1
|
Su R, Xue R, Ma X, Zeng Z, Li L, Wang S. Targeted improvement of narrow micropores in porous carbon for enhancing trace benzene vapor removal: Revealing the adsorption mechanism via experimental and molecular simulation. J Colloid Interface Sci 2024; 671:770-778. [PMID: 38830289 DOI: 10.1016/j.jcis.2024.05.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Porous carbon materials are highly desirable for removing benzene due to their low energy for capture and regeneration. Research has demonstrated that narrow microporous volume is crucial for effective adsorption of benzene at ultra-low concentration. Unfortunately, achieving directional increase in the narrow microporous volume in porous carbon remains a challenge. Here, nitrogen-doped hydrothermal carbon was prepared using urea-assisted hydrothermal method, and then porous carbon (PUC800) was prepared by KOH activation. The resulting material had 180 % higher pore volume and 179 % higher surface area compared to non-nitrogen activation methods. Then, using mechanochemical (mechanical compaction and KOH activation) approach to produce PUC800-3T, which had a 30 % increase in pore volume and a 33 % increase in surface area compared to PUC800. PUC800-3T showed benzene adsorption capacity of 4.2 mmol g-1 at 1 Pa and 5.8 mmol g-1 at 5 Pa. Experimental and molecular simulation indicate that the benzene adsorption at 1 and 5 Pa is determined by pore volume of less than 0.8 and 0.9 nm, respectively. Density functional theory calculations provided insight into the CH⋯X (X = N/O) interactions drive benzene adsorption on the carbon framework. This work provides valuable theoretical and experimental support for designing, preparing, and applying adsorbents for trace removal of benzene vapor.
Collapse
Affiliation(s)
- Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410083, Hunan, China
| | - Ruiqi Xue
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiancheng Ma
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Zheng Zeng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Liqing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 108 King William Street, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Orugba HO, Sinebe JE, Chukwuneke JL, Okoro VI, Enyi CL, Ani OI. Adsorption of cadmium from wastewater with activated carbons derived from pig fur biowaste: A comparative study of in-situ and ex-situ activation routes. Heliyon 2024; 10:e37768. [PMID: 39318811 PMCID: PMC11420493 DOI: 10.1016/j.heliyon.2024.e37768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
The environmental challenges associated with cadmium contamination in wastewater have necessitated the development of high-performing activated carbons (ACs) for effective wastewater treatment. Adsorption capacity depends on both the surface area and the adsorption-active functional groups developed on the adsorbent's surface during activation. Proper manipulation of key process variables using the appropriate activation route produces highly efficient and economically viable ACs. This research investigates the viability of pig fur biowaste as a novel precursor for activated carbons using two distinct activation methods-in-situ and ex-situ. Using a central composite design (CCD) of the Response Surface Methodology (RSM), the study systematically examines the effects of impregnation ratio, carbonization temperature, and carbonization time on the cadmium adsorption capacities of the resulting ACs. The optimal conditions for in-situ activation were found to be 691 °C, 175.11 min, and an impregnation ratio of 1.784 g/g, resulting in a cadmium adsorption capacity of 91.57 %. For ex-situ activation, the optimal conditions were 468.8 °C, 80.81 min, and an impregnation ratio of 2.915 g/g, which achieved a higher cadmium adsorption capacity of 91.21 %. Both types of activated carbons maintained high efficiency after five regeneration cycles, indicating they are suitable for long-term applications requiring repeated regeneration. Although both methods produced ACs with comparable cadmium removal efficiency, the ex-situ activation route proved to be more economically viable due to its lower temperature and shorter processing time. This study demonstrates the potential of pig fur biowaste as a sustainable and underutilized resource for AC production and highlights the ex-situ activation route as the more cost-effective approach for producing high-performance adsorbents.
Collapse
Affiliation(s)
| | | | | | | | - Chukwudi Louis Enyi
- Department of Mechanical Engineering, Delta State University, Abraka, Nigeria
| | - Okwuchukwu Innocent Ani
- Department of Mechanical Engineering, Enugu State University of Science & Technology, Enugu, Nigeria
| |
Collapse
|
3
|
He D, Wang Q, Mu J. Conversion of waste cork to N-doped porous carbons by urea-assisted hydrothermal method for enhanced VOC capture. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:191-203. [PMID: 38215582 DOI: 10.1016/j.wasman.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Converting waste resources into porous carbon for pollutants capture is an effective strategy to achieve the environmental goal of "treating waste with waste". Cork is an ideal precursor of porous carbons due to its ordered honeycomb-like cell structure and layered composition distribution. Herein, N-doped porous carbons (PCs) were prepared via two steps of urea-assisted hydrothermal carbonization and chemical activation to mitigate volatile organic compounds (VOCs) pollution. Results indicated that the obtained PC4-800 exhibited remarkable features for adsorption including high total pore volume (0.97 cm3/g) and specific surface area (1864.89 m2/g), as well as abundant N-containing functional groups. The excellent pore structure was primarily owing to the corrosion of the carbon matrix by the gas produced from the reaction of K2CO3 and N-containing functional groups. The adsorption results showed that the PC4-800 have an outstanding toluene adsorption capacity (867.03 mg/g) that outperforming majority of adsorbents previously reported. There are substantial pores in N-doped PCs with a pore width of 1.71-2.28 nm, which is 3 to 4 times the molecular dynamic diameter of toluene, and plays a crucial role in the absorption process. Moreover, the promotional influence of N-functional groups on the toluene adsorption process was verified through DFT calculation by Gaussian imitating, where N-6 generated π-electron enrichment sites on the surface of N-doped PCs, facilitating π-π dispersion with the benzene ring in toluene. This study provides a new strategy to convert waste cork into high-performance adsorbents for VOCs removal.
Collapse
Affiliation(s)
- Danwei He
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Qihang Wang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Jun Mu
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
| |
Collapse
|
4
|
Lv Y, Wang L, Liu X, Chen B, Zhang M. Construction and function of a high-efficient synthetic bacterial consortium to degrade aromatic VOCs. Bioprocess Biosyst Eng 2023; 46:851-865. [PMID: 37032387 DOI: 10.1007/s00449-023-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
Aromatic volatile organic compounds (VOCs) are a type of common pollution form in chemical contaminated sites. In this study, seven aromatic VOCs such as benzene, toluene, ethylbenzene, chlorobenzene, m-xylene, p-chlorotoluene and p-chlorotrifluorotoluene were used as the only carbon source, and four strains of highly efficient degrading bacteria were screened from the soil of chemical contaminated sites, then the synthetic bacterial consortium was constructed after mixing with an existing functional strain (Bacillus benzoevorans) preserved in the laboratory. After that, the synthetic bacterial consortium was used to explore the degradation effect of simulated aromatic VOCs polluted wastewater. The results showed that the functional bacterium could metabolize with aromatic VOCs as the only carbon source and energy. Meanwhile, the growth of the synthetic bacterial consortium increased with the additional carbon resources and the alternative of organic nitrogen source. Ultimately, the applicability of the synthetic bacterial consortium in organic contaminated sites was explored through the study of broad-spectrum activity.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Liangshi Wang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China.
- General Research Institute for Nonferrous Metals, Beijing, 100088, China.
- Institute of Earth Science, China University of Geosciences, Beijing, 100083, China.
- Shenzhen Green-Tech Institute of Applied Environmental Technology Co., Ltd., Shenzhen, 518001, China.
| | - Bowei Chen
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| |
Collapse
|
5
|
Baird V, Barker RE, Longhurst B, McElroy CR, Meng S, North M, Wang J. Biomass Derived, Hierarchically Porous, Activated Starbons® as Adsorbents for Volatile Organic Compounds. CHEMSUSCHEM 2023:e202300370. [PMID: 37013699 DOI: 10.1002/cssc.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Indexed: 06/16/2023]
Abstract
The use of potassium hydroxide activated Starbons® derived from starch and alginic acid as adsorbents for 29 volatile organic compounds (VOCs) was investigated. In every case, the alginic acid derived Starbon (A800K2) was found to be the optimal adsorbent, significantly outperforming both commercial activated carbon and starch derived, activated Starbon (S800K2). The saturated adsorption capacity of A800K2 depends on both the size of the VOC and the functional groups it contains. The highest saturated adsorption capacities were obtained with small VOCs. For VOC's of similar size, the presence of polarizable electrons in lone pairs or π-bonds within non-polar VOCs was beneficial. Analysis of porosimetry data suggests that the VOC's are being adsorbed within the pore structure of A800K2 rather than just on its surface. The adsorption was completely reversible by thermal treatment of the saturated Starbon under vacuum.
Collapse
Affiliation(s)
- Victoria Baird
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Ryan E Barker
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Benjamin Longhurst
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - C Rob McElroy
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
- School of Chemistry, University of Lincoln, Lincoln UK, LN6 7DL, United Kingdom
| | - Siyu Meng
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Michael North
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Junzhong Wang
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Lan L, Huang Y, Du Z, Dan Y, Jiang L. Visible light controllable adsorption-desorption of gaseous toluene on β-ketoenamine-linked porous organic polymer. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption: role of typical components. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Huang X, Tang M, Li H, Wang L, Lu S. Adsorption of multicomponent VOCs on various biomass-derived hierarchical porous carbon: A study on adsorption mechanism and competitive effect. CHEMOSPHERE 2023; 313:137513. [PMID: 36495972 DOI: 10.1016/j.chemosphere.2022.137513] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Biomass-derived porous carbon materials are potential adsorbents for VOCs. In this work, biomass-derived nitrogen-doped hierarchical porous carbons (NHPCs) were synthesized by a one-step pyrolysis activation combined with nitrogen doping method from several biomass wastes (corn straw, wheat stalk, bamboo, pine, and corncob). NHPCs have a hierarchical porous structure with micro-meso-macropores distribution, nitrogen doping, large specific surface area, and pore volume. The corncob derived carbon (NHPC-CC) has the best activation result as analyses showed that a lower ash content and higher total cellulose composition content of the biomass result in a better pore activation effect. Single and multi-component dynamic adsorption tests of typical VOCs (benzene, toluene, and chlorobenzene) were conducted on NHPCs in laboratory conditions (∼500 ppm). Promising VOC adsorption capacity and great adsorption kinetics with low mass transfer resistance were found on NHPCs. Correlation analysis showed that the high VOC adsorption capacity and great adsorption kinetics can be attributed to the large surface area of micro-mesopores and the mass transfer channels provided by meso-macropores respectively. The competitive dynamic adsorption tests revealed that the VOC with lower saturated vapor pressure has more adsorption sites on the surface of micro-mesopores and stronger adsorption force, which results in the higher adsorption capacity and desorption caused by substitution reaction in VOCs competitive adsorption process. In detail, the process of toluene and chlorobenzene competitive adsorption was described. Besides, well recyclability of NHPC-CC was revealed as the VOCs adsorption capacity reductions were less than 10% after four adsorption-desorption cycles. All studies showed that the NHPC-CC could be potential adsorbent for VOCs in industrial process.
Collapse
Affiliation(s)
- Xinlei Huang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Minghui Tang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hongxian Li
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ling Wang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Effects of pore structures and multiple components in flue gas on the adsorption behaviors of dioxins by activated carbon. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Lv Y, Wang L, Liu X, Chen B, Zhang M. Degradation kinetics of aromatic VOCs polluted wastewater by functional bacteria at laboratory scale. Sci Rep 2022; 12:19053. [PMID: 36351963 PMCID: PMC9646702 DOI: 10.1038/s41598-022-21356-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Reaction kinetics in biodegradation process is the basis and key of bioremediation technology, which can be used to predict the interaction between microorganisms and environmental states in the system. In this study, the kinetic model (Monod, Moser, Tessier and Cotonis) and kinetic parameters of aerobic biodegradation of functional bacteria in simulated wastewater polluted by aromatic volatile organic compounds (VOCs) were determined by shaking flask experiment. Monod, Moser, Tessier and Contois models were used to fit the experimental data and determine the kinetic parameters based on nonlinear regression analysis. Experimental results demonstrated that the removal rate of aromatic VOCs at 72 h was between 34.78 and 99.75% depending on the initial concentration of aromatic VOCs. The specific growth rate μ and degradation rate q increased with the increase of substrate concentration. The model of Monod, Moser and Tessier could be used to simulate microbial growth and substrate degradation in simulated aromatic VOCs polluted wastewater. Then the model and corresponding kinetic parameters were used to predict the limit concentration of biodegradation and provide theoretical support for the subsequent dynamic simulation and field engineering.
Collapse
Affiliation(s)
- Ying Lv
- grid.459522.d0000 0000 9491 9421National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, 101407 China ,grid.69775.3a0000 0004 0369 0705School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 China ,grid.459522.d0000 0000 9491 9421GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407 China ,grid.459522.d0000 0000 9491 9421General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Liangshi Wang
- grid.459522.d0000 0000 9491 9421National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, 101407 China ,grid.459522.d0000 0000 9491 9421GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407 China ,grid.459522.d0000 0000 9491 9421General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Xingyu Liu
- grid.459522.d0000 0000 9491 9421General Research Institute for Nonferrous Metals, Beijing, 100088 China ,grid.162107.30000 0001 2156 409XCollege of Water Resources and Environment, China University of Geosciences, Beijing, 100083 China
| | - Bowei Chen
- grid.459522.d0000 0000 9491 9421National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, 101407 China ,grid.459522.d0000 0000 9491 9421GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407 China ,grid.459522.d0000 0000 9491 9421General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Mingjiang Zhang
- grid.459522.d0000 0000 9491 9421National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, 101407 China ,grid.459522.d0000 0000 9491 9421GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407 China ,grid.459522.d0000 0000 9491 9421General Research Institute for Nonferrous Metals, Beijing, 100088 China
| |
Collapse
|
11
|
Zhang K, Ding H, Pan W, Mu X, Qiu K, Ma J, Zhao Y, Song J, Zhang Z. Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9220-9236. [PMID: 35580211 DOI: 10.1021/acs.est.2c02772] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are atmospheric pollutants that have been of concern for researchers in recent years because they are toxic, difficult to remove, and widely sourced and easily cause damage to the environment and human body. Most scholars use low-temperature plasma biological treatment, catalytic oxidation, adsorption, condensation, and recovery techniques to treat then effectively. Among them, catalytic oxidation technology has the advantages of a high catalytic efficiency, low energy consumption, high safety factor, high treatment efficiency, and less secondary pollution; it is currently widely used for VOC degradation technology. In this paper, the catalytic oxidation technology for the degradation of multiple types of VOCs as well as the development of a single metal oxide catalyst have been briefly introduced. We also focus on the research progress of composite metal oxide catalysts for the removal of VOCs by comparing and analyzing the metal component ratio, preparation method, and types of precursors and the catalysts' influence on the catalytic performance. In addition, the reason for catalyst deactivation and a correlation between the chemical state of the catalyst and the electron distribution are discussed. Development of a composite metal oxide catalyst for the catalytic oxidation of VOCs has been proposed.
Collapse
Affiliation(s)
- Kai Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Honglei Ding
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Shanghai Power Environmental Protection Engineering Technology Research Center, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Weiguo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Shanghai Power Environmental Protection Engineering Technology Research Center, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Xiaotian Mu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Kaina Qiu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Junchi Ma
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Yuetong Zhao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Jie Song
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Ziyi Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| |
Collapse
|
12
|
Ding X, Yang Y, Zeng Z, Huang Z. Insight into the Transformation Behaviors of Dioxins from Sintering Flue Gas in the Cyclic Thermal Regeneration by the V 2O 5/AC Catalyst-sorbent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5786-5795. [PMID: 35404044 DOI: 10.1021/acs.est.2c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dioxins in the sintering flue gas are usually removed through integrated elimination technologies by carbonaceous catalysts. However, the regeneration of the used catalyst is poorly investigated, leading to the risk of leakage of dioxins. Herein, the influences of cyclic regenerations on the dioxin removal performance of a catalyst (V2O5/AC) were investigated systematically with dibenzofuran (DBF) as a model pollutant. It was demonstrated that the adsorption capacity and oxidation activity of catalysts significantly declined after several regeneration cycles due to the decreasing external specific surface area and V5+, respectively. Compared with 79.12% DBF directly emitted from a regenerator during N2 regeneration, the emission of DBF was only 29.93% with the modification of the regeneration process through O2 addition and temperature adjustment. The possible regenerated products were also analyzed to disclose the transformation behaviors of DBF. The regeneration mechanisms of DBF followed the transformation pathway of dibenzofuranol, benzofuran, anhydride species, and ultimately to CO2 and H2O. Moreover, the accumulated heavy aromatics on the surface could be decomposed by introducing O2. This research provides a comprehensive understanding of dioxin transformation behavior and a theoretical basis for efficient control of dioxin removal in the whole integrated removal technologies.
Collapse
Affiliation(s)
- Xiaoxiao Ding
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yatao Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zequan Zeng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| |
Collapse
|
13
|
Yang Y, Sun C, Huang Q, Yan J. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: Application in VOCs removal. CHEMOSPHERE 2022; 291:132702. [PMID: 34710458 DOI: 10.1016/j.chemosphere.2021.132702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen-doped (N-doped) hierarchical porous carbon was widely utilized as an efficient volatile organic compounds (VOCs) adsorbent. In this work, a series of N-doped hierarchical porous carbons were successfully prepared from the direct pyrolysis process of three food waste components. The porous biochar that derived from bone showed a high specific surface area (1405.06 m2/g) and sizable total pore volume (0.97 cm3/g). The developed hierarchical porous structure was fabricated by the combined effect of self-activation (Carbon dioxide (CO2) and water vapor (H2O)) and self-template. The emission characteristics of activation gas analyzed by Thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR) and the transformation of ash composition in the biochar help to illustrate the pore-forming mechanism. Calcium oxide (CaO) and hydroxylapatite were confirmed as the major templates for mesopores, while the decomposition processes of calcium carbonate (CaCO3) and hydroxylapatite provided a large amount of activation gas (CO2 and H2O) to form micropores. The materials also obtained abundant N-containing surface functional groups (up to 7.84 atomic%) from pyrolysis of protein and chitin. Finally, the porous biochar showed excellent performance for VOCs adsorption with a promising uptake of 288 mg/g for toluene and a high adsorption rate of 0.189 min-1. Aplenty of mesopores distributed in the materials effectively improved the mass transfer behaviors, the adsorption rate got a noticeable improvement (from 0.118 min-1 to 0.189 min-1) benefited from mesopores. Reusable potentials of the hierarchical porous carbons were also satisfying. After four thermal regeneration cycles, the materials still occupied 84.8%-87.4% of the original adsorption capacities.
Collapse
Affiliation(s)
- Yuxuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
14
|
Zhang Y, Cheng X, Wang Z, Tahir MH, Wang Z, Wang X, Wang C. Full recycling of high-value resources from cabbage waste by multi-stage utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149951. [PMID: 34509845 DOI: 10.1016/j.scitotenv.2021.149951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Cabbage waste (CW) was recycled for generating some potential high-value products by a multi-stage treatment technology. A novel multi-stage utilization process was successfully proposed which consisted of low-temperature extraction, medium-temperature thermolysis, and high-temperature activation. Plant extracts that contain fatty acids, alcohol, furan, and esters were first extracted from raw cabbage waste by ethanol at 70 °C. Pyrolytic oil was obtained by cabbage waste pyrolysis at different medium temperature conditions. The produced carbon residue was further activated at high temperature for environmental purification such as VOCs removal. The performance of this process was characterized by N2 isothermal adsorption, Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG) and gas chromatography-mass spectrometry (GC-MS). Experimental results showed that the optimum temperatures for extraction, pyrolysis, and activation were 70 °C, 520 °C and 700 °C, respectively. Phenolic-rich pyrolysis solution with 50% phenolic contents could be obtained with the potential application of botanical pesticide. The produced biochar had a BET surface area of as high as 891.12 m2/g. The yields of biochar, pyrolytic liquid, and pyrolytic gas were 43.86%, 17.47%, 38.67%, respectively, and the process energy efficiency was over 42.7%. Applicability and feasibility of this process were also discussed in the aspects of energy quality balance, economy, and environment. The proposed multi-stage thermal-chemical process could be used as a full recycling method for biomass waste.
Collapse
Affiliation(s)
- Yiteng Zhang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China
| | - Xingxing Cheng
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China.
| | - Ziliang Wang
- Innovation Centre, BC Research Inc., 12920 Mitchell Rd, Richmond, BC V6V 1M8, Canada
| | - Mudassir Hussain Tahir
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China
| | - Zhiqiang Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China
| | - Xuetao Wang
- School of College of vehicle and Traffic Engineering, HeNan University of Science and technology, Luoyang 471003, HeNan, China
| | - Chao Wang
- Yankuang Technology Co., Ltd., Shandong Energy Group Co., Ltd., Jinan 250101, China
| |
Collapse
|
15
|
Yang F, Li W, Zhang L, Tu W, Wang X, Li L, Yu C, Gao Q, Yuan A, Pan J. Drastically boosting volatile acetone capture enabled by N-doping activated carbon: An interesting deep surface digging effect. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
A nanocomposite optosensing probe based on hierarchical porous carbon and graphene quantum dots incorporated in selective polymer for the detection of trace ofloxacin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Santhosh A, Dawn SS. Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1170-1181. [PMID: 34534114 DOI: 10.2166/wst.2021.303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food waste has been a complex component added to municipal solid waste, making it a major reason for the evolution of greenhouse gases, foul odour and a dwelling habitat for insects and microbes. Diversion of the mixed food waste (unsegregated) to useful materials (activated carbon) would have immense industrial significance. In this study, rice, vegetables, oil and spice (WCVR); mixed fruit peels including banana peel, pomegranate peel, orange peel and lemon peel (MFPW); plain rice (WCR) and mixed food waste (rice, dhal, vegetables, fruits, meat and bones) (MFW) were used. Food waste samples were heated at a temperature of 350 °C for 3 h in an incinerator and then activated with zinc chloride for 2 h in a muffle furnace maintained at 500-600 °C temperature. Zinc chloride activated carbon was characterized through X-ray diffraction, field emission scanning electron microscopy and fourier transform infrared spectroscopy. WCR carbon was the best-activated carbon, yielding nanomaterials with 2θ = 25.81, 31.76, 34.41 and 56.54, which was in accordance with the JCPDS card number. The MFW activated carbon reduced the biodiesel wash water pH from 10 to 6.5 making it suitable for recycling. Turbidity was reduced by 98.41%, chemical oxygen demand by 41.33%, oil and grease by 99.05% for MFW carbon.
Collapse
Affiliation(s)
- A Santhosh
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Chennai 600119, India E-mail:
| | - S S Dawn
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Chennai 600119, India E-mail: ; Center for Waste Management, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|