1
|
Qin L, Xiao Z, Ming A, Teng J, Zhu H, Qin J, Liang Z. Soil phosphorus cycling microbial functional genes of monoculture and mixed plantations of native tree species in subtropical China. Front Microbiol 2024; 15:1419645. [PMID: 39077738 PMCID: PMC11284607 DOI: 10.3389/fmicb.2024.1419645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Background Transforming coniferous plantation into broadleaved or mixed broadleaved-coniferous plantations is the tendency of forest management strategies in subtropical China. However, the effects of this conversion on soil phosphorus (P) cycling microbial functional genes are still unknown. Methods Soil samples were collected from 0-20, 20-40, and 40-60 cm (topsoil, middle layer, and subsoil, respectively) under coniferous Pinus massoniana (PM), broadleaved Erythrophleum fordii (EF), and their mixed (PM/EF) plantation in subtropical China. Used metagenomic sequencing to examine the alterations of relative abundances and molecular ecological network structure of soil P-cycling functional genes after the conversion of plantations. Results The composition of P-cycling genes in the topsoil of PM stand was significantly different from that of PM/EF and EF stands (p < 0.05), and total phosphorus (TP) was the main factor causing this difference. After transforming PM plantation into EF plantation, the relative abundances of P solubilization and mineralization genes significantly increased in the topsoil and middle layer with the decrease of soil TP content. The abundances of P-starvation response regulation genes also significantly increased in the subsoil (p < 0.05), which may have been influenced by soil organic carbon (SOC). The dominant genes in all soil layers under three plantations were phoR, glpP, gcd, ppk, and ppx. Transforming PM into EF plantation apparently increased gcd abundance in the topsoil (p < 0.05), with TP and NO3 --N being the main influencing factors. After transforming PM into PM/EF plantations, the molecular ecological network structure of P-cycling genes was more complex; moreover, the key genes in the network were modified with the transformation of PM plantation. Conclusion Transforming PM into EF plantation mainly improved the phosphate solubilizing potential of microorganisms at topsoil, while transforming PM into PM/EF plantation may have enhanced structural stability of microbial P-cycling genes react to environmental changes.
Collapse
Affiliation(s)
- Lin Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Zhirou Xiao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Angang Ming
- Experiment Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
- Guangxi Youyiguan Forest Ecosystem Research Station, Pingxiang, China
| | - Jinqian Teng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Hao Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Jiaqi Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Zeli Liang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zhu Y, Xu Y, Xu J, Meidl P, He Y. Contrasting response strategies of microbial functional traits to polycyclic aromatic hydrocarbons contamination under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131548. [PMID: 37141779 DOI: 10.1016/j.jhazmat.2023.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
PAHs (Polycyclic aromatic hydrocarbons) are widely distributed in soil ecosystems, but our knowledge regarding the impacts of PAHs effects on soil microbial functional traits is limited. In this study, we evaluated the response and regulating strategies of microbial functional traits that are associated with the typical C, N, P, S cycling processes in a pristine soil under aerobic and anaerobic conditions after the addition of PAHs. Results revealed that indigenous microorganisms had strong degradation potential and adaptability to PAHs especially under aerobic conditions, while anaerobic conditions favored the degradation of high molecular weight PAHs. PAHs exhibited contrasting effects on soil microbial functional traits under different aeration conditions. It would probably change microbial carbon source utilization preference, stimulate inorganic P solubilization and strengthen the functional interactions between soil microorganisms under aerobic conditions, while might cause the increase of H2S and CH4 emissions under anaerobic conditions. This research provides an effective theoretical support for the ecological risk assessment of soil PAHs pollution.
Collapse
Affiliation(s)
- Yanjie Zhu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China; College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zhang M, Shi C, Li X, Wang K, Qiu Z, Shi F. Changes in the structure and function of rhizosphere soil microbial communities induced by Amaranthus palmeri invasion. Front Microbiol 2023; 14:1114388. [PMID: 37056750 PMCID: PMC10089265 DOI: 10.3389/fmicb.2023.1114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionPlant invasion can profoundly alter ecosystem processes driven by microorganisms. The fundamental mechanisms linking microbial communities, functional genes, and edaphic characteristics in invaded ecosystems are, nevertheless, poorly understood.MethodsHere, soil microbial communities and functions were determined across 22 Amaranthus palmeri (A. palmeri) invaded patches by pairwise 22 native patches located in the Jing-Jin-Ji region of China using high-throughput amplicon sequencing and quantitative microbial element cycling technologies.ResultsAs a result, the composition and structure of rhizosphere soil bacterial communities differed significantly between invasive and native plants according to principal coordinate analysis. A. palmeri soils exhibited higher abundance of Bacteroidetes and Nitrospirae, and lower abundance of Actinobacteria than native soils. Additionally, compared to native rhizosphere soils, A. palmeri harbored a much more complex functional gene network with higher edge numbers, average degree, and average clustering coefficient, as well as lower network distance and diameter. Furthermore, the five keystone taxa identified in A. palmeri rhizosphere soils belonged to the orders of Longimicrobiales, Kineosporiales, Armatimonadales, Rhizobiales and Myxococcales, whereas Sphingomonadales and Gemmatimonadales predominated in the native rhizosphere soils. Moreover, random forest model revealed that keystone taxa were more important indicators of soil functional attributes than edaphic variables in both A. palmeri and native rhizosphere soils. For edaphic variables, only ammonium nitrogen was a significant predictor of soil functional potentials in A. palmeri invaded ecosystems. We also found keystone taxa in A. palmeri rhizosphere soils had strong and positive correlations with functional genes compared to native soils.DiscussionOur study highlighted the importance of keystone taxa as a driver of soil functioning in invaded ecosystem.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin, China
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Fuchen Shi,
| |
Collapse
|
4
|
Wang C, Liang Q, Liu J, Zhou R, Lang X, Xu S, Li X, Gong A, Mu Y, Fang H, Yang KQ. Impact of intercropping grass on the soil rhizosphere microbial community and soil ecosystem function in a walnut orchard. Front Microbiol 2023; 14:1137590. [PMID: 36998393 PMCID: PMC10046309 DOI: 10.3389/fmicb.2023.1137590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
The intercropping of grass in orchards has beneficial effects on soil properties and soil microbial communities and is an important soil management measure for improving orchard productivity and land-use efficiency. However, few studies have explored the effects of grass intercropping on rhizosphere microorganisms in walnut orchards. In this study, we explored the microbial communities of clear tillage (CT), walnut/ryegrass (Lolium perenne L.) (Lp), and walnut/hairy vetch (Vicia villosa Roth.) (Vv) intercropping system using MiSeq sequencing and metagenomic sequencing. The results revealed that the composition and structure of the soil bacterial community changed significantly with walnut/Vv intercropping compared to CT and walnut/Lp intercropping. Moreover, the walnut/hairy vetch intercropping system had the most complex connections between bacterial taxa. In addition, we found that the soil microorganisms of walnut/Vv intercropping had a higher potential for nitrogen cycling and carbohydrate metabolism, which may be related to the functions of Burkholderia, Rhodopseudomonas, Pseudomonas, Agrobacterium, Paraburkholderia, and Flavobacterium. Overall, this study provided a theoretical basis for understanding the microbial communities associated with grass intercropping in walnut orchards, providing better guidance for the management of walnut orchards.
Collapse
Affiliation(s)
- Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, Tai'an, Shandong, China
| | - Jianning Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Andi Gong
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, Tai'an, Shandong, China
- *Correspondence: Hongcheng Fang
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, Tai'an, Shandong, China
- Ke Qiang Yang
| |
Collapse
|
5
|
Wang T, Duan Y, Liu G, Shang X, Liu L, Zhang K, Li J, Zou Z, Zhu X, Fang W. Tea plantation intercropping green manure enhances soil functional microbial abundance and multifunctionality resistance to drying-rewetting cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151282. [PMID: 34757096 DOI: 10.1016/j.scitotenv.2021.151282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change leads to more serious drying-rewetting alternation disturbance, which furtherly affects soil ecosystem function and agriculture production. Intercropping green manure, as an ancient agricultural practice, can improve the physical, chemical, and biological fertility of soil in tea plantation. However, the effects of intercropping green manure on soil multifunctional resistance to drying-rewetting disturbance in tea plantation has not been reported. In this study, the effects of different green manure practices over four years (tea plant monoculture, tea plant and soybean intercropping, tea plant and soybean + milk vetch intercropping) on soil multifunctionality resistance to drying-rewetting cycles, and the pivotal influencing factors were investigated. We used quantitative PCR array and analysis of multiple enzyme activities to characterize the abundance of functional genes and ecosystem multifunctionality, respectively. Compared with tea plantation monoculture, tea plant intercropping soybean and soybean + milk vetch significantly increased multifunctionality resistance by 12.07% and 25.86%, respectively. Random forest analysis indicated that rather than the diversity, the abundance of functional genes was the major drive of multifunctionality resistance. The structure equation model further proved that tea plantation intercropping green manure could improve the abundance of C cycling related functional genes mediated by soil properties, and ultimately increased multifunctionality resistance to drying-rewetting disturbance. Therefore, tea plantation intercropping green manure is an effective approach to maintain the multifunctionality resistance, which is conducive to maintain the soil nutrient supply capacity and tea production under the disturbance of drying-rewetting alternation.
Collapse
Affiliation(s)
- Ting Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guodong Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lefeng Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinqiu Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Characteristics of the Soil Microbial Communities in Different Slope Positions along an Inverted Stone Slope in a Degraded Karst Tiankeng. BIOLOGY 2021; 10:biology10060474. [PMID: 34072056 PMCID: PMC8227116 DOI: 10.3390/biology10060474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Karst tiankeng is a special and magnificent surface negative terrain with unique scientific value. The underground forests developed on inverted stone slopes in tiankeng are important areas for biodiversity conservation. This research used Illumina high-throughput sequencing technology to determine the soil microbial communities at four sites (at the bottom of the slope (BS), in the middle of the slope (MS), in the upper part of the slope (US), and outside the tiankeng (OT)) along the inverted stone slopes. The microbial communities at different slope positions presented similar compositions but different abundances. The dominant phyla in the inverted stone slope were Proteobacteria, Actinobacteria and Acidobacteria. The microbial community diversity was greater at the US site. The microbial communities with more abundant functional genes involved in C/N cycles were located at the BS site. The distribution of the microbial community was highly correlated with the Total nitrogen and pH. Understanding the soil microbial communities on inverted stone slopes is important for monitoring the ecology of tiankeng and biodiversity value assessments. Abstract The underground forests developed on inverted stone slopes in degraded karst tiankengs are important areas for biodiversity conservation, but the microbial community profiles have not been sufficiently characterized. Thus, we investigated the soil microbial communities at four sites (at the bottom of the slope (BS), in the middle of the slope (MS), in the upper part of the slope (US) and outside the tiankeng (OT)) in the Shenxiantang tiankeng. The dominant phyla in the inverted stone slope were Proteobacteria, Actinobacteria, and Acidobacteria, and the relative abundance were different in different slope positions. The Shannon–Wiener diversity index of the microbial community was significantly greater for the US site than for the MS or BS sites. The metabolism functional pathways (including C/N cycle) were more abundant at the BS site. Total nitrogen and pH were the dominant factors in determining the distribution of the microbial community along an inverted stone slope. These results suggest that topographic heterogeneity can influence the variations in the soil microbial structure, diversity, and function in degraded karst tiankengs and emphasized the ecological value of inverted stone slopes within karst tiankengs.
Collapse
|