1
|
Mu D, Li P, De Baets B. Biogeochemical mechanisms and biomarkers of groundwater salinization in Jinghuiqu Irrigation District, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125631. [PMID: 40328118 DOI: 10.1016/j.jenvman.2025.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Groundwater salinization poses significant challenges to water resource management, agriculture, and ecosystem sustainability. However, the biogeochemical mechanisms and microbial responses underlying this process in irrigation districts are still poorly understood. This study integrated hydrochemical ratios (Cl--Cl-/Br-, Cl--NO3-/Cl-), stable isotopes (δ2H, δ18O, δ15N-NO3-, δ18O-NO3-), and the MixSIAR model to investigate the dominant factors contributing to salinization in the Jinghuiqu Irrigation District. The results showed that TDS concentrations in groundwater samples ranged from 688 to 5420 mg/L, with 82 % of the samples exceeding WHO drinking water standards. Groundwater salinization was predominantly driven by mineral dissolution and evaporation, compounded by agricultural and domestic inputs. 16S rRNA microbial sequencing identified Candidatus Omnitrophus from the phylum Verrucomicrobiota as a potential biomarker for saline groundwater. PICRUSt2 predictions revealed that the functional traits of microorganisms in saline groundwater tend to enhance adaptability, whereas those in fresh groundwater are more oriented toward growth and metabolism. Spearman correlation analysis showed strong correlations between carbon fixation and nitrification (r = 0.69) and thiosulfate oxidation (r = 0.60). Additionally, as groundwater salinization progressed, the abundance of nitrate- and sulfate-reducing bacteria increased, further impacting nitrogen, sulfur, and carbon cycles. This study deepens knowledge of the biogeochemical processes driving groundwater salinization in irrigation districts and provides new insights for research and management of groundwater salinization in these regions.
Collapse
Affiliation(s)
- Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
2
|
Pang Q, Zhao G, Wang D, Zhu X, Xie L, Zuo D, Wang L, Tian L, Peng F, Xu B, He F, Ding J, Chu W. Water periods impact the structure and metabolic potential of the nitrogen-cycling microbial communities in rivers of arid and semi-arid regions. WATER RESEARCH 2024; 267:122472. [PMID: 39305525 DOI: 10.1016/j.watres.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Guohua Zhao
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Dan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Dezhi Zuo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China.
| | - Linfeng Tian
- Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750000, PR China; Environmental Monitoring Station of Shizuishan, Shizuishan 753000, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jing Ding
- Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750000, PR China
| | - Wenhai Chu
- College of Environmental Science and Engineering, Tongji University, Shanghai 20082, PR China.
| |
Collapse
|
3
|
Pang Q, Wang D, Jiang Z, Abdalla M, Xie L, Zhu X, Peng F, Smith P, Wang L, Miao L, Hou J, Yu P, He F, Xu B. Intensified river salinization alters nitrogen-cycling microbial communities in arid and semi-arid regions of China. ECO-ENVIRONMENT & HEALTH 2024; 3:271-280. [PMID: 39252856 PMCID: PMC11381997 DOI: 10.1016/j.eehl.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 09/11/2024]
Abstract
Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources. However, a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking. A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics. To further analyze the impact of salinity on nitrogen metabolism processes, we evaluated rivers with long-term salinity gradients based on in situ observations. The genes and enzymes that were inhibited generally by salinity, especially those involved in nitrogen fixation and nitrification, showed low abundances in three salinity levels. The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion, especially for denitrification genes/enzymes that were enriched under medium salinity. Denitrifying bacteria exhibited various relationships with salinity, while dissimilatory nitrate reduction to ammonium bacterium (such as Hydrogenophaga and Curvibacter carrying nirB) were more inhibited by salinity, indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration. Most genera exhibited symbiotic and mutual relationships, and the highest proportion of significant positive correlations of abundant genera was found under medium salinity. This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules, and our results are useful for improving the availability of river water resources in arid and semi-arid regions.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Mohamed Abdalla
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, UK
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Pete Smith
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, UK
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lingzhan Miao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Yu
- Shandong Academy of Environmental Sciences Co., Ltd, Jinan 250100, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
4
|
Zhang Y, Wang H, Zhang X, Feng Z, Liu J, Wang Y, Shang S, Xu J, Liu T, Liu L. Effects of salt stress on the rhizosphere soil microbial communities of Suaeda salsa (L.) Pall. in the Yellow River Delta. Ecol Evol 2024; 14:e70315. [PMID: 39318533 PMCID: PMC11420101 DOI: 10.1002/ece3.70315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Studies have shown that the microbiome of saline-tolerant plants plays a significant role in promoting salt stress in non-saline-tolerant plants, but the microorganisms are still unclear. In the present study, the microbial diversity changes in Suaeda salsa (L.) Pall. in the Yellow River Delta region were investigated. In the bacterial community, the dominant bacteria in the rhizosphere soil of the low-saline soil (YDL), moderate-saline soil (YDM), and high-saline soil (YDH) groups were Proteobacteria, Chloroflexi, Bacteroidota, and Actinobacteriota (at the phylum level), while Ascomycota and Basidiomycota were the dominant fungi in the fungal community. At the family level, with the increase of salinity, the relative abundance of Rhodobacteraceae (bacterial community), Thermoascaceae, and Phaffomycetaceae (fungal community) gradually increased; and to the best of our knowledge, there are no reports on the relationship between Thermoascaceae and Phaffomycetaceae families with salt stress. At the genus level, Salinimicrobium (bacterial community) was the dominant bacterium in the rhizosphere soil of the YDL, YDM, and YDH groups, while with the increase of salinity, the relative abundance of Byssochlamys and Wickerhamomyces (fungal community) gradually increased, and to the best of our knowledge there are no reports on the relationship between Byssochlamys and salt stress. Salinity mainly affected the bacterial community abundance, but it had little effect on the fungi community abundance. The bacterial community of the YDH group was dominated by bacteria of unknown origin (52.76%), while bacteria of unknown origin accounted for 26.46% and 20.78% of the bacterial communities in the YDM and YDL groups, respectively. The fungi community of the YDH group was dominated by YDL group fungi (relative abundance of 44.44%), followed by YDM group fungi (29.42%) and fungi of unknown origin (26.14%). These results provide a better understanding of the rhizosphere microbial diversity of saline-alkali-tolerant plants, laying a foundation for developing a saline-alkali-tolerant plant microbiome.
Collapse
Affiliation(s)
- Yumiao Zhang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Huan Wang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Xinhan Zhang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Ziqi Feng
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Junhua Liu
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Yan Wang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Shuai Shang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Jikun Xu
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Tao Liu
- Binzhou Public Utilities Service CenterBinzhouChina
| | - Longxiang Liu
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
- Shandong Qianfa Agricultural Technology Co., Ltd.BinzhouChina
| |
Collapse
|
5
|
Hu W, Zheng N, Zhang Y, Li S, Bartlam M, Wang Y. Metagenomics analysis reveals effects of salinity fluctuation on diversity and ecological functions of high and low nucleic acid content bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173186. [PMID: 38744390 DOI: 10.1016/j.scitotenv.2024.173186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Salinity is a critical environmental factor in marine ecosystems and has complex and wide-ranging biological effects. However, the effects of changing salinity on diversity and ecological functions of high nucleic acid (HNA) and low nucleic acid (LNA) bacteria are not well understood. In this study, we used 16S rRNA sequencing and metagenomic sequencing analysis to reveal the response of HNA and LNA bacterial communities and their ecological functions to salinity, which was decreased from 26 ‰ to 16 ‰. The results showed that salinity changes had significant effects on the community composition of HNA and LNA bacteria. Among LNA bacteria, 14 classes showed a significant correlation between relative abundance and salinity. Salinity changes can lead to the transfer of some bacteria from HNA bacteria to LNA bacteria. In the network topology relationship, the complexity of the network between HNA and LNA bacterial communities gradually decreased with decreased salinity. The abundance of some carbon and nitrogen cycling genes in HNA and LNA bacteria varied with salinity. Overall, this study demonstrates the effects of salinity on diversity and ecological functions and suggests the importance of salinity in regulating HNA and LNA bacterial communities and functions.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Shuhan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Du Y, Ren Z, Zhong Y, Zhang J, Song Q. Spatiotemporal pattern of coastal water pollution and its driving factors: implications for improving water environment along Hainan Island, China. Front Microbiol 2024; 15:1383882. [PMID: 38633700 PMCID: PMC11021667 DOI: 10.3389/fmicb.2024.1383882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
In the context of human activities and climate change, the gradual degradation of coastal water quality seriously threatens the balance of coastal and marine ecosystems. However, the spatiotemporal patterns of coastal water quality and its driving factors were still not well understood. Based on 31 water quality parameters from 2015 to 2020, a new approach of optimizing water quality index (WQI) model was proposed to quantitatively assess the spatial and temporal water quality along tropical Hainan Island, China. In addition, pollution sources were further identified by factor analysis and the effects of pollution source on water quality was finally quantitatively in our study. The results showed that the average water quality was moderate. Water quality at 86.36% of the monitoring stations was good while 13.53% of the monitoring stations has bad or very bad water quality. Besides, the coastal water quality had spatial and seasonal variation, along Hainan Island, China. The water quality at "bad" level was mainly appeared in the coastal waters along large cities (Haikou and Sanya) and some aquaculture regions. Seasonally, the average water quality in March, October and November was worse than in other months. Factor analysis revealed that water quality in this region was mostly affected by urbanization, planting and breeding factor, industrial factor, and they played the different role in different coastal zones. Waters at 10.23% of monitoring stations were at the greatest risk of deterioration due to severe pressure from environmental factors. Our study has significant important references for improving water quality and managing coastal water environment.
Collapse
Affiliation(s)
- Yunxia Du
- School of Geography and Environmental Sciences, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Island Land Surface Processes and Environmental Changes of Hainan Province, Haikou, China
| | - Zhibin Ren
- Key Laboratory of Tropical Island Land Surface Processes and Environmental Changes of Hainan Province, Haikou, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yingping Zhong
- School of Geography and Environmental Sciences, Hainan Normal University, Haikou, China
| | - Jinping Zhang
- School of Geography and Environmental Sciences, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Island Land Surface Processes and Environmental Changes of Hainan Province, Haikou, China
| | - Qin Song
- School of Geography and Environmental Sciences, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Island Land Surface Processes and Environmental Changes of Hainan Province, Haikou, China
| |
Collapse
|
7
|
Gao P, Yan X, Xia X, Liu D, Guo S, Ma R, Lou Y, Yang Z, Wang H, Yang Q, Pan H, Zhuge Y. Effects of the three amendments on NH 3 volatilization, N 2O emissions, and nitrification at four salinity levels: An indoor experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120399. [PMID: 38387357 DOI: 10.1016/j.jenvman.2024.120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
The marked salinity and alkaline pH of coastal saline soil profoundly impact the nitrogen conversion process, leading to a significantly reduced nitrogen utilization efficiency and substantial gaseous nitrogen loss. The application of soil amendments (e.g. biochar, manure, and gypsum) was proved to be effective for the remediation of saline soils. However, the effects of the three amendments on soil nitrogen transformation in soils with various salinity levels, especially on NH3 volatilization and N2O emission, remain elusive. Here, we reported the effects of biochar, manure, and gypsum on NH3 volatilization and N2O emission under four natural salinity gradients in the Yellow River Delta. Also, high-throughput sequencing and qPCR analysis were performed to characterize the response of nitrification (amoA) and denitrification (nirS, nirK, and nosZ) functional genes to the three amendments. The results showed that the three amendments had little effect on NH3 volatilization in low- and moderate-salinity soils, while biochar stimulated NH3 volatilization in high-salinity soils and reduced NH3 volatilization in severe-salinity soils. Spearman correlation analysis demonstrated that AOA was significantly and positively correlated with the NO3--N content (r = 0.137, P < 0.05) and N2O emissions (r = 0.174, P < 0.01), which indicated that AOA dominated N2O emissions from nitrification in saline soils. Structural equation modeling indicated that biochar, manure, and gypsum affected N2O emission by influencing soil pH, conductivity, mineral nitrogen content, and functional genes (AOA-amoA and nosZ). Two-way ANOVA further showed that salinity and amendments (biochar, manure, and gypsum) had significant effects on N2O emissions. In summary, this study provides valuable insights to better understand the effects of gaseous N changes in saline soils, thereby improving the accuracy and validity of future GHG emission predictions and modeling.
Collapse
Affiliation(s)
- Panpan Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Xianghui Yan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Xuejing Xia
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Dan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Songnian Guo
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Ronghui Ma
- Agricultural Technology Promotion Center of Shandong Province, Jinan, 252199, China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Zhongchen Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
8
|
Li H, Song A, Qiu L, Liang S, Chi Z. Deep groundwater irrigation altered microbial community and increased anammox and methane oxidation in paddy wetlands of Sanjiang Plain, China. Front Microbiol 2024; 15:1354279. [PMID: 38450168 PMCID: PMC10915080 DOI: 10.3389/fmicb.2024.1354279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The over-utilizing of nitrogen fertilizers in paddy wetlands potentially threatens to the surrounding waterbody, and a deep understanding of the community and function of microorganisms is crucial for paddy non-point source pollution control. In this study, top soil samples (0-15 cm) of paddy wetlands under groundwater's irrigation at different depths (H1: 6.8 m, H2: 13.7 m, H3: 14.8 m, H4: 15.6 m, H5: 17.0 m, and H6: 17.8 m) were collected to investigate microbial community and function differences and their interrelation with soil properties. Results suggested some soil factor differences for groundwater's irrigation at different depths. Deep-groundwater's irrigation (H2-H6) was beneficial to the accumulation of various electron acceptors. Nitrifying-bacteria Ellin6067 had high abundance under deep groundwater irrigation, which was consistent with its diverse metabolic capacity. Meanwhile, denitrifying bacteria had diverse distribution patterns. Iron-reducing bacteria Geobacter was abundant in H1, and Anaeromyxobacter was abundant under deep groundwater irrigation; both species could participate in Fe-anammox. Furthermore, Geobacter could perform dissimilatory nitrate reduction to ammonia using divalent iron and provide substrate supply for anammox. Intrasporangium and norank_f_Gemmatimonadacea had good chromium- and vanadium-reducting potentials and could promote the occurrence of anammox. Low abundances of methanotrophs Methylocystis and norank_f_Methyloligellaceae were associated with the relatively anoxic environment of paddy wetlands, and the presence of aerobic methane oxidation was favorable for in-situ methane abatement. Moisture, pH, and TP had crucial effects on microbial community under phylum- and genus-levels. Microorganisms under shallow groundwater irrigation were highly sensitive to environmental changes, and Fe-anammox, nitrification, and methane oxidation were favorable under deep groundwater irrigation. This study highlights the importance of comprehensively revealing the microbial community and function of paddy wetlands under groundwater's irrigation and reveals the underlying function of indigenous microorganisms in agricultural non-point pollution control and greenhouse gas abatement.
Collapse
Affiliation(s)
- Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Aiwen Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Qiu
- Second Hospital of Jilin University, Changchun, China
| | - Shen Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhang X, Lin L, Li H, Liu S, Tang S, Yuan B, Hong H, Su M, Liu J, Yan C, Lu H. Iron plaque formation and its influences on the properties of polyethylene plastic surfaces in coastal wetlands: Abiotic factors and bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132585. [PMID: 37741204 DOI: 10.1016/j.jhazmat.2023.132585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Iron (Fe) plaques in coastal wetlands are widely recognized because of their strong adsorption affinity for natural particles, but their interaction behaviors and mechanisms with plastics remain unknown. Through laboratory incubation experiments, paired with multiple characterization methods and microbial analysis, this work focused on the characteristics of Fe plaques on low-density polyethylene plastic surfaces and their relationship with environmental factors in coastal wetlands (Mangrove and Spartina alterniflora soil). The results showed that iron plaques increased the adhesive force of the plastic surface from 65.25 to 300 nN and promoted the oxidation of the plastic surface. Fe plaque formation was stimulated by salinity, anaerobic conditions, natural organic matter, and a weak alkaline scenario (pH 8.0-8.3). The Fe content showed a stable positive correlation with heavy metals loading (i.e., As, Mn, Co, Cr, Pb, and Zn). Furthermore, we revealed that Fe plaque was positively regulated by Nitrospirae through 16S rRNA high-throughput sequencing analysis. Meanwhile, Verrucomicrobia and Kiritimatiellaeota. may act as depressants by consuming salt. This work illustrated that iron plaques could enhance the role of plastics in contaminant migration by altering their adsorption performance, providing new insights into plastic interface behavior and potential ecological effects in coastal wetlands.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shanle Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
10
|
Li CY, He R, Tian CY, Song J. Utilization of halophytes in saline agriculture and restoration of contaminated salinized soils from genes to ecosystem: Suaeda salsa as an example. MARINE POLLUTION BULLETIN 2023; 197:115728. [PMID: 37918144 DOI: 10.1016/j.marpolbul.2023.115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Halophytes can be used to screen genes for breeding salt-tolerant crops and are of great value in the restoration of salinized or contaminated soils. However, the potential of halophytes in improving saline soils remains limited. In this paper, based on the latest research progress, we use Suaeda salsa L. as an example to evaluate the value of halophytes in developing saline agriculture including: 1) some defined salt-resistance genes and high-affinity nitrate transporter genes in the species for breeding salt-tolerance and nitrogen efficiency crops; 2) the value of S. salsa and microorganisms from S. salsa in remediation of heavy metal contaminated and organic polluted saline soils; and 3) the capacity to remove salts from soils and the application of the species. In conclusion, S. salsa has high value as a candidate to explore the theoretical base and practical application for utilizing halophytes to improve salinized soils from genes to ecosystem.
Collapse
Affiliation(s)
- Chen Yang Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Rui He
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chang Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
11
|
Song W, Li Y. Tidal flat microbial communities between the Huaihe estuary and Yangtze River estuary. ENVIRONMENTAL RESEARCH 2023; 238:117141. [PMID: 37717808 DOI: 10.1016/j.envres.2023.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Tidal flats have important ecological functions and offer great economic value. Using field sampling, numerical simulation, and high-throughput sequencing, the ecological state of typical tidal flats along the eastern coast of China was investigated. The findings demonstrated that the area may be separated into subregions with notable differences in the features of microbial communities due to the variations in water quality and total pollutant discharge of seagoing rivers. With a ratio of 62%, the development of the microbial community revealed that homogenous selection predominated. In general, the formation of microbial communities follows deterministic processes, especially those of environmental selection. The wetland microbial communities are impacted by pollutants discharged into the sea from the Huaihe River and the Yangtze River. The Yangtze River's nitrogen pollutants affected the wetland zone, and denitrification dominated. The study established ecological patterns between the river and the sea and we offer suggestions for managing watersheds and safeguarding the ecology of coastal tidal flats.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
12
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Zhai H, Niu L. Temporal and Spatial Variation Characteristics and Influencing Factors of Bacterial Community in Urban Landscape Lakes. MICROBIAL ECOLOGY 2023; 86:2424-2435. [PMID: 37272971 DOI: 10.1007/s00248-023-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Urban landscape lakes are closely related to human activity, but there are limited studies on their bacterial community characteristics and risks to human health. In this study, four different types of urban landscape lakes in Xi'an were selected, and the bacterial community structures in different seasons were analyzed by Illumina Nova high-throughput sequencing technology. Seasonal variations in bacterial communities were analyzed by linear discriminant analysis, STAMP difference analysis, and nonmetric multidimensional scaling. Redundancy analysis was used to investigate the influencing factors. Furthermore, the metabolic functions of bacterial communities were predicted by Tax4Fun. There were clear seasonal differences in the α-diversity of bacteria, with bacterial diversity being higher in winter than in summer in the four urban landscape lakes, and the diversity of different water sources was different; the distributions of Proteobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia had significant seasonal differences; and the dominant bacteria at the genus level had obvious temporal and spatial differences. Furthermore, a variety of environmental factors had an impact on bacterial communities, and temperature, DO, and nitrogen were the primary factors affecting the seasonal variation in bacteria. There are also significant seasonal differences in the metabolic functions of bacterial communities. These results are helpful for understanding the current status of bacteria in the aquatic environments of such urban landscape lakes.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Hongqin Zhai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Li Niu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
13
|
Zhou Y, Lian Y, Liu T, Jin X, Wang Z, Liu X, Zhou M, Jing D, Yin W, Feng J, Wang H, Zhang D. Impacts of high-quality coal mine drainage recycling for replenishment of aquatic ecosystems in arid regions of China: Bacterial community responses. ENVIRONMENTAL RESEARCH 2023; 223:115083. [PMID: 36529333 DOI: 10.1016/j.envres.2022.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Coal mine water is usually recycled as supplementary water for aquatic ecosystems in arid and semiarid mining regions of China. To ensure ecosystem health, the coal mine water is rigorously treated using several processes, including reverse osmosis, to meet surface water quality standards. However, the potential environmental impacts of this management pattern on the ecological function of receiving water bodies are unclear. In this study, we built several microcosm water ecosystems to simulate the receiving water bodies. High-quality treated coal mine drainage was mixed into the model water bodies at different concentrations, and the sediment bacterial community response and functional changes were systematically investigated. The results showed that the high-quality coal mine drainage could still shape bacterial taxonomic diversity, community composition and structure, with a concentration threshold of approximately 50%. Moreover, both the Mantel test and the structural equation model indicated that the salinity fluctuation caused by the receiving of coal mine drainage was the primary factor shaping the bacterial communities. 10 core taxa in the molecular ecological network influenced by coal mine drainage were identified, with the most critical taxa being patescibacteria and g_Geothermobacter. Furthermore, the pathway of carbohydrate metabolism as well as signaling molecules and interactions was up-regulated, whereas amino acid metabolism showed the opposite trend. All results suggested that the complex physical-chemical and biochemical processes in water ecosystems may be affected by the coal mine drainage. The bacterial community response and underlying functional changes may accelerate internal nutrient cycling, which may have a potential impact on algal bloom outbreaks.
Collapse
Affiliation(s)
- Yaqian Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Ying Lian
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tengxiang Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xian Jin
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zhigang Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xin Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Mengling Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Dan Jing
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Weiwen Yin
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jiaying Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China.
| | - Daxin Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China; School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
14
|
Zhou L, Zhao B, Zhuang WQ. Double-edged sword effects of dissimilatory nitrate reduction to ammonium (DNRA) bacteria on anammox bacteria performance in an MBR reactor. WATER RESEARCH 2023; 233:119754. [PMID: 36842329 DOI: 10.1016/j.watres.2023.119754] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) bacteria imposing double-edged sword effects on anammox bacteria were investigated in an anammox-membrane bioreactor (MBR) experiencing an induced crash-recovery event. During the experiment, the anammox-MBR was loaded with NH4+-N:NO2--N ratios (RatioNH4+-N: NO2--N) of 1.20-1.60. Initially, the anammox-MBR removed over 95% of 100 mg/L NH4+-N and 132 mg/L NO2--N (RatioNH4+-N: NO2--N = 0.76, the well accepted stoichiometric RatioNH4+-N: NO2--N for anammox) in the influent (Stage 0). Then, we induced a system crash-recovery event via nitrite shock loadings to better understand responses from different guilds of bacteria in anammox-MBR, loaded with 1.60 RatioNH4+-N: NO2--N with 100 mg/L NO2--N in the influent (Stage 1). Interestingly, the nitrogen removal by anammox bacteria was maintained for about 20 days before starting to decrease significantly. In Stage 2, we further increased influent nitrite concentration to 120 mg/L (1.33 RatioNH4+-N: NO2--N) to simulate a high nitrite toxicity scenario for a short period of time. As expected, nitrogen removal efficiency dropped to only 16.8%. After the induced system crash, anammox-MBR performance recovered steadily to 93.2% nitrogen removal with a 1.25 RatioNH4+-N:NO2--N and a low nitrite influent concentration of 80 mg/L NO2--N. Metagenomics analysis revealed that a probable causality of the decreasing nitrogen removal efficiency in Stage 1 was the overgrowth of DNRA-capable bacteria. The results showed that the members within the Ignavibacteriales order (21.7%) out competed anammox bacteria (17.0%) in the anammox-MBR with elevated nitrite concentrations in the effluent. High NO2--N loading (120 mg N/L) further caused the predominant Candidatus Kuenenia spp. were replaced by Candidatus Brocadia spp. Therefore, it was evident that DNRA bacteria posed negative effects on anammox with 1.60 RatioNH4+-N: NO2--N. Also, when 120 mg/L NO2--N fed to anammox-MBR (RatioNH4+-N: NO2--N = 1.33), canonical denitrification became the primary nitrogen sink with both DNRA and anammox activities decreased. They probably fed on lysed microbial cells of anammox and DNRA. In Stage 3, a low RatioNH4+-N: NO2--N (1.25) with 80 mg/L NO2--N was used to rescue the system, which effectively promoted DNRA-capable bacteria growth. Although anammox bacteria's abundance was only 7.7% during this stage, they could be responsible for about 90% of the total nitrogen removal during this stage.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
15
|
Hua W, Hu W, Chen Q, Fan C, Jiang S, Zhao M, Wang Z, Zheng X, Wu S, Zeng Q, Zhong C. Identification of microbial consortia for sustainable disposal of constructed wetland reed litter wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58019-58029. [PMID: 36973628 DOI: 10.1007/s11356-023-26649-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Reed is a typical emerged plant in constructed wetlands (CWs). Its litters were used as raw materials for preparing Fe-C ceramic-filler (Fe-C-CF). The physical and chemical properties of Fe-C-CF were studied under different conditions, including the mass ration of Fe to carbon (Fe/C ratio), sintering temperature, and time, to determine the optimum preparing conditions. Meanwhile, the denitrification performance and CO2 emission flux of the surface flow constructed wetland (SFCW) systems were investigated when using Fe-C-CF as the matrix. The optimum preparing conditions for Fe-C-CF were Fe/C ratio of 1:1, sintering temperature and time of 500 °C and 20 min, respectively. The SFCW system with Fe-C-CF obtained a higher total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH3-N) removal efficiencies than the control SFCW system without Fe-C-CF. Compared with the heterotrophic denitrification process, the SFCW system with Fe-C-CF decreased CO2 emission by 67.9 g m-2 per year. The results of microbial community analysis indicated that addition of Fe-C-CF increased the diversity and abundance of microbial communities in the SFCW systems. The dominant genus of the SFCW system with Fe-C-CF was Bacillus, while Uliginosibacterium was the dominant genus in the system without the filler.
Collapse
Affiliation(s)
- Wanting Hua
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Wenqian Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Qi Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Chunzhen Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Zhiquan Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China.
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China.
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chunjie Zhong
- Wenzhou Drainage Co., Ltd, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
16
|
Yu S, Lv J, Jiang L, Geng P, Cao D, Wang Y. Changes of Soil Dissolved Organic Matter and Its Relationship with Microbial Community along the Hailuogou Glacier Forefield Chronosequence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4027-4038. [PMID: 36811997 DOI: 10.1021/acs.est.2c08855] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glacier-retreated areas are ideal areas to study soil biogeochemical processes during vegetation succession, because of the limited effect of other environmental and climatic factors. In this study, the changes of soil dissolved organic matter (DOM) and its relationship with microbial communities along the Hailuogou Glacier forefield chronosequence were investigated. Both microbial diversity and DOM molecular chemodiversity recovered rapidly at the initial stage, indicating the pioneering role of microorganisms in soil formation and development. The chemical stability of soil organic matter enhanced with vegetation succession due to the retaining of compounds with high oxidation state and aromaticity. The molecular composition of DOM affected microbial communities, while microorganisms tended to utilize labile components to form refractory components. This complex relationship network between microorganisms and DOM components played an important role in the development of soil organic matter as well as the formation of stable soil carbon pool in glacier-retreated areas.
Collapse
Affiliation(s)
- Shiyang Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyu Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zhao J, Chakrabarti S, Chambers R, Weisenhorn P, Travieso R, Stumpf S, Standen E, Briceno H, Troxler T, Gaiser E, Kominoski J, Dhillon B, Martens-Habbena W. Year-around survey and manipulation experiments reveal differential sensitivities of soil prokaryotic and fungal communities to saltwater intrusion in Florida Everglades wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159865. [PMID: 36461566 DOI: 10.1016/j.scitotenv.2022.159865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Global sea-level rise is transforming coastal ecosystems, especially freshwater wetlands, in part due to increased episodic or chronic saltwater exposure, leading to shifts in biogeochemistry, plant- and microbial communities, as well as ecological services. Yet, it is still difficult to predict how soil microbial communities respond to the saltwater exposure because of poorly understood microbial sensitivity within complex wetland soil microbial communities, as well as the high spatial and temporal heterogeneity of wetland soils and saltwater exposure. To address this, we first conducted a two-year survey of microbial community structure and bottom water chemistry in submerged surface soils from 14 wetland sites across the Florida Everglades. We identified ecosystem-specific microbial biomarker taxa primarily associated with variation in salinity. Bacterial, archaeal and fungal community composition differed between freshwater, mangrove, and marine seagrass meadow sites, irrespective of soil type or season. Especially, methanogens, putative denitrifying methanotrophs and sulfate reducers shifted in relative abundance and/or composition between wetland types. Methanogens and putative denitrifying methanotrophs declined in relative abundance from freshwater to marine wetlands, whereas sulfate reducers showed the opposite trend. A four-year experimental simulation of saltwater intrusion in a pristine freshwater site and a previously saltwater-impacted site corroborated the highest sensitivity and relative increase of sulfate reducers, as well as taxon-specific sensitivity of methanogens, in response to continuously pulsing of saltwater treatment. Collectively, these results suggest that besides increased salinity, saltwater-mediated increased sulfate availability leads to displacement of methanogens by sulfate reducers even at low or temporal salt exposure. These changes of microbial composition could affect organic matter degradation pathways in coastal freshwater wetlands exposed to sea-level rise, with potential consequences, such as loss of stored soil organic carbon.
Collapse
Affiliation(s)
- Jun Zhao
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA
| | - Seemanti Chakrabarti
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA
| | - Randolph Chambers
- College of William and Mary, W.M. Keck Environmental Field Laboratory, P.O. Box 8795, Williamsburg, VA, USA
| | | | - Rafael Travieso
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Sandro Stumpf
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Emily Standen
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Henry Briceno
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - Tiffany Troxler
- Department of Earth and Environment and Sea Level Solutions Center in the Institute of Environment, Florida International University, Miami, FL, USA
| | - Evelyn Gaiser
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - John Kominoski
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - Braham Dhillon
- Fort Lauderdale Research and Education Center and Department of Plant Pathology, University of Florida, Davie, FL, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA.
| |
Collapse
|
18
|
Ji F, Sun Y, Yang Q. Early warning of red tides using bacterial and eukaryotic communities in nearshore waters. ENVIRONMENTAL RESEARCH 2023; 216:114711. [PMID: 36334824 DOI: 10.1016/j.envres.2022.114711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic discharge activities have increased nutrient pollution in coastal areas, leading to algal blooms and microbial community changes. Particularly, microbial communities could easily be affected with variation in nutrient pollution, and thus offered a promising strategy to predict early red tides warning via microbial community-levels variation and their keystone taxa hysteretic responses to nutrient pollution. Herein high-throughput sequencing technology from 52 samples were used to explore the variation of microbial communities and find the significant tipping points with aggravating nutrient conditions in Xiaoping Island coastal area. Results indicated that bacterial and microeukaryote communities were generally spatial and seasonal heterogeneity and were influenced by the different nutrient conditions. Procrustes test results showed that the comprehensive index of organics polluting (OPI), total nitrogen (TN), inorganic nitrogen (DIN), and total phosphorus (TP) were significantly correlated with the composition of bacteria and microeukaryotes. A SEGMENTED analysis revealed that the threshold of TN, DIN, and NH4-N for bacterial community were 0.23 ± 0.091 mg/L, 0.21 ± 0.084 mg/L, 0.09 ± 0.057 mg/L, respectively. Tipping points for TN, DIN, and NH4-N agreed with the concentration during Ceratium tripos and Skeletonema costatum blooms. Co-occurrence network results found that Planktomarina, Acinetobacter, and Verrucomicrobiaceae were keystone and OPI-discriminatory taxa. The abundant changes of Planktomarina at station A1 were significantly correlated with the development of C. tripos blooms (r = 0.55, p < 0.05), and also significantly correlated with TN, DIN, and NO3-N (r≥|0.55|, p < 0.05). The abundant changes of Acinetobacter and Verrucomicrobiaceae at station C1 were significantly correlated with the development of C. tripos blooms (r ≥ 0.77, p < 0.05), and also significantly correlated with PO4-P (r ≥ 0.64, p < 0.05). The dynamic abundance of keystone taxa showed that the trend of rapid changes could be monitored 1.5 months before the occurrence of red tide. Therefore, this study provides an assessment method for early warning of red tide occurrence and factors that trigger red tide.
Collapse
Affiliation(s)
- Fengyun Ji
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China; Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| | - Qing Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| |
Collapse
|
19
|
Yun Y, Su T, Gui Z, Tian X, Chen Y, Cao Y, Yang S, Xie J, Anwar N, Li M, Li G, Ma T. Stress-responses of microbes in oil reservoir under high tetracycline exposure and their environmental risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120355. [PMID: 36243187 DOI: 10.1016/j.envpol.2022.120355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
As the groundwater ecosystem is connected with surface, antibiotics and antibiotic resistance genes (ARGs) in aquatic environments will gradually infiltrate into the deep environment, posing a potential threat to groundwater ecosystem. However, knowledge on the environmental risk of antibiotics and ARGs in groundwater ecosystem and their ecological process still remains unexplored. In this study, lab-scale oil reservoirs under high tetracycline stress were performed to evaluate the dynamics of microbial communities, ARGs and potential functions by using 16S rRNA gene sequencing and metagenomics analysis. Although the presence of antibiotics remarkably reduced the microbial abundance and diversity in a short term, but remain stable or even increased after a long-term incubation. Antibiotic stress caused a greater diversity and abundance of ARGs, and higher numbers of ARGs-related species with the capacity to transfer ARGs to other microbes through horizontal gene transfer. Thus, a much more frequent associations of microbial community at both node- and network-level and a selective pressure on enrichment of antibiotic resistant bacteria related to "anaerobic n-alkane degradation" and "methylotrophic methanogenesis" were observed. It is important to emphasize that high antibiotic stress could also prevent some microbes related to "Sulfate reduction", "Fe(II) oxidation", "Nitrate reduction", and "Xylene and Toluene degradation". This study provides an insight into the long-term stress-responses of microbial communities and functions in oil reservoir under tetracycline exposure, which may help to elucidate the effect of antibiotic stress on biogeochemical cycling with microbial involvement in groundwater ecosystem.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunke Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shicheng Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Nusratgul Anwar
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
Li H, Liang S, Chi Z, Wu H, Yan B. Unveiling microbial community and function involved in anammox in paddy vadose under groundwater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157876. [PMID: 35940267 DOI: 10.1016/j.scitotenv.2022.157876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The extensive application of nitrogen fertilizer in intensive irrigation areas poses a potential threat to groundwater. Given that the vadose zone acts as a buffer zone for the underground entry of surface pollutants, an in-depth understanding of its microbial community structure and function was crucial for controlling groundwater nitrogen pollution. In this study, soil samples from paddy vadose under groundwater irrigation with different depths (G1: 6.8 m, G2: 13.7 m, G3: 15.6 m, and G4: 17.8 m) were collected to unravel the differences in microbial community structure and function at different vadose depths (0-250 cm), as well as their relationship with soil properties. Results showed some differences among soil physicochemical factors under groundwater irrigation with different depths and that some electron acceptors were more abundant than others under deep groundwater irrigation (G2-G4). Remarkable differences in microbial communities under shallow- and deep-groundwater irrigation were found. The high abundances of anammox bacteria Candidatus_Brocadia in G2 and G3 indicated that deep groundwater irrigation was beneficial to its enrichment. Iron-reducing bacteria Anaeromyxobacter and sulfate-reducing bacteria Desulfovibrio were widely distributed in vadose zone and possessed the potential for anammox coupled with Fe(III)/sulfate reduction. Norank_f_Gemmatimonadaceae had nitrate- and vanadium-reducing abilities and could participate in anammox in vadose zone. Dissimilatory nitrate reduction to ammonia (DNRA) bacteria Geobacter facilitated Fe(II)-driven DNRA and thus provided electron donors and acceptors to anammox bacteria. Soil nutrients and electron donors/acceptors played important roles in shaping microbial community structure at phylum and genus levels. Microorganisms in vadose zone under groundwater irrigation showed good material/energy metabolism levels. Deep groundwater irrigation was conducive to the occurrence of anammox coupled with multi-electron acceptors. Our findings highlight the importance of understanding the structure and function of microbial communities in paddy vadose under groundwater irrigation and reveal the potential role of indigenous microorganisms in in-situ nitrogen removal.
Collapse
Affiliation(s)
- Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China.
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| |
Collapse
|
21
|
Liang X, Wang X, Zhang N, Li B. Biogeographical Patterns and Assembly of Bacterial Communities in Saline Soils of Northeast China. Microorganisms 2022; 10:microorganisms10091787. [PMID: 36144389 PMCID: PMC9505542 DOI: 10.3390/microorganisms10091787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing salinity undermines soil fertility and imposes great threats to soil ecosystem productivity and ecological sustainability. Microbes with the ability to adapt to environmental adversity have gained increasing attention for maintenance and restoration of the salt-affected soil ecosystem structure and functioning; however, the characterization of microbial communities in saline–sodic soils remains limited. This study characterized the bacterial community composition and diversity in saline–sodic soils along a latitude gradient across Northeast China, aiming to reveal the mechanism of physicochemical and geographic characteristics shaping the soil bacterial communities. Our results showed that the bacterial community composition and diversity were significantly impacted by soil pH, electrical conductivity, Na+, K+, Cl−, and CO32−. Significant differences in bacterial diversity were revealed along the latitude gradient, and the soil factors accounted for 58.58% of the total variations in bacterial community composition. Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes were dominant across all samples. Actinobacteria and Gemmatimonadetes were significantly enriched in high soil sodicity and salinity, while Acidobacteria and Proteobacteria were suppressed by high pH and salt stress in the saline–sodic soils. Increase in soil pH and salinity significantly decreased bacterial species richness and diversity. Community composition analysis indicated that bacterial taxonomic groups (e.g., Bacillus, Egicoccus, Truepera, Halomonas, and Nitrolancea) that may adapt well to high salinity were greatly enriched in the examined soils. The findings collectively evidenced that bacterial community composition and diversity in a broad biographic scale were determined by niche-based environmental characteristics and biotic interactions. The profiling of the soil bacterial communities along the latitude gradient will also provide a basis for a better understanding of the salt-affected soil ecosystem functioning and restoration of these soil ecosystems.
Collapse
Affiliation(s)
- Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiaoyu Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (N.Z.); (B.L.)
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (N.Z.); (B.L.)
| |
Collapse
|
22
|
Lin Y, Hu HW, Yang P, Ye G. Spartina alterniflora invasion has a greater impact than non-native species, Phragmites australis and Kandelia obovata, on the bacterial community assemblages in an estuarine wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153517. [PMID: 35101499 DOI: 10.1016/j.scitotenv.2022.153517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The invasion of Spartina alterniflora poses a serious threat to the sustainability of native ecosystems worldwide. However, compared with other non-native plants (e.g., Phragmites australis and Kandelia obovata), how Spartina alterniflora invasion influences the community structure of bacteria and their assembly processes and functionality remains elusive. Here, we characterized the diversity, community structure, assembly processes and functional guilds of bacteria underneath five plant species and a bare tidal flat at three soil depths in an estuarine wetland. We found that plant species played a more important role than soil depth in mediating the bacterial community structure. Compared with bare tidal flats, the native species Cyperus malaccensis, rather than Scirpus triqueter, significantly changed the bacterial community structure. However, S. alterniflora invasion increased bacterial alpha diversity and significantly altered the bacterial community structure by enriching Chloroflexi, Bacteroidetes and Firmicutes while reducing Acidobacteria, Nitrospirae and Gemmatimonadetes. The invasion of P. australis and translocation of K. obovata had less pronounced effects on the bacterial community structure. Total carbon, total nitrogen and salinity were the key environmental factors mediating the bacterial community structure. Overall of all the non-native plant species, the invasion of S. alterniflora increased the relative importance of stochastic processes in the assembly of bacterial communities, and shifted the bacterial functional profiles by stimulating sulfur cycling groups and suppressing nitrogen cycling groups. Altogether, our results suggest that S. alterniflora invasion has a greater effect than P. australis invasion or K. obovata translocation on the profiles and assembly processes of the bacterial communities, with important implications for soil biogeochemical processes in coastal wetlands.
Collapse
Affiliation(s)
- Yongxin Lin
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ping Yang
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Guiping Ye
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
23
|
Spartina alterniflora Invaded Coastal Wetlands by Raising Soil Sulfur Contents: A Meta-Analysis. WATER 2022. [DOI: 10.3390/w14101633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nowadays, plant invasion has become a global ecological threat to local biodiversity and ecosystem stability. Spartina alterniflora encroaches on the ecological niches of local species and changes the soil’s nutrient cycle. However, few comprehensive assessments focus on the effects of S. alterniflora invasion. Here, we investigated how soil sulfur changed with spatiotemporal variation and life forms of native species after S. alterniflora invasion and speculated the possible mechanism of the sulfur increase based on the references. The invasion of S. alterniflora increased soil total sulfur by 57.29% and phytotoxic sulfide by 193.29%. In general, the invasion of S. alterniflora enhanced the total plant biomass and soil nutrients, e.g., soil organic carbon, total nitrogen, and soil microbial biomass carbon, further increasing soil sulfur content. The sulfur accumulation caused by S. alterniflora might result in the poisoning of native species. Thus, we hypothesized that the success of S. alterniflora invasion was closely connected with soil sulfur, especially toxic sulfide. Our study suggests that researchers should give more attention to the correlation between S. alterniflora invasion and the soil sulfur increase. More research is needed to investigate the mechanisms of the successful invasion by accumulating phytotoxic sulfide.
Collapse
|
24
|
Wang WY, Wang R, Abbas G, Wang G, Zhao ZG, Deng LW, Wang L. Aggregation enhances the activity and growth rate of anammox bacteria and its mechanisms. CHEMOSPHERE 2022; 291:132907. [PMID: 34780744 DOI: 10.1016/j.chemosphere.2021.132907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The aggregation of anaerobic ammonium oxidation (anammox) bacteria is important for the start-up and biomass retention of anammox processes. However, it is unclear whether it is beneficial to the activity, growth and reproduction of anammox bacteria. In this study, four reactor systems were developed to explore the effects of aggregation on anammox activity, growth and reproduction, after excluding the contribution of aggregation to sludge settling and retention. Results demonstrated that (i) compared with free-living planktonic bacteria, the aggregated bacteria had a higher volumetric nitrogen removal rate (0.75 kg-N/(m³·d)) and specific nitrogen removal activity (1.097 kg-N/VSS/d). And after 67 days cultivation, it had the higher sludge concentration and relative abundance (92.4%); (ii) compared with acidic polysaccharides and α-d-glucopyranose polysaccharides, β-d-glucopyranose polysaccharide play more essential roles of anammox aggregation; (iii) norspermidine triggered the secretion of α-d-glucopyranose polysaccharides to combat the toxicity, and inhibited biomass growth rate; (iv) immobilization in polyvinyl alcohol (10%) or sodium alginate (2%) gel beads was better than sodium alginate-chitosan gel beads and norspermidine (biofilm inhibitor) for the cultivation of free-living planktonic anammox bacteria. This is the first comparative study of three methods for cultivating free-living anammox bacteria. In conclusion, we found that the aggregation of anammox sludge not only facilitates biomass retention but also enhances the bioactivity, relative abundance, growth, and reproduction rate of anammox bacteria. The work is helpful to understand the formation of anammox granular sludge and contribute to the fast start-up and stable operation in anammox application.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ru Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Gang Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Zhi-Guo Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; China National Heavy Machinery Research Institute. Co., Ltd., Xi'an, 710055, PR China.
| | - Liang-Wei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| |
Collapse
|
25
|
Shang Y, Wu X, Wang X, Wei Q, Ma S, Sun G, Zhang H, Wang L, Dou H, Zhang H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150294. [PMID: 34536882 DOI: 10.1016/j.scitotenv.2021.150294] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there is a lack of research on the seasonal variation in lake water microorganisms in cold environments. In this study, 16S rRNA gene high-throughput sequencing was used to explore the microbial community and its influencing factors in Hulun Lake water during different seasons. The results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the most important phyla in the microbial community of Hulun Lake, but they had significant seasonal differences in their distribution. In addition, significant seasonal differences were observed in the α diversity of microorganisms, with bacterial diversity being higher in winter than in summer. Changes in environmental variables were significantly correlated with changes in the microbial community, and the rapid changes in temperature, pH, and dissolved oxygen are potentially the major factors influencing seasonal bacterial diversity trends. The findings of the present study enhance our understanding of the microbial communities in alpine lake ecosystems and are of great significance for the management and protection of lake ecosystems.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Shengchao Ma
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lidong Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China.
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China.
| |
Collapse
|
26
|
Chi Z, Hou L, Li H. Effects of pollution load and salinity shock on nitrogen removal and bacterial community in two-stage vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2021; 342:126031. [PMID: 34582988 DOI: 10.1016/j.biortech.2021.126031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
To understand the denitrification performance and microbial community of two-stage vertical flow constructed wetlands (TS-VFCWs) with iron ore/manganese ore and wood chips, COD and nitrogen removal were investigated under pollution load and salinity shock. High removal of COD (87%), NH4+-N (97%), and NO3--N (98%) were achieved with increasing load, but the high pollutant load inhibited the denitrification performance in TS-VFCW with iron ore and wood chips. TS-VFCW with iron ore and wood chips showed good recovery potential with decreasing load. High NH4+-N removal was observed in TS-VFCW with manganese ore and wood chips. Treatment with 3% salinity decreased COD and NH4+-N removal but improved NO3--N removal, maintaining relatively good nitrogen removal. The addition of iron ore and manganese ore enriched nitrifying bacteria Flavobacterium and autotrophic denitrifying bacteria, while wood chips promoted heterotrophic denitrification and organic degradation. In addition, ubiquitous denitrifying bacteria under salinity ensured excellent denitrification performance.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Lining Hou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
27
|
Chi Z, Hou L, Li H, Wu H, Yan B. Indigenous bacterial community and function in phenanthrene-polluted coastal wetlands: Potential for phenanthrene degradation and relation with soil properties. ENVIRONMENTAL RESEARCH 2021; 199:111357. [PMID: 34022228 DOI: 10.1016/j.envres.2021.111357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The Yellow River Delta, adjacent to Shengli Oilfield, has a potential risk of petroleum pollution. In this study, soil samples were collected from phenanthrene (PHE)-polluted (adjacent to abandoned oil well, Zone D) and non-polluted (far away from abandoned oil well, Zone E) coastal wetlands. The influence of PHE pollution on indigenous bacterial community and function, and their relationship with soil characteristics were investigated. The levels of PHE, salinity and NH4+-N were higher in Zone D than in Zone E. PHE-degrading bacteria Achromobacter and Acinetobacter were mainly distributed in Zone E, whereas Halomonas, Marinobacter, and Roseovarius were highly abundant in Zone D. Halomonas and Marinobacter had the potential for denitrification and could achieve PHE degradation through mutual cooperation. PHE pollution could increase the abundance of functional bacteria but reduce the diversity of microbial community. PHE and salinity played key roles in shaping microbial community structure and function. High PHE level inhibited microbial metabolism but stimulated self-protection potential. PHE aerobic degradation associated with the catechol and phthalic acid pathways was found in Zone D, whereas the catechol pathway dominated in Zone E. Interestingly, PHE anaerobic degradation with nitrate reduction also dominated in Zone D, whereas the process coupled with multiple electron acceptors co-existed in Zone E, which was associated with tidal seawater carrying nutrients. This study illustrated the importance of comprehensive consideration of microbial community structure and function under PHE pollution, suggesting indigenous microorganisms as potential microbial consortium for bioremediation in coastal wetlands.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Lining Hou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China.
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| |
Collapse
|