbon cycle. SOC influences soil fertility and structure and is controlled by various factors, including land use, land management practices, and climate change. Biological invasion is a significant yet controversial factor that can alter SOC levels. We conducted a meta-analysis of 445 observations from 61 published reports and followed up with field surveys to clarify the impact of plant invasion on SOC. Our results indicated that plant invasion leads to a 29% increase in microbial biomass carbon (MBC), which is one of the key fractions of SOC. Specifically, among different ecosystems, plant invasion caused MBC increases of 59% in estuaries, 59% in alluvial land, 53% in wetlands, and 80% in orchards. Furthermore, invasion by plants from the Asteraceae family resulted in a 33% increase in MBC, whereas invasion by plants from the Lythraceae family caused a 72% increase in MBC. Our field survey also revealed that plant invasion elevated the soil MBC content relative to the occurrence of native plants or bare ground. Overall, these findings suggest that plant invasion impacts soil carbon, especially by increasing MBC, which may in turn affect future invasions. These effects are influenced by the type of invasive species, ecosystem type, and soil layer depth, highlighting the complex role of biological invasion in the global carbon cycle.
Collapse
Affiliation(s)
- Yuyang He
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Junmei Li
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, Texas, USA
| | - Bo Li
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yunjian Xu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yi Wang
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Sun P, Wu Y, Zhu P, Wang J, Yu X, Guo W. Spartina alterniflora invasion significantly alters the assembly and structure of soil bacterial communities in the Yellow River Delta. Front Microbiol 2025; 16:1525632. [PMID: 40012773 PMCID: PMC11861095 DOI: 10.3389/fmicb.2025.1525632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Soil microbial communities are integral to almost all terrestrial biogeochemical cycles, which are essential to coastal wetland functioning. However, how soil bacterial community assembly, composition, and structure respond to native and non-native plant invasions in coastal wetlands remains unclear. In this study of the coastal wetlands of the Yellow River Delta in China, the assembly, community composition, and diversity of soil bacterial communities associated with four wetland plant species (Phragmites australis, Spartina alterniflora, Suaeda salsa, and Tamarix chinensis) and four soil depths (0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm) were characterized using high-throughput sequencing. Plant species identity, as well as environmental factors, rather than soil depth, was found to play predominant roles in shaping the diversity and structure of wetland soil bacterial communities. S. alterniflora invasion altered bacterial community structure and increased bacterial diversity. Phragmites australis-associated bacterial communities were enriched with sulfate-reducing bacteria such as Desulfurivibrio and Desulfuromonas. In comparison, S. alterniflora-associated bacterial communities were enriched with both sulfate-reducing bacteria (SEEP-SRB1) and sulfate-oxidizing bacteria (Sulfurimonas), which maintained a dynamic balance in the local sulfur-cycle, and thereby enhanced S. alterniflora growth. In addition, stochastic processes dominated the assembly of soil bacterial communities associated with all four plant species, but were most important for the S. alterniflora community. The S. alterniflora-associated bacterial community also showed stronger interactions and more extensive connections among bacterial taxa; a co-occurrence network for this community had the greatest average clustering coefficient, average degree, modularity, and number of links and nodes, but the lowest average path length. Altogether, individual plant species had distinct effects on soil bacterial community assembly and structure, with the invasive species having the strongest impact. These results provide insights into microbial ecology and inform management strategies for coastal wetland restoration.
Collapse
Affiliation(s)
- Pengyuan Sun
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuxin Wu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, Qingdao, China
| | - Pengcheng Zhu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, Qingdao, China
| | - Jingfeng Wang
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaona Yu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, Qingdao, China
| | - Weihua Guo
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Wei S, Zhu Z, Wang S. Spatio-temporal dynamics of net primary productivity and the economic value of Spartina alterniflora in the coastal regions of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176099. [PMID: 39260496 DOI: 10.1016/j.scitotenv.2024.176099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
This study employs an improved Carnegie-Ames-Stanford Approach (CASA) model to calculate the Net Primary Productivity (NPP) of Spartina alterniflora (SA) and various other land use/land cover types (LULC) across coastal China over multiple years. The research aims to provide significant theoretical and practical insights into carbon sink research in coastal zones, sustainable development, and resource management. Key findings include identifying the first εmax value of 2.219 g C/MJ for SA, addressing a critical data gap in CASA modeling research on invasive plants. SA's NPP exhibited higher values in Shanghai and Zhejiang due to factors such as genetic diversity, invasion duration, and tidal dynamics. In contrast, other LULC exhibited higher NPP values in southern and inland regions, characterized by greater vegetation cover and favorable growing conditions. In 2020, SA and other LULC sequestered 16.352 kt C and 0.821*106 kt C, respectively. From 2000 to 2020, the average annual NPP and total carbon storage of SA and other LULC increased significantly, primarily driven by Shanghai and deciduous needleleaf forests, respectively. Seasonal NPP trends followed summer> spring> autumn> winter, influenced by climate conditions and plant life activities. Economic assessments in 2020 estimated SA's carbon storage value at RMB0.409 billion (Market Value method) or RMB5.562 billion (Carbon Tax method), with RMB2.054 billion attributed to oxygen release values, underscoring its economic and ecological potential. Among other LULC, evergreen broadleaf forests showed the highest carbon storage value (RMB183.463 billion). The study emphasizes the critical role of all LULC in carbon storage and oxygen release, advocating for targeted conservation and land management strategies. It suggests that managing SA should balance stringent control in high-risk areas, lenient measures in low-risk areas, eradication of scattered populations, and maximizing ecological benefits in retention areas, with continuous monitoring and adaptive management strategies to balance conservation and development efforts.
Collapse
Affiliation(s)
- Sijie Wei
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu road, Shanghai 200433, PR China
| | - Zihao Zhu
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu road, Shanghai 200433, PR China
| | - Shoubing Wang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu road, Shanghai 200433, PR China.
| |
Collapse
|
5
|
Zhang X, Liu W, Lu J, Tanveer M, Qi Z, Fu C, Xie H, Zhuang L, Hu Z. Current research hotspots and frontier trends on carbon budget of coastal wetlands: A bibliometric analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3104-3121. [PMID: 38877633 DOI: 10.2166/wst.2024.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Coastal wetlands are the main distribution of blue carbon in coastal zones and well known for their high carbon sequestration capacity. Investigating the variation of carbon budget is crucial for understanding the functionality of coastal wetlands and effectively addressing climate change. In this study, a bibliometric analysis of 4,509 articles was conducted to reveal research progress, hot issues, and emerging trends in the coastal wetland carbon budget field. The number of publications and citations in this field increased exponentially from 1991 to 2022. The leading subject category was Environmental Sciences with 1,844 articles (40.9%). At present, studies have been focused on blue carbon, the effects of climate change and man-made disturbances on carbon cycle, and the restoration of coastal wetlands. Based on the hotspots and trends in this field, the future researches should include (1) exploring the functional mechanisms of various factors affecting carbon cycle and establishing a methodological system for the estimation of blue carbon in coastal wetlands; (2) researching restoration techniques of coastal wetland and constructing wetland restoration evaluation index system; and (3) formulating enforceable carbon trading policy and strengthening international cooperation.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Wenhao Liu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jiaxing Lu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Muhammad Tanveer
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Qi
- Shandong Innovation and Entrepreneurship Community of Green Industry and Environmental Security, Jinan 250199, China; Shandong Huankeyuan Environmental Engineering Co. Ltd, Jinan 250013, China
| | - Chengkai Fu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Linlan Zhuang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China E-mail:
| |
Collapse
|
6
|
Mason VG, Burden A, Epstein G, Jupe LL, Wood KA, Skov MW. Blue carbon benefits from global saltmarsh restoration. GLOBAL CHANGE BIOLOGY 2023; 29:6517-6545. [PMID: 37746862 DOI: 10.1111/gcb.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Coastal saltmarshes are found globally, yet are 25%-50% reduced compared with their historical cover. Restoration is incentivised by the promise that marshes are efficient storers of 'blue' carbon, although the claim lacks substantiation across global contexts. We synthesised data from 431 studies to quantify the benefits of saltmarsh restoration to carbon accumulation and greenhouse gas uptake. The results showed global marshes store approximately 1.41-2.44 Pg carbon. Restored marshes had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting in a mean net accumulation rate of 64.70 t CO2 e ha-1 year-1 . Using this estimate and potential restoration rates, we find saltmarsh regeneration could result in 12.93-207.03 Mt CO2 e accumulation per year, offsetting the equivalent of up to 0.51% global energy-related CO2 emissions-a substantial amount, considering marshes represent <1% of Earth's surface. Carbon accumulation rates and GHG fluxes varied contextually with temperature, rainfall and dominant vegetation, with the eastern coasts of the USA and Australia particular hotspots for carbon storage. While the study reveals paucity of data for some variables and continents, suggesting need for further research, the potential for saltmarsh restoration to offset carbon emissions is clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests principally on the action of the management-policy community and on financial opportunities for supporting restoration.
Collapse
Affiliation(s)
- Victoria G Mason
- School of Ocean Sciences, Bangor University, Anglesey, UK
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Yerseke, The Netherlands
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Annette Burden
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, UK
| | - Graham Epstein
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Lucy L Jupe
- Wildfowl & Wetlands Trust, Slimbridge Wetland Centre, Slimbridge, UK
| | - Kevin A Wood
- Wildfowl & Wetlands Trust, Slimbridge Wetland Centre, Slimbridge, UK
| | - Martin W Skov
- School of Ocean Sciences, Bangor University, Anglesey, UK
| |
Collapse
|
7
|
Sun C, Li Q, Han L, Chen X, Zhang F. The effects of allelochemicals from root exudates of Flaveria bidentis on two Bacillus species. FRONTIERS IN PLANT SCIENCE 2022; 13:1001208. [PMID: 36531384 PMCID: PMC9751909 DOI: 10.3389/fpls.2022.1001208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
To determine the allelopathic effects of root exudates from Flaveria bidentis on function of Bacillus, pot experiment was used to collect root exudates from living plants and test its allelopathic effects on function of Bacillus frigoritolerans and Bacillus megaterium, which were two dominant bacteria in the rhizosphere soil of F. bidentis. To obtain the allelopathic substances, the root exudates were successively extracted by N-hexane, dichloromethane, ethyl acetate, and N-butanol, and their allelopathic effects were tested. The results showed that B. frigoritolerans and B. megaterium considerably increased the concentration of available phosphorus and nitrogen, respectively, when the soil was treated with different concentrations of root exudates. Among the four organic solvent extracts, dichloromethane extracts significantly increased the abundances of B. frigoritolerans and B. megaterium and promoted their nitrogen-fixing and phosphate-solubilizing abilities. Phenol was detected in dichloromethane extracts by gas chromatograph-mass spectrometer (GC-MS). Meanwhile, phenol promoted the ability to fix nitrogen of B. megaterium and its growth by increasing the soil available nitrogen concentration, but phenol promoted the ability to solubilize phosphate of B. frigoritolerans only in 0.1mg/mL concentration. Therefore, phenol was an allelochemicals in the root exudates of F. bidentis that affects the growth and activities of B. megaterium.
Collapse
Affiliation(s)
- Chaofang Sun
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Qiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingling Han
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Xue Chen
- College of Life Science, Hebei University, Baoding, Hebei, China
- School of Life Sciences, Fudan University, Yangpu, Shanghai, China
| | - Fengjuan Zhang
- College of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
8
|
Chen J, Liu J, Hong H, Liang S, Zhao W, Jia H, Lu H, Li J, Yan C. Coastal reclamation mediates heavy metal fractions and ecological risk in saltmarsh sediments of northern Jiangsu Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154028. [PMID: 35217055 DOI: 10.1016/j.scitotenv.2022.154028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 05/25/2023]
Abstract
Coastal reclamation has created enormous extra land for the rapidly growing economy, but it has also caused serious environmental pollution problems and threatened the sustainable development of coastal areas. However, there are few studies focusing on the distribution patterns, geochemical speciation and ecological risks of heavy metals along the land-to-sea belt, as well as the differences between reclamation and non-reclamation. Here, we collected 69 sediment samples from four sediment types along the land-to-sea sampling belts in the reclaimed and non-reclaimed tidal flats of Jiangsu, China. Geochemical speciation and contents of heavy metals were determined to investigate their spatial distributions, ecological risks and effect factors. Results showed that As, Cd, Cr and Ni in the sediments posed considerable or moderate ecological risk according to the Ontario guidelines and sediment quality guidelines (SQGs) of USEPA, but they were lower than the SQGs of China. Higher geoaccumulation index and potential ecological risk index suggested that the sediments were moderately to heavily polluted by Cd and As. Generally, reclaimed sediments exhibited higher metal pollution levels. Additionally, reclaimed areas showed a unimodal pattern of metal content along the direction of land-to-sea, suggesting that Spartina alterniflora could accelerate the deposition and accumulation of metal pollutants caused by reclamation, and ultimately control the transfer of terrigenous metals to marine environment. We found that residual fraction was the dominant geochemical fraction for the metals determined. Reclamation processes have changed the composition of heavy metal fractions, especially Cd, Pb, Zn, and Ni. Approximately 20% of Cd existed in the acid extractable/exchangeable fraction and posed medium ecological risk according to the risk assessment code. The principal component analysis and correlation matrix further indicate that organic matter and particle size of sediment could be the major factors regulating the metal distribution, and Cd and Zn might be anthropogenic sources.
Collapse
Affiliation(s)
- Jingyan Chen
- Key Laboratory of the Ministry of Education for Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, Guangxi, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Shichu Liang
- Key Laboratory of the Ministry of Education for Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Weiwei Zhao
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hui Jia
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Junwei Li
- Key Laboratory of the Ministry of Education for Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, Guangxi, China; Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Xu X, Wei S, Chen H, Li B, Nie M. Effects of
Spartina
invasion on the soil organic carbon content in salt marsh and mangrove ecosystems in China. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Xu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary Institute of Biodiversity Science and Institute of Eco‐Chongming School of Life Sciences Fudan University Shanghai 200438 China
| | - Shujuan Wei
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary Institute of Biodiversity Science and Institute of Eco‐Chongming School of Life Sciences Fudan University Shanghai 200438 China
| | - Hongyang Chen
- Center for Ecological Research Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of Education School of Forestry Northeast Forestry University Harbin 150040 China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary Institute of Biodiversity Science and Institute of Eco‐Chongming School of Life Sciences Fudan University Shanghai 200438 China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology Institute of Biodiversity School of Ecology and Environmental Science Yunnan University Kunming 650504 Yunnan China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary Institute of Biodiversity Science and Institute of Eco‐Chongming School of Life Sciences Fudan University Shanghai 200438 China
| |
Collapse
|