1
|
Chen X, Yan A, Lu S, Zhang H, Li D, Jiang X. Accelerated stochastic processes of plankton community assembly due to tidal restriction by seawall construction in the Yangtze River Estuary. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106941. [PMID: 39753010 DOI: 10.1016/j.marenvres.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/29/2024] [Indexed: 02/09/2025]
Abstract
Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary. While environmental heterogeneity did not exert a significant influence on alpha diversity of plankton, it had a significant impact on community structure. Variation partitioning analysis (VPA) and neutral community model indicated that neither environmental nor spatial factors were predominant drivers of plankton community composition and structure, instead, they were influenced by stochastic processes. Moreover, it was observed that the relative significance of stochastic processes in the tide-restricted area exceeded that in the unrestricted area. High habitat uniformity and water connectivity resulting from seawall construction may facilitate homogenization and spread among high-abundance groups. The results have significant implications for understanding the mechanisms underlying succession and composition, and for improving ecological assessment and remediation efforts in areas impacted by tidal restriction.
Collapse
Affiliation(s)
- Xingyu Chen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ailing Yan
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environmental Science, Shanghai, China
| | - Shiqiang Lu
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environmental Science, Shanghai, China.
| | - Haoran Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Da Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodong Jiang
- School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China.
| |
Collapse
|
2
|
Jin L, Yu P, Liu C, Liu Q, Liu Q, Zhang R, Tang Y, Shou L, Zeng J, Chen Q, Liao Y. Photovoltaic Power Station Impacts on the Benthic Ecosystem and Sediment Carbon Storage in Tidal Flats in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20954-20967. [PMID: 39527479 PMCID: PMC11603782 DOI: 10.1021/acs.est.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Photovoltaic power is a rapidly growing component of the renewable energy sector. Photovoltaic power stations (PVPSs) on coastal tidal flats offer benefits, but the lack of information on the effects of PVPSs on benthic ecosystems and sediment carbon storage can hamper the development of eco-friendly renewable energy. We sampled the macrobenthos and sediment cores at a PVPS on a coastal tidal flat in eastern China. The biodiversity indicators and benthic ecological quality based on macrobenthos were mostly higher under the photovoltaic panels than elsewhere. These variations were primarily driven by pH, sediment grain size, and chlorophyll-a content. However, the PVPS had exerted a considerable influence on the macrobenthic community structure. Furthermore, the carbon stocks in the sediment cores from under the photovoltaic panels were similar to those in the reference sites. These results suggest that this PVPS has not had discernible short-term adverse effects on the benthic ecosystems or sediment carbon storage of the tidal flat. Nevertheless, the potentially long-term and cascading risks throughout the ecosystem warrant caution. Therefore, we recommend that policymakers adopt a cautious development strategy and implement long-term, high-frequency monitoring to ensure the sustainability of renewable energy production on coastal tidal flats.
Collapse
Affiliation(s)
- Lingxiang Jin
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Peisong Yu
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Chenggang Liu
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Qiang Liu
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Key
Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China
| | - Qinghe Liu
- East
China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Shanghai 200090, China
| | - Rongliang Zhang
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yanbin Tang
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Lu Shou
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Jiangning Zeng
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Key
Laboratory of Nearshore Engineering Environment and Ecological Security
of Zhejiang Province, Hangzhou 310012, China
| | - Quanzhen Chen
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Key
Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yibo Liao
- Key
Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Key
Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
3
|
Chen C, Liu Y, Dokohely ME, Liu J, Hu B. Assessing the ecological response plant and soil to the seawalls in the Laizhou bay coastal wetland, China. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106678. [PMID: 39182435 DOI: 10.1016/j.marenvres.2024.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Coastal wetlands are extremely vulnerable to both marine damage and human activities. In order to protect these wetlands, many artificial seawalls have been constructed. However, studies are required to understand how coastal wetlands will evolve under the influence of artificial seawalls. Therefore, to understand this succession process of plants and their adaptation to habitats divided by seawalls, two different habitats inside and outside the seawalls were selected in Laizhou Bay, China. The results showed that there were 5 plant species outside the seawalls that were lower than the 13 species inside. Additionally, the dominant plant species were varied between the two habitats, with mostly annual herbs observed outside the seawalls and perennial shrubs inside. Soil salinity was higher outside the seawalls, which was the key impact factor of soil nutrient differences. The distribution of annual and perennial species may be constrained by spatial differences in soil stoichiometry. Therefore, the plants in coastal wetlands vary significantly at a small scale in response to the disturbance of artificial seawalls. The differences in soil and plants between the two habitats divided by the artificial seawalls provide a new insight for evaluating the artificial coastal projects. The only way to reduce the effects of seawalls on natural coastal wetland vegetation and ecosystem functions is to restore connectivity of tidal flow inside and outside the seawalls.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing, NJ, 210098, China; College of Environment, Hohai University, Nanjing, NJ, 210098, China
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing, NJ, 210098, China; College of Environment, Hohai University, Nanjing, NJ, 210098, China.
| | - Mario Emma Dokohely
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing, NJ, 210098, China; College of Environment, Hohai University, Nanjing, NJ, 210098, China
| | - Jiayuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing, NJ, 210098, China; College of Environment, Hohai University, Nanjing, NJ, 210098, China
| | - Bingtao Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing, NJ, 210098, China; College of Environment, Hohai University, Nanjing, NJ, 210098, China
| |
Collapse
|
4
|
Zhang X, Liu W, Lu J, Tanveer M, Qi Z, Fu C, Xie H, Zhuang L, Hu Z. Current research hotspots and frontier trends on carbon budget of coastal wetlands: A bibliometric analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3104-3121. [PMID: 38877633 DOI: 10.2166/wst.2024.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Coastal wetlands are the main distribution of blue carbon in coastal zones and well known for their high carbon sequestration capacity. Investigating the variation of carbon budget is crucial for understanding the functionality of coastal wetlands and effectively addressing climate change. In this study, a bibliometric analysis of 4,509 articles was conducted to reveal research progress, hot issues, and emerging trends in the coastal wetland carbon budget field. The number of publications and citations in this field increased exponentially from 1991 to 2022. The leading subject category was Environmental Sciences with 1,844 articles (40.9%). At present, studies have been focused on blue carbon, the effects of climate change and man-made disturbances on carbon cycle, and the restoration of coastal wetlands. Based on the hotspots and trends in this field, the future researches should include (1) exploring the functional mechanisms of various factors affecting carbon cycle and establishing a methodological system for the estimation of blue carbon in coastal wetlands; (2) researching restoration techniques of coastal wetland and constructing wetland restoration evaluation index system; and (3) formulating enforceable carbon trading policy and strengthening international cooperation.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Wenhao Liu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jiaxing Lu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Muhammad Tanveer
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Qi
- Shandong Innovation and Entrepreneurship Community of Green Industry and Environmental Security, Jinan 250199, China; Shandong Huankeyuan Environmental Engineering Co. Ltd, Jinan 250013, China
| | - Chengkai Fu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Linlan Zhuang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China E-mail:
| |
Collapse
|
5
|
Yan R, Wang F, Wang Y, Chen N. Pollution abatement reducing the river N 2O emissions although it is partially offset by a warming climate: Insights from an urbanized watershed study. WATER RESEARCH 2023; 236:119934. [PMID: 37043873 DOI: 10.1016/j.watres.2023.119934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Global nitrogen (N) pollution has resulted in increased river nitrous oxide (N2O) emissions, which contribute to climate change. However, little is known about how pollution abatement conversely reduces river N2O production in a warming climate. Here, field observations and microcosmic experiments were conducted in a coastal urbanized watershed (S.E. China) to explore the interactive effect of changing nitrate and temperature on river sediment denitrification (DNF) and N2O production. The results showed that urban river reaches (UR) with higher organic carbon content and denitrifying gene abundance in sediments have a greater DNF rate, nitrate removal efficiency (NRE), and N2O concentration than agricultural river reaches (AR). Microcosmic incubation suggested that the DNF rate and associated N2O production decreased under low nitrate addition, wherein the NRE increased. The scenario simulation illustrated a nonlinear response of N2O production to nitrate removal (i.e., ΔN2O/ΔNO3-N) from both UR and AR sediments at a given temperature, and the DNF rate and N2O production increased with increasing temperature. An increase in temperature by 1 degree Celsius would offset 18.75% of the N2O reduction by nitrate removal via DNF. These findings implied that watershed pollution abatement undoubtedly contributes to the reduction in global river N2O emissions although it is partially offset by extra N2O production caused by global warming.
Collapse
Affiliation(s)
- Ruifeng Yan
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Fenfang Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, China
| | - Yao Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Ma Z, Lu M, Jin H, Sheng X, Wei H, Yang Q, Qi L, Huang J, Chen L, Dou X. Greenhouse gas emissions and environmental drivers in different natural wetland regions of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121754. [PMID: 37137407 DOI: 10.1016/j.envpol.2023.121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Wetlands sequestrate carbon at the highest rate than any other ecosystems on Earth. However, the spatial and temporal dynamics of GHGs emissions from the wetland ecosystems in China are still elusive. We synthesized 166 publications that contain 462 in situ measurements of GHGs emissions from the natural wetlands in China, and further analyzed the variability and the drivers of GHGs emissions in eight subdivisions of China's wetlands. The results show that the current studies are mainly concentrated in the estuaries, Sanjiang Plain, and Zoige wetlands. The average CO2 emissions, CH4 fluxes and N2O fluxes from Chinese wetlands were 218.84 mg·m-2·h-1, 1.95 mg·m-2·h-1 and 5.8 × 10-2 mg·m-2·h-1, respectively. The global warming potential (GWP) of China's wetlands was estimated to be 1881.36 TgCO2-eq·yr-1, with CO2 emissions contributing more than 65% to the GWP value. The combined GWP values of Qinghai-Tibet Plateau wetlands, coastal wetlands and northeastern wetlands account for 84.8% of GWP of China's wetlands. Correlation analysis showed that CO2 emissions increased with the increasing mean annual temperature, elevation, annual rainfall, and wetland water level, but decreased with soil pH. CH4 fluxes increased with the mean annual temperature and soil water content but decreased with the redox potential. This study analyzed the drivers of GHGs emissions from wetland ecosystems at the national scale, and GWP values of eight wetland subregions of China were comprehensively assessed. Our results are potentially useful for the global GHGs inventory, and can help assess the response of GHGs emissions of wetland ecosystem to environmental and climate change.
Collapse
Affiliation(s)
- Zhiheng Ma
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Meng Lu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Hui Jin
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Xiongjie Sheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Hao Wei
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Qiong Yang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Lanlan Qi
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Jingxin Huang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, PR China
| | - Liding Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolin Dou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Hou Y, Liu Y, Zhang J, Yu X. Temporal dynamics of lateral carbon export from an onshore aquaculture farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160258. [PMID: 36410484 DOI: 10.1016/j.scitotenv.2022.160258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Many coastal areas are hotspots of aquaculture expansion, where the overuse of artificial feeds results in the accumulation of organic carbon in nearshore aquaculture ponds. In rural areas, wastewater from the aquaculture ponds is discharged to the nearshore waters through artificial ditches causing lateral carbon export from the land to the ocean. Such flux may be meaningful in coastal carbon budgets since aquaculture is the hotspot of carbon sequestration and storage. To quantify the magnitude and temporal dynamics of lateral carbon export from aquaculture ponds, we used high-frequency in-situ monitoring of turbidity, fluorescent dissolved organic matter, etc. across different temporal scales. We measured water levels and velocity profiles in a ditch cross-section to obtain year-round water exchange. Carbon export was integrated from water fluxes and organic carbon concentrations. Our results suggested that aquaculture ponds were a source of particular organic carbon (POC) and dissolved organic carbon (DOC). The net lateral flux of POC and DOC was 148 ± 38 kg yr-1 and 296 ± 18 kg yr-1. Temporally, the export of POC and DOC is influenced by both tides and wastewater discharge. Under the disturbance with aquaculture wastewater discharge, the mean DOC export in the ditch increased by 497 kg, which was 1.5 times that of the undisturbed; the mean POC export increased by 190 kg, which was 1.8 times that of the undisturbed. Thus, aquaculture activities can considerably disturb the coastal carbon balance by facilitating carbon-rich fluid exchange from onshore farms to nearshore estuaries. As aquaculture expands across Asia and the globe, this study provides important insights into the impacts of aquaculture on coastal carbon budgets.
Collapse
Affiliation(s)
- Yuxuan Hou
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Junxiao Zhang
- Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510310, China; South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510310, China
| | - Xuan Yu
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| |
Collapse
|