1
|
Zheng W, Chen Y, Niu Y, Xu P, Hao H, Dong B. Disinfection by-product formation potential in response to seasonal variations in lake water sources: Dependency on fluorescent and molecular weight characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177891. [PMID: 39647210 DOI: 10.1016/j.scitotenv.2024.177891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Seasonal fluctuations present significant challenges to drinking water treatment by altering the properties of Dissolved Organic Matter (DOM) within watersheds, thereby influencing the potential for disinfection by-product (DBP) formation. DOM is a complex mixture of organic matter that serves as a critical DBP precursor and is closely linked to adverse health outcomes. The prediction of DBP formation is complicated by the variability in DOM concentrations and compositions in lake source water, a situation exacerbated by seasonal changes in water systems. We examined the seasonality of lake DBP formation potential (DBPFP) and the dynamics of precursors across four distinct seasons based on water temperature. Utilizing the Excitation-Emission Matrix (EEM) coupled with parallel factorial (PARAFAC) analysis, three-dimensional fluorescence difference spectroscopy (3D-FDS), and molecular weight distribution (MWD), we elucidated the compositions and fates of lake DBP precursors. The findings revealed that DBPFP (THMFP and HAAFP) were markedly influenced by seasonal variations, with peak fluorescence intensity occurring during the summer. Contributions to the water system were dominated by microbial metabolites (region IV) and protein-like substances (region I and region II). 3D-FDS analysis further substantiated the low homogeneity of DBP precursors between summer and autumn, with fulvic acid (FA) substances comprising up to 36.89 % of the variance. Distinct fluorescence intensities were detected at Peak B (266.29 A.U.) and Peak T (376.19 A.U.). Throughout the year, a total of four fluorescent components were characterized, encompassing humic-like substances (C3) and protein-like substances (C1, C2, C4), indicative of biogenic pollution. The source of DBP precursors was identified as small molecular weight organic matter (0.2-5 KDa), resulting from microbial metabolic processes and the degradation of aquatic plants. In addition, external factors such as chlorination, pH levels, and contact time significantly influence THMFP and HAAFP. Overall, these findings advance our comprehension of the transport and fate of DBP precursors within drinking water sources and lake ecosystems. This knowledge is pivotal for optimizing water treatment protocols in relevant water treatment facilities.
Collapse
Affiliation(s)
- Wenjing Zheng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yan Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Yalin Niu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Pengcheng Xu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Huayi Hao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bingzhi Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai 200092, China
| |
Collapse
|
2
|
Yan X, Zhu B, Huang H, Chen W, Li H, Chen Y, Liang Y, Zeng H. Analysing N-nitrosamine occurrence and sources in karst reservoirs, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:112. [PMID: 38472659 DOI: 10.1007/s10653-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
N-nitrosamines in reservoir water have drawn significant attention because of their carcinogenic properties. Karst reservoirs containing dissolved organic matter (DOM) are important drinking water sources and are susceptible to contamination because of the fast flow of various contaminants. However, it remains unclear whether N-nitrosamines and their precursor, DOM, spread in karst reservoirs. Therefore, this study quantitatively investigated the occurrence and sources of N-nitrosamines based on DOM properties in three typical karst reservoirs and their corresponding tap water. The results showed that N-nitrosamines were widely spread, with detection frequencies > 85%. Similar dominant compounds, including N-nitrosodimethylamine, N-nitrosomethylethylamine, N-nitrosopyrrolidine, and N-nitrosodibutylamine, were observed in reservoirs and tap water, with average concentrations of 4.7-8.9 and 2.8-6.7 ng/L, respectively. The average carcinogenic risks caused by these N-nitrosamines were higher than the risk level of 10-6. Three-dimensional fluorescence excitation-emission matrix modeling revealed that DOM was composed of humus-like component 1 (C1) and protein-like component 2 (C2). Fluorescence indicators showed that DOM in reservoir water was mainly affected by exogenous pollution and algal growth, whereas in tap water, DOM was mainly affected by microbial growth with strong autopoietic properties. In the reservoir water, N-nitrosodiethylamine and N-nitrosopiperidine were significantly correlated with C2 and biological indicators, indicating their endogenously generated sources. Based on the principal component analysis and multiple linear regression methods, five sources of N-nitrosamines were identified: agricultural pollution, microbial sources, humus sources, degradation processes, and other factors, accounting for 46.8%, 36.1%, 7.82%, 8.26%, and 0.96%, respectively. For tap water, two sources, biological reaction processes, and water distribution systems, were identified, accounting for 75.7% and 24.3%, respectively. Overall, this study presents quantitative information on N-nitrosamines' sources based on DOM properties in typical karst reservoirs and tap water, providing a basis for the safety of drinking water for consumers.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Bingquan Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
3
|
Lan X, Huang H, Liu J, Zhao J, Li G, Zuo M, Xing X, Ren X. Compromised very-low density lipoprotein induced polyunsaturated triglyceride accumulation in N-nitrosodiethylamine-induced hepatic steatosis. Food Chem Toxicol 2024; 186:114519. [PMID: 38369053 DOI: 10.1016/j.fct.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.
Collapse
Affiliation(s)
- Xuerao Lan
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jing Zhao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Guowei Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Mingyang Zuo
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
4
|
He H, Sun N, Li L, Zhou H, Hu A, Yang X, Ai J, Jiao R, Yang X, Wang D, Zhang W. Photochemical Transformation of Dissolved Organic Matter in Surface Water Augmented the Formation of Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329881 DOI: 10.1021/acs.est.3c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Sunlight may lead to changes in disinfection byproducts (DBPs) formation potentials of source water via transforming dissolved organic matter (DOM); however, the underlying mechanisms behind these changes remain unclear. This work systematically investigated the effect of photochemical transformation of DOM from reservoir water (DOMRe) and micropolluted river water (DOMRi) after 36 h of simulated sunlight irradiation (equivalent to one month under natural sunlight) on DBPs formation. Upon irradiation, high molecular weight (MW) and aromatic molecules tended to be mineralized or converted into low-MW and highly oxidized (O/C > 0.5) ones which might react with chlorine to generate high levels of DBPs, resulting in an elevation in the yields (μg DBP/mg C) of almost all the measured DBPs and the quantities of unknown DBPs in both DOM samples after chlorination. Additionally, DOMRi contained more aromatic molecules susceptible to photooxidation than DOMRe. Consequently, irradiated DOMRi exhibited a greater increase in the formation potentials of haloacetonitriles, halonitromethanes, and specific regulated DBPs, with nitrogenous DBPs being responsible for the overall rise in the calculated cytotoxicity following chlorination. This work emphasized the importance of a comprehensive removal of phototransformation products that may serve as DBPs precursors from source waters, especially from micropolluted source waters.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niannian Sun
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Xiaoyin Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruyuan Jiao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Khanzada NK, Rehman S, Kharraz JA, Farid MU, Khatri M, Hilal N, An AK. Reverse osmosis membrane functionalized with aminated graphene oxide and polydopamine nanospheres plugging for enhanced NDMA rejection and anti-fouling performance. CHEMOSPHERE 2023; 338:139557. [PMID: 37478994 DOI: 10.1016/j.chemosphere.2023.139557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
The use of reverse osmosis (RO) for water reclamation has become an essential part of the water supply owing to the ever-increasing water demand and the utmost performance of the RO membranes. Despite the global RO implementation, its inferior rejection against low molecular weight contaminants of emerging concerns (CECs) (i.e., N-nitrosodimethylamine (NDMA)) and propensity to fouling remain bottle-neck thus affecting process robustness for water reuse. This study aims to enhance both the rejection and antifouling properties of the RO membrane. Herein for the first time, we report RO membrane modification using polydopamine nanospheres (PDAns) followed by aminated-graphene oxide (AGO) deposition as an effective approach to overcome these challenges. The modification of the RO membrane using PDAns-AGO resulted in 89.3 ± 2.7% rejection compared to the pristine RO membrane which demonstrated 69.2 ± 2.1% NDMA rejection. This significant improvement can be ascribed to the plugging and shielding of defective areas (formed during interfacial polymerization) of the polyamide layer through active PDAns and AGO layers and to the added sieving mechanism that arose through narrow channels of the AGO owing to its reduction. Moreover, the in-situ and non-destructive fouling monitoring using optical coherence tomography (OCT) revealed that the PDAns-AGO coating enhanced both the anti-scaling and anti-biofouling characteristics. The improved hydrophilicity and bactericidal effect together with roughness and surface charge suppression synergistically enhanced anti-fouling properties. This study provides a new direction for safe and cost-effective water reuse practices. The membrane with high selectivity against CECs such as NDMA has the potential to eliminate permeate staging using second pass RO and other advanced oxidation processes which are utilized as a tertiary treatment to make reclaimed water suitable for potable/non-potable application.
Collapse
Affiliation(s)
- Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Shazia Rehman
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muzamil Khatri
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Chen L, Maqbool T, Nazir G, Hou C, Xu Y, Yang Y, Zhang X. Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation. WATER RESEARCH 2023; 229:119444. [PMID: 36470049 DOI: 10.1016/j.watres.2022.119444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
A composite manganese-based catalytic ceramic membrane (Mn-CCM) was developed by a solid-state sintering method, and its effectiveness toward activation of peroxymonosulfate (PMS) for the degradation of 11 pharmaceutical and personal care products (PPCPs) mixture was tested. The optimized Mn-CCMs/PMS system showed remarkable degradation efficiencies for PPCPs mixture with total removal >90% in ultrapure water, river water and natural organic matter (NOM) solution. The Mn-CCMs/PMS system showed the contribution of different phenomena in PPCPs removal in the order of catalytic oxidation (54.7%, Mn-CCMs/PMS) > noncatalytic oxidation (42.3%, PMS oxidation) > adsorption (3.0%, by Mn-CCMs). The singlet oxygen (1O2) was the dominant reactive oxygen specie for the degradation of PPCPs in all water matrices proved by the quenching experiments and electro-paramagnetic resonance (EPR) spectroscopy. The extraordinary stability of Mn-CCMs for the activation of PMS has been noted in terms of repeatability experiments for PPCPs degradation with fewer leaching of Mn (1.9 to 3.6 µg/L). Mineralization was achieved in the range of 28-65% for different water matrices. The toxicity of the PPCPs mixture was reduced by 85.9%. The Mn-CCMs/PMS system showed a reduction (25-100%) in precursors of different carbon- and nitrogen-based disinfection by-products. This study found the Mn-CCMs/PMS system as a feasible purification unit for removing trace concentrations of PPCPs (ng/L) in real drinking water matrices.
Collapse
Affiliation(s)
- Li Chen
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Congyu Hou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanna Xu
- Testing Technology Center for Materials and Devices, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yulong Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xihui Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Lin S, Chu W, Liu A. Characteristics of dissolved organic matter in two alternative water sources: A comparative study between reclaimed water and stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158235. [PMID: 36007646 DOI: 10.1016/j.scitotenv.2022.158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Reclaimed water and stormwater are two important alternative water sources to mitigate water resource shortage. They can be reused by discharging into drinking water sources. Due to different sources, characteristics of dissolved organic matter (DOM, a precursor of disinfection by-products, DBPs) present in reclaimed water and stormwater would be different. This study selected reclaimed water to compare with stormwater (including both stormwater runoff and rainwater) by investigating their DOM characteristics, including concentrations, aromaticity, molecular weight, hydrophobicity/hydrophilicity, composition and DBPs formation potential. The results showed that reclaimed water had higher dissolved organic carbon (DOC) concentrations (6.02-10.8 mg/L) than stormwater (3.62-5.48 mg/L) while SUVA254 values of stormwater runoff (1.92-2.53 L/(mg-C·m)) were higher than reclaimed water (1.11-1.24 L/(mg-C·m)). Additionally, reclaimed water is more hydrophobic while stormwater runoff and rainwater are more hydrophilic. Although all water types included the highest fraction of DOM with molecular weight <1 kDa (43.0 %-77.5 %), reclaimed water primarily contained soluble microbial products (SMPs)-like and humic acid-like substances while stormwater runoff primarily contained humic acid-like DOM. In terms of DBPs, reclaimed water showed relatively higher formation potential than stormwater runoff while rainwater had the lowest DBPs formation potential. These results can contribute to effective water resource management. Particularly, when reclaimed water or/and stormwater are discharged into drinking water sources, these outcomes can help on efficient drinking water treatment.
Collapse
Affiliation(s)
- Shufeng Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Water Science and Environmental Engineering Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
8
|
Ji B, Bilal Asif M, Zhang Z. Photothermally-activated peroxymonosulfate (PMS) pretreatment for fouling alleviation of membrane distillation of surface water: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Tay KSJ, Breadmore MC, Soh ES, See HH. Development of dispersive inclusion complex microextraction for the analysis of nitrosamines in medicinal products. J Chromatogr A 2022; 1685:463605. [DOI: 10.1016/j.chroma.2022.463605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
|
10
|
Zhou H, Huang Q, Wu X, Zhan B, Chen D, Lei M, Zhang H. Rapid and selective determination of 9 nitrosamines in biological samples using ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2249-2254. [PMID: 35670188 DOI: 10.1039/d2ay00468b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensitive, selective and convenient method for the simultaneous determination of 9 nitrosamines (NAs) in biological samples was developed using isotope dilution ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). Multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) scan mode was performed to eliminate false positive results, and the whole detection procedure was characterized by less time consuming and simple sample preparation. 9 NAs were separated through a T3 column with the gradient elution of acetonitrile and water, and detected by UPLC-QTRAP-MS with an atmospheric pressure chemical ionization (APCI) source in the positive mode. The quantitative analysis was carried out via the isotope internal standard method with a matrix calibration curve. Under the optimized conditions, good linearity for the 9 NAs was achieved in the range of 0.2-20 μg L-1 with correlation coefficients (r) higher than ≥0.9991, and the limits of detection and limits of quantitation were 0.02-0.1 μg L-1 (S/N = 3) and 0.06-0.3 μg L-1 (S/N = 10), respectively. Satisfactory recoveries ranging from 79.4% to 108.0% were obtained, and the precision of the proposed method, indicated by the relative standard deviations (RSDs), was 2.3-12.9%. The matrix effect study showed that NDMA, NMOR and NMEA presented a matrix suppression effect, NDPHA displayed a matrix enhancement effect, and the matrix effects of the other 5 analytes could be ignored. Real application of the developed method in 13 urine and 24 plasma samples demonstrated that NDBA, NPIP and NPYR occurred in both urine and plasma samples with the concentration of 0.038-0.60 μg L-1, while other NAs were not detected. Such a method was sensitive and selective, and could be applied to the rapid qualitative and quantitative analysis of the 9 NAs in biological samples.
Collapse
Affiliation(s)
- Hua Zhou
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Qin Huang
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Xianglun Wu
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Bindong Zhan
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Dongyang Chen
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China.
| | - Meikang Lei
- The Comprehensive Technology and Service Center of Quzhou Customs, Quzhou 324003, China
| | - Hao Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China.
| |
Collapse
|
11
|
Developing the large-area manganese-based catalytic ceramic membrane for peroxymonosulfate activation: Applications in degradation of endocrine disrupting compounds in drinking water. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|