1
|
Wu D, Wang K, Lu Y, Gao Z, Chong Y, Hong J, Wu J, Deng W, He X, Xi D. Impact of Panax notoginseng Residue on Rumen Microbial Community, Blood Biochemical Parameters and Growth Performance in Cattle: A Preliminary Study on Its Potential as a Feed Resource. Animals (Basel) 2025; 15:788. [PMID: 40150317 PMCID: PMC11939262 DOI: 10.3390/ani15060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
This study aimed to investigate the effects of adding different proportions of Panax notoginseng residue (PNR) to the diet on the rumen microbial community structure, blood biochemical indices, and growth performance of Wenshan cattle. Fifteen Wenshan cattle with an average weight of 392.30 ± 22.57 kg were randomly divided into three groups, a control group, a 3% PNR group, and a 6% PNR group, with five cattle in each group, for a 100-day feeding trial. The results show that adding PNR to the diet modulates the abundance and diversity of rumen microorganisms in Wenshan cattle, primarily affecting the relative abundances of key bacterial phyla such as Firmicutes, Proteobacteria, and Bacteroidetes. At the genus level, the relative abundances of Fibrobacter and Butyrivibrio exhibited trends of either decreasing and then increasing or increasing then decreasing with the amount of PNR added, indicating a complex regulatory effect of PNR on the rumen microbial community. The addition of PNR decreased blood glucose and blood lipid levels in Wenshan cattle. Moreover, PNR addition also increased the average daily weight gain of Wenshan cattle, demonstrating its positive effect on enhancing growth performance. In summary, PNR, as a feed resource, has potential application value in the feeding of Wenshan cattle. It not only regulates the rumen microbial community structure and improves metabolic health but also effectively enhances animal growth performance.
Collapse
Affiliation(s)
- Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| | - Kai Wang
- Honghe Hani and Yi Autonomous Prefecture Animal Health Supervision Institute, Honghe 661099, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| | - Xiaoming He
- Institute of Animal Husbandry, Yunnan Vocational College of Agriculture, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (D.W.)
| |
Collapse
|
2
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
3
|
Cai TG, Zhang JD, Lu L, Wang YF, Zhu D. Captivity increased the abundance of high-risk antibiotic resistance genes in the giant panda gut microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120220. [PMID: 39448015 DOI: 10.1016/j.envres.2024.120220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Captivity is a key strategy for protecting endangered species, but research has primarily focused on artificial breeding and reintroduction to bolster wild populations, often overlooking the environmental and health risks associated with antibiotic resistance genes (ARGs). Here, we conducted a comprehensive analysis of the microbiome and ARG profiles in the gut of wild giant pandas across five representative populations, as well as one captive population, utilizing 16S rRNA gene sequencing and High-Throughput Quantitative PCR. Our findings revealed that both geographic location and captivity significantly influenced the gut microbial community and ARG composition in the gut of giant pandas. Additionally, we identified core microbiomes with essential ecological functions, particularly those related to food utilization, were identified in the giant panda gut across different regions. The gut ARGs in giant pandas exhibited a broad range of subtypes, with multidrug resistance genes being the most prevalent. Notably, the captive population harbored the highest abundance of high-risk ARGs, especially those conferring tetracycline resistance. High-risk multidrug ARGs (e.g., tolC, mepA, and mdtA) were found to be strongly correlated with the potential pathogens, such as Escherichia_Shigellina and Pseudomonas. Furthermore, bamboo-associated ARGs and mobile genetic elements (MGEs) contributed significantly to the ARG abundance in the giant panda gut, indicating that diet plays a crucial role in shaping gut resistome. Collectively, our study provides a detailed mapping of giant panda gut microbiomes and ARG distribution, offering valuable insights for conservation efforts and advancing our understanding of ARG dynamics in giant panda populations.
Collapse
Affiliation(s)
- Tian-Gui Cai
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Dong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China.
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
4
|
Huang L, Zheng Y, Feng S, Wu B, Chen L, Xu X, Wang B, Li W, Zhou C, Zhang L. Seasonal Changes and Age-Related Effects on the Intestinal Microbiota of Captive Chinese Monals ( Lophophorus lhuysii). Animals (Basel) 2024; 14:3418. [PMID: 39682382 DOI: 10.3390/ani14233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese monal (Lophophorus lhuysii) is a large-sized and vulnerable (VU in IUCN) bird from southwestern China. This study applied 16S rRNA high-throughput sequencing to comprehensively examine the gut microbiota of captive Chinese monals (located in Baoxing, Sichuan, China) across varying seasons and life stages. Dominant bacterial phyla identified included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Significant seasonal and age-associated shifts were observed within specific bacterial groups, particularly marked by seasonal fluctuations in beta diversity. Moreover, linear discriminant analysis effect size (LEfSe) and functional predictions highlighted distinct winter signatures, indicating possible functional shifts in energy metabolism and disease resistance. In mid-aged adults, an expansion of Gamma-Proteobacteria suggested an elevated susceptibility of the gut microbiota of Chinese monals to chronic disorders and microbial imbalance. Putative pathogenic bacteria exhibited increased abundance in spring and summer, likely driven by temperature, host physiological cycles, interspecies interactions, and competition. These findings imply that the diversity, and structure of the gut microbiota in captive Chinese monals are strongly influenced by seasonal and age-related factors. The insights provided here are essential for improving breeding strategies and preventing gastrointestinal diseases in captivity.
Collapse
Affiliation(s)
- Lijing Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Yanchu Zheng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Li Chen
- Management and Protection Center of Sichuan Fengtongzhai National Nature Reserve, Ya'an 625700, China
| | - Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Bin Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Wanhong Li
- Management and Protection Center of Sichuan Fengtongzhai National Nature Reserve, Ya'an 625700, China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Long Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| |
Collapse
|
5
|
Hoffbeck C, Middleton DRML, Keall SN, Huang CM, Pas A, Irving K, Nelson NJ, Taylor MW. Limited gut bacterial response of tuatara (Sphenodon punctatus) to dietary manipulation and captivity. FEMS Microbiol Ecol 2024; 100:fiae141. [PMID: 39400705 PMCID: PMC11523620 DOI: 10.1093/femsec/fiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/15/2024] Open
Abstract
The bacteria of a host's digestive tract play crucial roles in digestion and pathogen resistance. Hosts living in captivity often have more human interaction and antibiotic use, in addition to differences in diet and environment, compared to their wild counterparts. Consequently, wild and captive animals frequently harbour different bacterial communities. We tested whether diversity of diet provided in captivity shifts the gut bacteria of tuatara, an endemic New Zealand reptile, at three captive sites, and examined how the gut community of these tuatara compares to those in the wild. Dietary manipulation did not cause a strong overall shift in tuatara gut bacteria, but individual tuatara did experience bacterial shifts during manipulation, which subsequently reverted after manipulation. We found that Bacteroides, a genus common in most vertebrate guts but rare in tuatara, increased significantly in the gut during manipulation, then decreased post-manipulation. Finally, the gut bacteria of captive tuatara significantly differed from those of wild tuatara, though most of the dominant bacterial genera found in wild tuatara persisted in captive tuatara. This work represents a first investigation of the captive tuatara bacterial community and establishes the sensitivity of the gut community to dietary manipulation and captivity for this relict reptile.
Collapse
Affiliation(s)
- Carmen Hoffbeck
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | | | - Susan N Keall
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | - An Pas
- Auckland Zoo, Auckland 1022, New Zealand
| | - Kate Irving
- Wellington Zoo, Wellington 6021, New Zealand
| | - Nicola J Nelson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Wang C, Deng W, Huang Z, Li C, Wei R, Zhu Y, Wu K, Li C, Deng L, Wei M, Chen X, Li D. Nutrient Utilization and Gut Microbiota Composition in Giant Pandas of Different Age Groups. Animals (Basel) 2024; 14:2324. [PMID: 39199858 PMCID: PMC11350801 DOI: 10.3390/ani14162324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as gut microbiota composition across different age groups of giant pandas: sub-adults (SGPs), adults (AGPs), and geriatrics (GGPs). Our findings revealed notable shifts in dietary patterns from SGPs to GGPs. As they aged, significantly more bamboo shoots and less bamboo were consumed. Consequently, GGPs showed significantly reduced crude fiber (CF) intake and digestibility, while crude protein (CP) did not alter significantly. In addition, 16S rRNA microbial sequencing results showed that unidentified_Enterobacteriaceae and Streptococcus were the dominant genera among all age groups. The relative abundance of the genus Enterococcus in GGPs was significantly higher than that in SGPs and AGPs (p < 0.05). Overall, our results indicated the importance of bamboo shoots as a major source of protein in GGPs' diet, which can effectively compensate for the certain nutritional loss caused by the reduction in bamboo intake. Age-related changes in bacterial abundance have an effect on specific nutrient apparent digestibility in the gut of GPs. The data presented in this study serve as a useful reference for nutritional management in different ages of GPs under healthy conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Desheng Li
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu 610051, China (Z.H.)
| |
Collapse
|
7
|
Xu Y, Feng T, Ding Z, Li L, Li Z, Cui K, Chen W, Pan H, Zhu P, Liu Q. Age-related compositional and functional changes in the adult and breastfed buffalo rumen microbiome. Front Microbiol 2024; 15:1342804. [PMID: 38881655 PMCID: PMC11177756 DOI: 10.3389/fmicb.2024.1342804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction The buffalo is an important domestic animal globally, providing milk, meat, and labor to more than 2 billion people in 67 countries. The rumen microorganisms of buffaloes play an indispensable role in enabling the healthy functionality and digestive function of buffalo organisms. Currently, there is a lack of clarity regarding the differences in the composition and function of rumen microorganisms among buffaloes at different growth stages. Methods In this study, metagenomics sequencing technology was applied to examine the compositional and functional differences of rumen microorganisms in adult and breastfed buffaloes. Results The results revealed that the rumen of adult buffaloes had significantly higher levels of the following dominant genera: Prevotella, UBA1711, RF16, Saccharofermentans, F23-D06, UBA1777, RUG472, and Methanobrevibacter_A. Interestingly, the dominant genera specific to the rumen of adult buffaloes showed a significant positive correlation (correlation>0.5, p-value<0.05) with both lignocellulose degradation-related carbohydrate-active enzymes (CAZymes) and immune signaling pathways activated by antigenic stimulation. The rumen of breastfed buffaloes had significantly higher levels of the following dominant genera: UBA629, CAG- 791, Selenomonas_C, Treponema_D, Succinivibrio, and RC9. Simultaneously, the rumen-dominant genera specific to breastfed buffaloes were significantly positively correlated (correlation>0.5, p-value<0.05) with CAZymes associated with lactose degradation, amino acid synthesis pathways, and antibiotic-producing pathways. Discussion This indicates that rumen microorganisms in adult buffaloes are more engaged in lignocellulose degradation, whereas rumen microorganisms in breastfed buffaloes are more involved in lactose and amino acid degradation, as well as antibiotic production. In conclusion, these findings suggest a close relationship between differences in rumen microbes and the survival needs of buffaloes at different growth stages.
Collapse
Affiliation(s)
- Yixue Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Tong Feng
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zixu Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Buffalo Genetics, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Weihua Chen
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Peng Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Beibu Gulf University, Qinzhou, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
8
|
Han S, An X, He X, Ren X, Sichone J, Wu X, Zhang Y, Wang H, Sun F. Temporal Dynamics of Fungal Communities in Alkali-Treated Round Bamboo Deterioration under Natural Weathering. Microorganisms 2024; 12:858. [PMID: 38792687 PMCID: PMC11124218 DOI: 10.3390/microorganisms12050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Microbes naturally inhabit bamboo-based materials in outdoor environments, sequentially contributing to their deterioration. Fungi play a significant role in deterioration, especially in environments with abundant water and favorable temperatures. Alkali treatment is often employed in the pretreatment of round bamboo to change its natural elastic and aesthetic behaviors. However, little research has investigated the structure and dynamics of fungal communities on alkali-treated round bamboo during natural deterioration. In this work, high-throughput sequencing and multiple characterization methods were used to disclose the fungal community succession and characteristic alterations of alkali-treated round bamboo in both roofed and unroofed habitats throughout a 13-week deterioration period. In total, 192 fungal amplicon sequence variants (ASVs) from six phyla were identified. The fungal community richness of roofed bamboo samples declined, whereas that of unroofed bamboo samples increased during deterioration. The phyla Ascomycota and Basidiomycota exhibited dominance during the entire deterioration process in two distinct environments, and the relative abundance of them combined was more than 99%. A distinct shift in fungal communities from Basidiomycota dominant in the early stage to Ascomycota dominant in the late stage was observed, which may be attributed to the increase of moisture and temperature during succession and the effect of alkali treatment. Among all environmental factors, temperature contributed most to the variation in the fungal community. The surface of round bamboo underwent continuous destruction from fungi and environmental factors. The total amount of cell wall components in bamboo epidermis in both roofed and unroofed conditions presented a descending trend. The content of hemicellulose declined sharply by 8.3% and 11.1% under roofed and unroofed environments after 9 weeks of deterioration. In addition, the contact angle was reduced throughout the deterioration process in both roofed and unroofed samples, which might be attributed to wax layer removal and lignin degradation. This study provides theoretical support for the protection of round bamboo under natural weathering.
Collapse
Affiliation(s)
- Shuaibo Han
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaojiao An
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
| | - Xiaolong He
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
| | - Xin Ren
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
| | - John Sichone
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
| | - Xinxing Wu
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Zhang
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Wang
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Fangli Sun
- National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, School of Chemical and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (X.A.); (X.H.); (X.R.); (J.S.); (X.W.); (Y.Z.); (H.W.)
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
9
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
10
|
Yang S, Deng W, Li G, Jin L, Huang Y, He Y, Wu D, Li D, Zhang A, Liu C, Li C, Zhang H, Xu H, Penttinen P, Zhao K, Zou L. Reference gene catalog and metagenome-assembled genomes from the gut microbiome reveal the microbial composition, antibiotic resistome, and adaptability of a lignocellulose diet in the giant panda. ENVIRONMENTAL RESEARCH 2024; 245:118090. [PMID: 38163545 DOI: 10.1016/j.envres.2023.118090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The giant panda, a strict herbivore that feeds on bamboo, still retains a typical carnivorous digestive system. Reference catalogs of microbial genes and genomes are lacking, largely limiting the antibiotic resistome and functional exploration of the giant panda gut microbiome. Here, we integrated 177 fecal metagenomes of captive and wild giant pandas to construct a giant panda integrated gene catalog (GPIGC) comprised of approximately 4.5 million non-redundant genes and reconstruct 393 metagenome-assembled genomes (MAGs). Taxonomic and functional characterization of genes revealed that the captivity of the giant panda significantly changed the core microbial composition and the distribution of microbial genes. Higher abundance and prevalence of antibiotic resistance genes (ARGs) were detected in the guts of captive giant pandas, and ARG distribution was influenced by geography, for both captive and wild individuals. Escherichia, as the prevalent genus in the guts of captive giant pandas, was the main carrier of ARGs, meaning there is a high risk of ARG transmission by Escherichia. We also found that multiple mcr gene variants, conferring plasmid-mediated mobile colistin resistance, were widespread in the guts of captive and wild giant pandas. There were low proportions of carbohydrate-active enzyme (CAZyme) genes in GPIGC and MAGs compared with several omnivorous and herbivorous mammals. Many members of Clostridium MAGs were significantly enriched in the guts of adult, old and wild giant pandas. The genomes of isolates and MAGs of Clostridiaceae harbored key genes or enzymes in complete pathways for degrading lignocellulose and producing short-chain fatty acids (SCFAs), indicating the potential of these bacteria to utilize the low-nutrient bamboo diet. Overall, our data presented an exhaustive reference gene catalog and MAGs in giant panda gut and provided a comprehensive understanding of the antibiotic resistome and microbial adaptability for a high-lignocellulose diet.
Collapse
Affiliation(s)
- Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Wenwen Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Guo Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Yongguo He
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Desheng Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Anyun Zhang
- College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chengxi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Ning R, Li C, Xia M, Zhang Y, Gan Y, Huang Y, Zhang T, Song H, Zhang S, Guo W. Pseudomonas-associated bacteria play a key role in obtaining nutrition from bamboo for the giant panda ( Ailuropoda melanoleuca). Microbiol Spectr 2024; 12:e0381923. [PMID: 38305171 PMCID: PMC10913395 DOI: 10.1128/spectrum.03819-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota plays a vital role in obtaining nutrition from bamboo for giant pandas. However, low cellulase activity has been observed in the panda's gut. Besides, no specific pathway has been implicated in lignin digestion by gut microbiota of pandas. Therefore, the mechanism by which they obtain nutrients is still controversial. It is necessary to elucidate the precise pathways employed by gut microbiota of pandas to degrade lignin. Here, the metabolic pathways for lignin degradation in pandas were explored by comparing 209 metagenomic sequencing data from wild species with different feeding habits. Lignin degradation central pathways, including beta-ketoadipate and homogentisate pathway, were enriched in the gut of wild bamboo-eating pandas. The gut microbiome of wild bamboo-eating specialists was enriched with genes from pathways implicated in degrading ferulate and p-coumarate into acetyl-CoA and succinyl-CoA, which can potentially provide the raw materials for metabolism in pandas. Specifically, Pseudomonas, as the most dominant gut bacteria genus, was found to be the main bacteria to provide genes involved in lignin or lignin derivative degradation. Herein, three Pseudomonas-associated strains isolated from the feces of wild pandas showed the laccase, lignin peroxidase, and manganese peroxidase activity and extracellular lignin degradation ability in vitro. A potential mechanism for pandas to obtain nutrition from bamboo was proposed based on the results. This study provides novel insights into the adaptive evolution of pandas from the perspective of lignin metabolism. IMPORTANCE Although giant pandas only feed on bamboo, the mechanism of lignin digestion in pandas is unclear. Here, the metabolic pathways for lignin degradation in wild pandas were explored by comparing gut metagenomic from species with different feeding habits. Results showed that lignin degradation central pathways, including beta-ketoadipate and homogentisate pathway, were enriched in the gut of wild bamboo-eating pandas. Genes from pathways involved in degrading ferulate and p-coumarate via beta-ketoadipate pathway were also enriched in bamboo-eating pandas. The final products of the above process, such as acetyl-CoA, can potentially provide the raw materials for metabolism in pandas. Specifically, Pseudomonas, as the most dominant gut bacteria genus, mainly provides genes involved in lignin degradation. Herein, Pseudomonas-associated strains isolated from the feces of pandas could degrade extracellular lignin. These findings suggest that gut microbiome of pandas is crucial in obtaining nutrition from lignin via Pseudomonas, as the main lignin-degrading bacteria.
Collapse
Affiliation(s)
- Ruihong Ning
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Maohua Xia
- Beijing Key Laboratory of Captive Wildlife Technology, Beijing Zoo, Beijing, P.R. China
| | - Yu Zhang
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yunong Gan
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Tianyou Zhang
- Chimelong Safari Park in Guangdong Province, Guangzhou, China
| | - Haitao Song
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Siyuan Zhang
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wei Guo
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
12
|
Hoffbeck C, Middleton DMRL, Lamar SK, Keall SN, Nelson NJ, Taylor MW. Gut microbiome of the sole surviving member of reptile order Rhynchocephalia reveals biogeographic variation, influence of host body condition and a substantial core microbiota in tuatara across New Zealand. Ecol Evol 2024; 14:e11073. [PMID: 38405409 PMCID: PMC10884523 DOI: 10.1002/ece3.11073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Tuatara are the sole extant species in the reptile order Rhynchocephalia. They are ecologically and evolutionarily unique, having been isolated geographically for ~84 million years and evolutionarily from their closest living relatives for ~250 million years. Here we report the tuatara gut bacterial community for the first time. We sampled the gut microbiota of translocated tuatara at five sanctuaries spanning a latitudinal range of ~1000 km within Aotearoa New Zealand, as well as individuals from the source population on Takapourewa (Stephens Island). This represents a first look at the bacterial community of the order Rhynchocephalia and provides the opportunity to address several key hypotheses, namely that the tuatara gut microbiota: (1) differs from those of other reptile orders; (2) varies among geographic locations but is more similar at sites with more similar temperatures and (3) is shaped by tuatara body condition, parasitism and ambient temperature. We found significant drivers of the microbiota in sampling site, tuatara body condition, parasitism and ambient temperature, suggesting the importance of these factors when considering tuatara conservation. We also derived a 'core' community of shared bacteria across tuatara at many sites, despite their geographic range and isolation. Remarkably, >70% of amplicon sequence variants could not be assigned to known genera, suggesting a largely undescribed gut bacterial community for this ancient host species.
Collapse
Affiliation(s)
- Carmen Hoffbeck
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | | | - Sarah K. Lamar
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Susan N. Keall
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Nicola J. Nelson
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Michael W. Taylor
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
13
|
Jin L, Wu H, Li G, Yang S, Wei R, Huang Y, Penttinen P, Deng W, Chen J, Han X, Li C, Hu L, Li T, Zhang H, Zhao K, Zou L. Gastrointestinal microbiome, resistance genes, and risk assessment of heavy metals in wild giant pandas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165671. [PMID: 37478939 DOI: 10.1016/j.scitotenv.2023.165671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The gastrointestinal microbiome (GM) of giant panda (GP) plays an important role in food utilization and health and is also an essential reservoir of resistance genes. Currently, little knowledge is available on the GM, acid resistance genes (AcRGs), antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs) in wild GPs. We sampled the gastrointestinal tract of a dead GP and explored the composition and function of GM and resistance genes through cryo-scanning electron microscopy, metagenomic sequencing, and genome-resolved metagenomics. The concentration of metals in the gastrointestinal lumen, feces, bamboo, and soil was measured by inductively coupled plasma mass spectrometry. Results showed that the composition of the microbiota varied in different gastrointestinal regions. Fecal microbiota was highly associated with small intestinal and colonic microbes. The lignocellulosic cross-linked structure of bamboo was destroyed in the stomach initially and destroying degree increased from stomach to anus. Reconstruction of metagenome-assembled-genomes confirmed that core GM, e.g., Streptococcus, Clostridium, Lactococcus, Leuconostoc, and Enterococcus, carried genes encoding the lignocellulose degradation enzyme. There were no significant differences of resistance genes between gastrointestinal and fecal samples, except MGEs. Multidrug and multi-metal resistance genes were predominant in all samples, while the transposase gene tnpA was the major type of MGE. Significant correlations were observed among the abundance of GM, resistance genes, and MGEs. Gastrointestinal and fecal mercury and chromium were the main metals influencing GM and resistance genes. The content of gastrointestinal and fecal metals was significantly associated with the presence of the same metals in bamboo, which could pose a threat to the health of wild GPs. This study characterized the gastrointestinal microbiome of wild GPs, providing new evidence for the role of the gastrointestinal microbiome in degrading lignocellulose from bamboo and highlighting the urgent need to monitor metal levels in soil and bamboo.
Collapse
Affiliation(s)
- Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hongning Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Guo Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Rongping Wei
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenwen Deng
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Jianbin Chen
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Lan Hu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Ti Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Hoffbeck C, Middleton DMRL, Nelson NJ, Taylor MW. 16S rRNA gene-based meta-analysis of the reptile gut microbiota reveals environmental effects, host influences and a limited core microbiota. Mol Ecol 2023; 32:6044-6058. [PMID: 37795930 DOI: 10.1111/mec.17153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
An animal's gut microbiota plays an important role in host health, reproduction and digestion. However, many studies focus on only a few individuals or a single species, limiting our ability to recognize emergent patterns across a wider taxonomic grouping. Here, we compiled and reanalysed published 16S rRNA gene sequence data for 745 gut microbiota samples from 91 reptile species using a uniform bioinformatics pipeline to draw broader conclusions about the taxonomy of the reptile gut microbiota and the forces shaping it. Our meta-analysis revealed the significant differences in alpha- and beta-diversity across host order, environment, diet, habitat and conservation status, with host diet and order contributing the most to these differences. We identified the principal bacterial phyla present in the reptile gut microbiota as Bacteroidota, Proteobacteria (mostly Gamma class), and Firmicutes, and detected the bacterial genus Bacteroides in most reptile individuals, thus representing a putative 'core' microbiota. Our study provides novel insights into key drivers of the reptile gut microbiota, highlights existing knowledge gaps and lays the groundwork for future research on these fascinating hosts and their associated microbes.
Collapse
Affiliation(s)
- Carmen Hoffbeck
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Nicola J Nelson
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Yan M, Xu C, Li C, Feng Y, Duan J, Zhao K, Wu D, Li G, Yang S, Han X, Xie Y, Huang Y, Yu X, Wu J, Zou L. Effects of environmental disinfection on microbial population and resistance genes: A case study of the microecology within a panda enclosure. ENVIRONMENTAL RESEARCH 2023; 235:116662. [PMID: 37453509 DOI: 10.1016/j.envres.2023.116662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Widespread use of disinfectants raises concerns over their involvement in altering microbial communities and promoting antimicrobial resistance. This study explores the influence of disinfection protocols on microbial populations and resistance genes within an isolated enclosure environment and in the gut of giant pandas (GPs) held within. Samples of panda feces, air conditioning ducts, soil and bamboo were collected before and after disinfection. High-throughput sequencing characterized the microbial flora of GP gut and environmental microbes inside the artificial habitat. Microbial cultures showed that Escherichia coli (34.6%), Enterococcus (15.4%) and other pathogenic bacteria deposited in feces and the enclosure. Isolates exhibit a consistent resistance to disinfectant, with the greatest resistance shown to cyanuric acid, and the lowest to glutaraldehyde-dodecyl dimethyl ammonium bromide (GD-DDAB) and dodecyl dimethyl ammonium bromide (DDAB). The total number of the culturable bacteria in soil and bamboo were significantly diminished after disinfection but increased in the gut. After disinfection, the richness (Chao1 index) of environment samples increased significantly (P < 0.05), while the richness in gut decreased significantly (P < 0.05). Ten genera showed significant change in feces after disinfection. Metagenome sequencing showed that 126 types of virulence genes were present in feces before disinfection and 37 in soil. After disinfection, 110 virulence genes localized in feces and 53 in soil. Eleven virulence genes including ECP and T2SS increased in feces. A total of 182 antibiotic resistance genes (ARGs) subtypes, potentially conferring resistance to 20 classes of drugs, were detected in the soils and feces, with most belonging to efflux pump protein pathways. After disinfection, the number of resistance genes increased both in gut and soil, which suggests disinfection protocols increase the number of resistance pathways. Our study shows that the use of disinfectants helps to shape the microbial community of GPs and their habitat, and increases populations of resistant strain bacteria.
Collapse
Affiliation(s)
- Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunzhong Xu
- Shanghai Wild Animal Park, Shanghai, 201399, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Yongqi Feng
- Shanghai Wild Animal Park, Shanghai, 201399, China
| | - Juntang Duan
- Shanghai Wild Animal Park, Shanghai, 201399, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Guo Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Xie
- College of Veterinary Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiawei Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
17
|
Lahtinen MH, Kynkäänniemi E, Jian C, Salonen A, Pajari AM, Mikkonen KS. Metabolic Fate of Lignin in Birch Glucuronoxylan Extracts as Dietary Fiber Studied in a Rat Model. Mol Nutr Food Res 2023; 67:e2300201. [PMID: 37650878 DOI: 10.1002/mnfr.202300201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Indexed: 09/01/2023]
Abstract
SCOPE While previously considered inert, recent studies suggest lignin metabolism with unknown metabolic fates is occurring in the gastrointestinal tract of several animal models. This study focuses on analyzing the potential metabolites of lignin. METHODS AND RESULTS The diets of rats include relatively pure birch glucuronoxylan (pureGX) with residual lignin or lignin-rich GX (GXpoly) in their diet. Nuclear magnetic spectroscopy of the lignin isolated from the GXpoly-fed rats fecal sample shows high alteration in chemical structure, whereas lignin-carbohydrate complexes (LCCs) are enriched in fecal samples from the pureGX group. Moreover, the increased syringyl-to-guaiacyl (S/G) ratio suggests that lignin G-units are predominantly metabolized based on pyrolysis gas chromatography-mass spectrometry (pyr-GC/MS). The presence of small phenolic metabolites identified in urine samples of the GXpoly group, for example, ferulic and sinapic acids, their sulfate and glucuronide derivatives, and 4-sulfobenzylalcohol, suggests that the small fragmented lignin metabolites in the large intestine enter the plasma, and are further processed in the liver. Finally, the relative abundances of polyphenol-degrading Enterorhabdus and Akkermansia in the gut microbiota are associated with lignin metabolism. CONCLUSION These findings give further evidence to lignin metabolism in the gut of nonruminants and provide insight to the potential microbes and metabolic routes.
Collapse
Affiliation(s)
- Maarit H Lahtinen
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
| | - Emma Kynkäänniemi
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P. O. Box 63, FI-00014, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P. O. Box 63, FI-00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, P. O. Box 66, (Agnes Sjöbergin katu 2), FI-00014, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, FI-00014, Finland
| |
Collapse
|
18
|
Deng F, Wang C, Li D, Peng Y, Deng L, Zhao Y, Zhang Z, Wei M, Wu K, Zhao J, Li Y. The unique gut microbiome of giant pandas involved in protein metabolism contributes to the host's dietary adaption to bamboo. MICROBIOME 2023; 11:180. [PMID: 37580828 PMCID: PMC10424351 DOI: 10.1186/s40168-023-01603-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND The gut microbiota of the giant panda (Ailuropoda melanoleuca), a global symbol of conservation, are believed to be involved in the host's dietary switch to a fibrous bamboo diet. However, their exact roles are still largely unknown. RESULTS In this study, we first comprehensively analyzed a large number of gut metagenomes giant pandas (n = 322), including 98 pandas sequenced in this study with deep sequencing (Illumina) and third-generation sequencing (nanopore). We reconstructed 408 metagenome-assembled genomes (MAGs), and 148 of which (36.27%) were near complete. The most abundant MAG was classified as Streptococcus alactolyticus. A pairwise comparison of the metagenomes and meta-transcriptomes in 14 feces revealed genes involved in carbohydrate metabolism were lower, but those involved in protein metabolism were greater in abundance and expression in giant pandas compared to those in herbivores and omnivores. Of note, S. alactolyticus was positively correlated to the KEGG modules of essential amino-acid biosynthesis. After being isolated from pandas and gavaged to mice, S. alactolyticus significantly increased the relative abundance of essential amino acids in mice jejunum. CONCLUSIONS The study highlights the unique protein metabolic profiles in the giant panda's gut microbiome. The findings suggest that S. alactolyticus is an important player in the gut microbiota that contributes to the giant panda's dietary adaptation by more involvement in protein rather than carbohydrate metabolism. Video Abstract.
Collapse
Affiliation(s)
- Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Chengdong Wang
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Desheng Li
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Yunjuan Peng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Linhua Deng
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Yunxiang Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Zhihao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Ming Wei
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Kai Wu
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, AR, Fayetteville, USA.
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China.
- School of Life Science and Engineering, Foshan University, Guangdong, China.
| |
Collapse
|
19
|
Liu F, Li R, Zhong Y, Liu X, Deng W, Huang X, Price M, Li J. Age-related alterations in metabolome and microbiome provide insights in dietary transition in giant pandas. mSystems 2023; 8:e0025223. [PMID: 37273228 PMCID: PMC10308887 DOI: 10.1128/msystems.00252-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/06/2023] Open
Abstract
We conducted UPLC-MS-based metabolomics, 16S rRNA, and metagenome sequencing on the fecal samples of 44 captive giant pandas (Ailuropoda melanoleuca) from four age groups (i.e., Cub, Young, Adult, and Old) to comprehensively understand age-related changes in the metabolism and gut microbiota of giant pandas. We characterized the metabolite profiles of giant pandas based on 1,376 identified metabolites, with 152 significantly differential metabolites (SDMs) found across the age groups. We found that the metabolites and the composition/function of the gut microbiota changed in response to the transition from a milk-dominant diet in panda cubs to a bamboo-specific diet in young and adult pandas. Lipid metabolites such as choline and hippuric acid were enriched in the Cub group, and many plant secondary metabolites were significantly higher in the Young and Adult groups, while oxidative stress and inflammatory related metabolites were only found in the Old group. However, there was a decrease in the α-diversity of gut microbiota in adult and old pandas, who exclusively consume bamboo. The abundance of bacteria related to the digestion of cellulose-rich food, such as Firmicutes, Streptococcus, and Clostridium, significantly increased from the Cub to the Adult group, while the abundance of beneficial bacteria such as Faecalibacterium, Sarcina, and Blautia significantly decreased. Notably, several potential pathogenic bacteria had relatively high abundances, especially in the Young group. Metagenomic analysis identified 277 CAZyme genes including cellulose degrading genes, and seven of the CAZymes had abundances that significantly differed between age groups. We also identified 237 antibiotic resistance genes (ARGs) whose number and diversity increased with age. We also found a significant positive correlation between the abundance of bile acids and gut bacteria, especially Lactobacillus and Bifidobacterium. Our results from metabolome, 16S rRNA, and metagenome data highlight the important role of the gut microbiota-bile acid axis in the regulation of age-related metabolism and provide new insights into the lipid metabolism of giant pandas. IMPORTANCE The giant panda is a member of the order Carnivora but is entirely herbivorous. The giant panda's specialized diet and related metabolic mechanisms have not been fully understood. It is therefore crucial to investigate the dynamic changes in metabolites as giant pandas grow and physiologically adapt to their herbivorous diet. This study conducted UPLC-MS-based metabolomics 16S rRNA, and metagenome sequencing on the fecal samples of captive giant pandas from four age groups. We found that metabolites and the composition/function of gut microbiota changed in response to the transition from a milk-dominant diet in cubs to a bamboo-specific diet in young and adult pandas. The metabolome, 16S rRNA, and metagenome results highlight that the gut microbiota-bile acid axis has an important role in the regulation of age-related metabolism, and our study provides new insights into the lipid metabolism of giant pandas.
Collapse
Affiliation(s)
- Fangyuan Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Rengui Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Yi Zhong
- China Wildlife Conservation Association, Beijing, China
| | - Xu Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Xiaoyu Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Mo F, Li Y, Liu Z, Zheng J, Huang Z. Captivity restructures the gut microbiota of François' langurs ( Trachypithecus francoisi). Front Microbiol 2023; 14:1166688. [PMID: 37250037 PMCID: PMC10218129 DOI: 10.3389/fmicb.2023.1166688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Gut microbiota is crucial to primate survival. Data on the gut microbiota of captive and wild animals can provide a physiological and ecological basis for the conservation of rare and endangered species. To study the effect of captivity on the gut microbiota, we examine the difference in the gut microbiota composition between captive and wild Francois' langurs (Trachypithecus francoisi), using 16S rRNA sequencing technology. The results showed that the composition of the gut microbiota of captive and wild langurs was characterized by Firmicutes (51.93 ± 10.07% vs. 76.15 ± 8.37%) and Bacteroidetes (32.43 ± 10.00% vs. 4.82 ± 1.41%) at the phylum level and was characterized by Oscillospiraceae (15.80 ± 5.19% vs. 30.21 ± 4.87%) at the family level. The alpha diversity of gut microbiota in captive langurs was higher than those in wild, such as the Shannon index (4.45 ± 0.33 vs. 3.98 ± 0.19, P < 0.001) and invSimpson index (35.11 ± 15.63 vs. 19.02 ± 4.87, P < 0.001). Principal coordinates analysis (PCoA) results showed significant differences in the composition of gut microbiota between captive and wild langurs at both the phylum and family levels (weight UniFrac algorithm, phylum level: R2 = 0.748, P = 0.001; family level: R2 = 0.685, P = 0.001). The relative abundance of Firmicutes (51.93 ± 10.07%) in captive langurs was lower than that of wild langurs (76.15 ± 8.37%), and the relative abundance of Bacteroidetes (32.43 ± 10.00%) in captive langurs was higher than that of wild (4.82 ± 1.41%). Our study concludes that dietary composition could be a crucial determinant in shaping the gut microbiota of langurs because more fiber-rich foods used by the wild langurs could increase the abundance of Firmicutes, and more simple carbohydrate-rich foods consumed by the captive langurs increase the abundance of Bacteroidetes. We highlight the importance of captivity on the gut microbiota and the need to consider the gut microbiota in animal provision.
Collapse
Affiliation(s)
- Fengxiang Mo
- Key Laboratory of Ecology and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Zheng Liu
- Key Laboratory of Ecology and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Jingjin Zheng
- Key Laboratory of Ecology and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Zhonghao Huang
- Key Laboratory of Ecology and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
21
|
Chen Y, Lai Y, Zheng J, Liu Z, Nong D, Liang J, Li Y, Huang Z. Seasonal variations in the gut microbiota of white-headed black langur (Trachypithecus leucocephalus) in a limestone forest in Southwest Guangxi, China. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1126243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Investigating gut microbiota is important for understanding the physiological adaptation of animals to food availability changes in fragmented habitats and consequently providing new ideas for the conservation of endangered wild animals. In this study, we explored the gut microbiota of the endangered white-headed black langur (Trachypithecus leucocephalus), which is endemic to the limestone forests of Southwest Guangxi, China, to understand its adaptation strategies to seasonal changes in habitat using 16S rRNA sequencing. Our results revealed significant seasonal variations in the gut microbiota of white-headed black langurs. In particular, the alpha diversity was higher in the rainy season than in the dry season, and the beta diversity was significantly different between the two seasons. At the phylum level, the relative abundance of Firmicutes, Actinobacteriota, and Proteobacteria was higher in the dry season than that in the rainy season, whereas that of Bacteroidetes, Spirochaetota, and Cyanobacteria was significantly higher in the rainy season than that in the dry season. At the family level, Oscillospiraceae and Eggerthellaceae were more abundant in the dry season than in the rainy season, whereas Lachnospiraceae, Ruminococcaceae, and Monoglobaceae were more abundant in the rainy season than in the dry season. These results could have been obtained due to seasonal changes in the diet of langurs in response to food plant phenology. In addition, the neutral community model revealed that the gut microbiota assembly of these langurs was dominated by deterministic processes and was more significantly affected by ecological factors in the dry season than in the rainy season, which could be linked to the higher dependence of these langurs on mature leaves in the dry season. We concluded that the seasonal variations in the gut microbiota of white-headed black langurs occurred in response to food plant phenology in their habitat, highlighting the importance of microbiota in responding to fluctuating ecological factors and adapting to seasonal dietary changes.
Collapse
|
22
|
Animal Age Affects the Gut Microbiota and Immune System in Captive Koalas ( Phascolarctos cinereus). Microbiol Spectr 2023; 11:e0410122. [PMID: 36602319 PMCID: PMC9927321 DOI: 10.1128/spectrum.04101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gut microbiota is one of the major elements in the control of host health. However, the composition of gut microbiota in koalas has rarely been investigated. Here, we performed 16S rRNA gene sequencing to determine the individual and environmental determinants of gut microbiota diversity and function in 35 fecal samples collected from captive koalas. Meanwhile, blood immune-related cytokine levels were examined by quantitative reverse transcription-PCR to initially explore the relationship between the gut microbiota and the immune system in koalas. The relative abundance of many bacteria, such as Lonepinella koalarum, varies at different ages in koalas and decreases with age. Conversely, Ruminococcus flavefaciens increases with age. Moreover, bacterial pathways involved in lipid metabolism, the biosynthesis of other secondary metabolites, and infectious disease show a significant correlation with age. Age affects the relationship between the microbiota and the host immune system. Among them, the gut microbiota of subadult and aged koalas was closely correlated with CD8β and CD4, whereas adult koalas were correlated with CLEC4E. We also found that sex, reproductive status, and living environment have little impact on the koala gut microbiota and immune system. These results shed suggest age is a key factor affecting gut microbiota and immunity in captive koalas and thus provide new insight into its role in host development and the host immune system. IMPORTANCE Although we have a preliminary understanding of the gut microbiota of koalas, we lack insight into which factors potentially impact captive koalas. This study creates the largest koala gut microbiota data set in China to date and describes several factors that may affect gut microbiota and the immune system in captive koalas, highlighting that age may be a key factor affecting captive koalas. Moreover, this study is the first to characterize the correlation between gut microbiota and cytokines in koalas. Better treatment strategies for infectious disorders may be possible if we can better understand the interactions between the immune system and the microbiota.
Collapse
|
23
|
Vasconcelos DS, Harris DJ, Damas-Moreira I, Pereira A, Xavier R. Factors shaping the gut microbiome of five species of lizards from different habitats. PeerJ 2023; 11:e15146. [PMID: 37187519 PMCID: PMC10178224 DOI: 10.7717/peerj.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Background Host-gut microbiota interactions are complex and can have a profound impact on the ecology and evolution of both counterparts. Several host traits such as systematics, diet and social behavior, and external factors such as prey availability and local environment are known to influence the composition and diversity of the gut microbiota. Methods In this study, we investigate the influence of systematics, sex, host size, and locality/habitat on gut microbiota diversity in five lizard species from two different sites in Portugal: Podarcis bocagei and Podarcis lusitanicus, living in syntopy in a rural area in northern Portugal (Moledo); the invasive Podarcis siculus and the native Podarcis virescens, living in sympatry in an urbanized environment (Lisbon); and the invasive Teira dugesii also living in an urban area (Lisbon). We also infer the potential microbial transmission occurring between species living in sympatry and syntopy. To achieve these goals, we use a metabarcoding approach to characterize the bacterial communities from the cloaca of lizards, sequencing the V4 region of the 16S rRNA. Results Habitat/locality was an important factor explaining differences in gut bacterial composition and structure, with species from urbanized environments having higher bacterial diversity. Host systematics (i.e., species) influenced gut bacterial community structure only in lizards from the urbanized environment. We also detected a significant positive correlation between lizard size and gut bacterial alpha-diversity in the invasive species P. siculus, which could be due to its higher exploratory behavior. Moreover, estimates of bacterial transmission indicate that P. siculus may have acquired a high proportion of local microbiota after its introduction. These findings confirm that a diverse array of host and environmental factors can influence lizards' gut microbiota.
Collapse
Affiliation(s)
- Diana S. Vasconcelos
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - D. James Harris
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | | | - Ana Pereira
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - Raquel Xavier
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| |
Collapse
|
24
|
Zhu J, Liu J, Li W, Ru Y, Sun D, Liu C, Li Z, Liu W. Dynamic changes in community structure and degradation performance of a bacterial consortium MMBC-1 during the subculturing revival reveal the potential decomposers of lignocellulose. BIORESOUR BIOPROCESS 2022; 9:110. [PMID: 38647799 PMCID: PMC10991580 DOI: 10.1186/s40643-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
Bacterial consortium is an important source of lignocellulolytic strains, but it is still a challenge to distinguish the direct decomposers of lignocellulose from other bacteria in such a complex community. This study aims at addressing this issue by focusing on the dynamic changes in community structure and degradation activity of MMBC-1, an established and stable lignocellulolytic bacterial consortium, during its subculturing revival. MMBC-1 was cryopreserved with glycerol as a protective agent and then inoculated for revival. Its enzyme activities for degradation recovered to the maximum level after two rounds of subculturing. Correspondingly, the cellulose and hemicellulose in lignocellulosic carbon source were gradually decomposed during the revival. Meanwhile, the initial dominant bacteria represented by genus Clostridium were replaced by the bacteria belonging to Lachnospira, Enterococcus, Bacillus, Haloimpatiens genera and family Lachnospiraceae. However, only three high-abundance (> 1%) operational taxonomic units (OTUs) (Lachnospira, Enterococcus and Haloimpatiens genera) were suggested to directly engage in lignocellulose degradation according to correlation analysis. By comparison, many low-abundance OTUs, such as the ones belonging to Flavonifractor and Anaerotruncus genera, may play an important role in degradation. These findings showed the dramatic changes in community structure that occurred during the subculturing revival, and paved the way for the discovery of direct decomposers in a stable consortium.
Collapse
Affiliation(s)
- Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Weilin Li
- Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunrui Ru
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China.
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
25
|
Guo J, Jin Y, Tian X, Bao H, Sun Y, Gray T, Song Y, Zhang M. Diet-induced microbial adaptation process of red deer ( Cervus elaphus) under different introduced periods. Front Microbiol 2022; 13:1033050. [PMID: 36338061 PMCID: PMC9632493 DOI: 10.3389/fmicb.2022.1033050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Insufficient prey density is a major factor hindering the recovery of the Amur tiger (Panthera tigris altaica), and to effectively restore the Amur tiger, red deer (Cervus elaphus) was released into the Huangnihe National Nature Reserve of Northeast China as the main reinforcement. Differences in feeding and synergistic changes caused by the intestinal microbial communities could impact the adaptation of wildlife following reintroductions into field environments. We analyzed the foraging changes in shaping the intestinal microbial community of the red deer after being released to the Huangnihe National Nature Reserve and screened the key microbial flora of the red deer when processing complex food resources. The feeding and intestinal microbial communities of the red deer were analyzed by plant Deoxyribonucleic acid (DNA) barcoding sequencing and 16S rRNA high-throughput sequencing, respectively. The results showed that there were significant differences in food composition between wild and released groups [released in 2019 (R2): n = 5; released in 2021 (R0): n = 6]; the wild group fed mainly on Acer (31.8%) and Abies (25.6%), R2 fed mainly on Betula (44.6%), R0 had not formed a clear preferred feeding pattern but had certain abilities to process and adapt to natural foods. Firmicutes (77.47%) and Bacteroides (14.16%) constituted the main bacterial phylum of red deer, of which, the phylum Firmicutes was the key species of the introduced red deer for processing complex food resources (p < 0.05). The wild release process significantly changed the intestinal microbial structure of the red deer, making it integrate into the wild red deer. The period since release into the wild may be a key factor in reshaping the structure of the microbial community. This study suggested that the intestinal microbial structure of red deer was significantly different depending on how long since captive deer has been translocated. Individuals that have lived in similar environments for a long time will have similar gut microbes. This is the adaption process of the wildlife to natural environment after wild release, taking into account the gut microbes, and the feeding changes in shaping microbial communities can help introduced red deer match complex food resources and novel field environments.
Collapse
Affiliation(s)
- Jinhao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yongchao Jin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- World Wild Fund for Nature (China), Changchun, China
| | - Xinmin Tian
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Heng Bao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yue Sun
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Thomas Gray
- WWF Tigers Alive Initiative, Singapore, Singapore
| | - Yaqi Song
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Minghai Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
26
|
Adaptation of gut microbiome and host metabolic systems to lignocellulosic degradation in bamboo rats. THE ISME JOURNAL 2022; 16:1980-1992. [PMID: 35568757 PMCID: PMC9107070 DOI: 10.1038/s41396-022-01247-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Bamboo rats (Rhizomys pruinosus) are among the few mammals that lives on a bamboo-based diet which is mainly composed of lignocellulose. However, the mechanisms of adaptation of their gut microbiome and metabolic systems in the degradation of lignocellulose are largely unknown. Here, we conducted a multi-omics analysis on bamboo rats to investigate the interaction between their gut microbiomes and metabolic systems in the pre- and post-weaning periods, and observed significant relationships between dietary types, gut microbiome, serum metabolome and host gene expression. For comparison, published gut microbial data from the famous bamboo-eating giant panda (Ailuropoda melanoleuca) were also used for analysis. We found that the adaptation of the gut microbiome of the bamboo rat to a lignocellulose diet is related to a member switch in the order Bacteroidales from family Bacteroidaceae to family Muribaculaceae, while for the famous bamboo-eating giant panda, several aerobes and facultative anaerobes increase after weaning. The conversion of bacteria with an increased relative abundance in bamboo rats after weaning enriched diverse carbohydrate-active enzymes (CAZymes) associated with lignocellulose degradation and functionally enhanced the biosynthesis of amino acids and B vitamins. Meanwhile, the circulating concentration of short-chain fatty acids (SCFAs) derived metabolites and the metabolic capacity of linoleic acid in the host were significantly elevated. Our findings suggest that fatty acid metabolism, including linoleic acid and SCFAs, are the main energy sources for bamboo rats in response to the low-nutrient bamboo diet.
Collapse
|
27
|
Zhou Z, Tang L, Yan L, Jia H, Xiong Y, Shang J, Shao C, Zhang Q, Wang H, He L, Hu D, Zhang D. Wild and Captive Environments Drive the Convergence of Gut Microbiota and Impact Health in Threatened Equids. Front Microbiol 2022; 13:832410. [PMID: 35814657 PMCID: PMC9259803 DOI: 10.3389/fmicb.2022.832410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
To explore how the living environment influences the establishment of gut microbiota in different species, as well as the extent to which changes in the living environment caused by captive breeding affect wildlife’s gut microbiota and health, we used 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing to compare the gut microbiome of two species of threatened equids, the Przewalski’s Horse and the Asian wild ass, in the wild and captivity. The results revealed that different species of Equidae living in the same environment showed remarkable convergence of gut microflora. At the same time, captive populations exhibited significantly “unhealthy” microbiota, such as low Alpha diversity, high levels of potentially pathogenic bacteria and biomarkers of physical or psychological disease, and enrichment of microbial functions associated with exogenous exposure and susceptibility, implying that the artificial environment created by captivity may adversely impact the health of wildlife to some extent. Our findings demonstrate the importance of the environmental factors for the establishment of gut microbiota and host health and provide new insights into the conservation of wildlife in captivity from the perspective of the microbiome.
Collapse
Affiliation(s)
- Zhichao Zhou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Liping Tang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Huiping Jia
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu Xiong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jin Shang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | | | - Qiangwei Zhang
- Gansu Endangered Animals Protection Center, Wuwei, China
| | - Hongjun Wang
- Gansu Endangered Animals Protection Center, Wuwei, China
| | - Lun He
- China Wildlife Conservation Association, Beijing, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Dong Zhang, ;
| |
Collapse
|
28
|
Qi L, Lian CA, Zhu FC, Shi M, He LS. Comparative Analysis of Intestinal Microflora Between Two Developmental Stages of Rimicaris kairei, a Hydrothermal Shrimp From the Central Indian Ridge. Front Microbiol 2022; 12:802888. [PMID: 35242112 PMCID: PMC8886129 DOI: 10.3389/fmicb.2021.802888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 01/04/2023] Open
Abstract
Despite extreme physical and chemical characteristics, deep-sea hydrothermal vents provide a place for fauna survival and reproduction. The symbiotic relationship of chemotrophic microorganisms has been investigated in the gill of Rimicaris exoculata, which are endemic to the hydrothermal vents of the Mid-Atlantic Ridge. However, only a few studies have examined intestinal symbiosis. Here, we studied the intestinal fauna in juvenile and adult Rimicaris kairei, another species in the Rimicaris genus that was originally discovered at the Kairei and Edmond hydrothermal vent fields in the Central Indian Ridge. The results showed that there were significant differences between juvenile and adult gut microbiota in terms of species richness, diversity, and evenness. The values of Chao1, observed species, and ASV rarefaction curves indicated almost four times the number of species in adults compared to juveniles. In juveniles, the most abundant phylum was Deferribacterota, at 80%, while in adults, Campilobacterota was the most abundant, at 49%. Beta diversity showed that the intestinal communities of juveniles and adults were clearly classified into two clusters based on the evaluations of Bray-Curtis and weighted UniFrac distance matrices. Deferribacteraceae and Sulfurovum were the main featured bacteria contributing to the difference. Moreover, functional prediction for all of the intestinal microbiota showed that the pathways related to ansamycin synthesis, branched-chain amino acid biosynthesis, lipid metabolism, and cell motility appeared highly abundant in juveniles. However, for adults, the most abundant pathways were those of sulfur transfer, carbohydrate, and biotin metabolism. Taken together, these results indicated large differences in intestinal microbial composition and potential functions between juvenile and adult vent shrimp (R. kairei), which may be related to their physiological needs at different stages of development.
Collapse
Affiliation(s)
- Li Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Ang Lian
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Fang-Chao Zhu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Mengke Shi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
29
|
Fan C, Zhang L, Jia S, Tang X, Fu H, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integr Zool 2022; 17:379-395. [PMID: 35051309 PMCID: PMC9305894 DOI: 10.1111/1749-4877.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Seasonal variations in gut microbiota of small mammals and how it is influenced by environmental variables is relatively poorly understood. We sampled 162 wild plateau pikas (Ochotona curzoniae) in four seasons over two and a half years and recorded the air temperature, precipitation, and nutrient content in edible vegetation at the sampling site. After conducting 16S rRNA and shotgun metagenomic sequencing, we found that the highest alpha diversity, the relative abundance of Firmicutes, and the simplest co-occurrence network occurred in winter, whereas that the highest relative abundance of Proteobacteria and the most complex network structure was observed in spring. The highest relative abundance of Verrucomicrobiota and Spirochaetota were seen in summer and autumn, respectively. Air temperature, precipitation, and the contents of crude protein, crude fiber, and polysaccharide in vegetation had significant effects on the seasonal changes in gut microbiota. Diet contributed more to microbial variation than climatic factors. Metagenomic analysis revealed that the amino acid metabolism pathway and axillary activity enzymes were most abundant in summer, while abundance of carbohydrate-binding modules and carbohydrate esterases were highest in spring. These microbial variations were related to the changes in dietary nutrition, indicating that gut microbiota of plateau pika contribute to the efficient use of food resources. This study provides new evidence of how external environmental factors affect the intestinal environment of small mammals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,College of Life Sciences, Qufu Normal University, Qufu, 273165, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| |
Collapse
|
30
|
Li J, Chu Y, Yao W, Wu H, Feng J. Differences in Diet and Gut Microbiota Between Lactating and Non-lactating Asian Particolored Bats ( Vespertilio sinensis): Implication for a Connection Between Diet and Gut Microbiota. Front Microbiol 2021; 12:735122. [PMID: 34712210 PMCID: PMC8546350 DOI: 10.3389/fmicb.2021.735122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
In mammals, lactation is considered the most energetically costly phase for females. To meet nutritional and energy demands, lactating females usually change feeding patterns by eating food that is higher in protein and calories. Their gut microbes respond accordingly to help adapt to the changes in diet. In this study, we examined differences in diet and gut microbial composition between lactating and non-lactating Asian particolored bats (Vespertilio sinensis) using COI and 16S amplicon sequencing. When compared with non-lactating bats, we found that the diversity and composition of lactating bats' diets differed; the proportion of Diptera increased and Coleoptera and Orthoptera decreased significantly. This could be attributed to the easy availability and high protein content of Diptera. Comparative analysis of the gut microbiota of lactating and non-lactating females showed that although the diversity of gut microbiota did not change, the relative abundance of specific gut microbiota associated with a particular diet did change. For example, when the consumption of Coleoptera decreased in lactating bats, the relative abundance of Lactobacillaceae was also reduced. Lactobacillaceae are thought to be involved in the digestion of Coleopteran exoskeletons. This study suggests that during lactation, Asian particolored bats eat a diet that yields higher levels of protein, and at the same time, the abundance of specific gut microbes change to help their hosts adapt to these changes in diet.
Collapse
Affiliation(s)
- Jingjing Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenwen Yao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Hui Wu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
31
|
Fu C, Long W, Luo C, Nong X, Xiao X, Liao H, Li Y, Chen Y, Yu J, Cheng S, Baloch S, Yang Y. Chromosome-Level Genome Assembly of Cyrtotrachelus buqueti and Mining of Its Specific Genes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.729100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The most severe insect damage to bamboo shoots is the bamboo-snout beetle (Cyrtotrachelus buqueti). Bamboo is a perennial plant that has significant economic value. C. buqueti also plays a vital role in the degradation of bamboo lignocellulose and causing damage. The genome sequencing and functional gene annotation of C. buqueti are of great significance to reveal the molecular mechanism of its efficient degradation of bamboo fiber and the development of the bamboo industry.Results: The size of C. buqueti genome was close to 600.92 Mb by building a one paired-end (PE) library and k-mer analysis. Then, we developed nine 20-kb SMRTbell libraries for genome sequencing and got a total of 51.12 Gb of the original PacBio sequel reads. Furthermore, after filtering with a coverage depth of 85.06×, clean reads with 48.71 Gb were obtained. The final size of C. buqueti genome is 633.85 Mb after being assembled and measured, and the contig N50 of C. buqueti genome is 27.93 Mb. The value of contig N50 shows that the assembly quality of C. buqueti genome exceeds that of most published insect genomes. The size of the gene sequence located on chromosomes reaches 630.86 Mb, accounting for 99.53% of the genome sequence. A 1,063 conserved genes were collected at this assembled genome, comprising 99.72% of the overall genes with 1,066 using the Benchmark Uniform Single-Copy Orthology (BUSCO). Moreover, 63.78% of the C. buqueti genome is repetitive, and 57.15% is redundant with long-term elements. A 12,569 protein-coding genes distributed on 12 chromosomes were acquired after function annotation, of which 96.18% were functional genes. The comparative genomic analysis results revealed that C. buqueti was similar to D. ponderosae. Moreover, the comparative analysis of specific genes in C. buqueti genome showed that it had 244 unique lignocellulose degradation genes and 240 genes related to energy production and conversion. At the same time, 73 P450 genes and 30 GST genes were identified, respectively, in the C. buqueti genome.Conclusion: The high-quality C. buqueti genome has been obtained in the present study. The assembly level of this insect’s genome is higher than that of other most reported insects’ genomes. The phylogenetic analysis of P450 and GST gene family showed that C. buqueti had a vital detoxification function to plant chemical components.
Collapse
|