1
|
Li J, Li F, Tong M, Zhao Z, Xi K, Guo S. Construction of an effective method combining in situ capping with electric field-enhanced biodegradation for treating PAH-contaminated soil at abandoned coking sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171209. [PMID: 38408657 DOI: 10.1016/j.scitotenv.2024.171209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The simultaneous application of in situ capping and electro-enhanced biodegradation may be a suitable method for ensuring the feasibility and safety of reusing abandoned coking sites. However, the capping layer type and applied electric field pattern may affect the efficiency of sequestering and removing pollutants. This study investigated changes in electric current, soil moisture content and pH, polycyclic aromatic hydrocarbon (PAH) concentration, bacterial number, and microbial community structure and metabolic function during soil remediation at abandoned coking plant sites under different applied electric field patterns and barrier types. The results indicated that polarity-reversal electric field was more conducive to maintaining electric current, soil properties, resulting in higher microbial number, community diversity, and functional gene abundance. At 21d, the mean PAH concentrations in contaminated soil, the capping layer's clean soil and barrier were 78.79, 7.56, and 1.57 mg kg-1 lower than those with a unidirectional electric field, respectively. The mean degradation rate of PAHs in the bio-barrier was 10.12 % higher than that in the C-Fe barrier. In the experiment combining a polarity-reversal electric field and a bio-barrier, the mean PAH concentrations in contaminated soil and the capping layer were 706.68 and 27.15 mg kg-1 lower than those in other experiments, respectively, and no PAHs were detected in the clean soil, demonstrating that the combination of the polarity-reversal electric field and the bio-barrier was effective in treating soil at abandoned coking plant sites. The established method of combining in situ capping with electro-enhanced biodegradation will provide technical support for the treatment and reuse of heavily PAH-contaminated soil at abandoned coking plant sites.
Collapse
Affiliation(s)
- Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
2
|
Woo HE, Jeong I, Kim JO, Kim YR, Lee IC, Kim K. Field experiments on chemical and biological changes of thin-layer oyster shells capping sediments in dense aquaculture area. ENVIRONMENTAL RESEARCH 2023; 237:116893. [PMID: 37586451 DOI: 10.1016/j.envres.2023.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Thin-layer oyster shell capping has been proposed as a method for improving contaminated coastal environments. Field experiments were conducted to investigate the effects of oyster shell capping on nutrient concentrations, microorganisms, and macrobenthic communities. The concentration of PO4-Pin the experimental area decreased by approximately 38% more than in the control, due to phosphorus fixation of oyster shells and the presence of Proteobacteria. Ammonia-oxidizing bacteria such as the order Pirellulales (phylum Planctomycetes) were related to the low ratio of NH3-N found in dissolved inorganic nitrogen in the experimental area, indicating nitrification promotion. The reduction in annular benthic organisms observed in the experimental area indicates a decline in sediment organic matter, which could potentially mitigate eutrophication. Oyster shell capping was confirmed to be an effective material for restoring coastal sediments by improving their chemical and biological properties.
Collapse
Affiliation(s)
- Hee-Eun Woo
- Research Center for Ocean Industrial Development, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Ilwon Jeong
- Research Center for Ocean Industrial Development, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Jong-Oh Kim
- Department of Microbiology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea; School of Marine and Fisheries Life Science, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Young-Ryun Kim
- Marine Eco-Technology Institute, 406 Sinseon-ro, Nam-Gu, Busan, 48520, Republic of Korea
| | - In-Cheol Lee
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Kyunghoi Kim
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea; Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kota Surabaya, 60115, Indonesia.
| |
Collapse
|
3
|
McLaverty C, Eigaard OR, Olsen J, Brooks ME, Petersen JK, Erichsen AC, van der Reijden K, Dinesen GE. European coastal monitoring programmes may fail to identify impacts on benthic macrofauna caused by bottom trawling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117510. [PMID: 36821989 DOI: 10.1016/j.jenvman.2023.117510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Bottom trawling (hereafter trawling) is the dominant human pressure impacting continental shelves globally. However, due to ongoing data deficiencies for smaller coastal vessels, the effects of trawling on nearshore seabed ecosystems are poorly understood. In Europe, the Water Framework Directive (WFD) provides a framework for the protection and improvement of coastal water bodies. It requires member states to track the status of 'biological quality elements' (including benthic macrofauna) using WFD-specific ecological indicators. While many of these metrics are sensitive to coastal pressures such as nutrient enrichment, little is known about their ability to detect trawling impacts. Here, we analysed a comprehensive data set of 5885 nearshore benthic samples - spatiotemporally matched to high-resolution trawling and environmental data - to examine how these pressures affect coastal benthos. In addition, we investigated the ability of 8 widely-used benthic monitoring metrics to detect impacts on benthic biological quality. We found that abundance (N) and species richness (S) were strongly impacted by bottom trawling. A clear response to trawling was also observed for the WFD-specific Benthic Quality Index (BQI). Relationships between N and S, and trawling were particularly consistent across the study area, indicating sensitivity across varying environmental conditions. In contrast, WFD indices such as AZTIs Marine Biotic Index (AMBI), multivariate AMBI (M-AMBI), and the Danish Quality Index (DKI), were unresponsive to trawling. In fact, some of the most heavily trawled areas examined were classified as being of 'high/good ecological status' by these indices. A likely explanation for this is that the indices are calculated using species sensitivity scores, based on expected species response to eutrophication and chemical pollution. While the BQI also uses species sensitivity scores, these are based on observed responses to disturbance gradients comprising a range of coastal pressures. Given the prominent use of AMBI and DKI throughout Europe, our results highlight the considerable risk that the metrics used to assess Good Ecological Status (GES) under the WFD may fail to identify trawling impacts. As trawling represents a widespread source of coastal disturbance, fishing impacts on benthic macrofauna may be underestimated, or go undetected, in many coastal monitoring programmes around Europe.
Collapse
Affiliation(s)
- Ciarán McLaverty
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Ole R Eigaard
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Jeppe Olsen
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Mollie E Brooks
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | | | | | - Karin van der Reijden
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Grete E Dinesen
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Rämö RA, Honkanen J, Nybom I, Gunnarsson JS. Biological Effects of Activated Carbon on Benthic Macroinvertebrates are Determined by Particle Size and Ingestibility of Activated Carbon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3465-3477. [PMID: 34748656 DOI: 10.1002/etc.5231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The application of activated carbon (AC) to the surface of contaminated sediments is a promising technology for sediment remediation in situ. Amendment with AC has proved to be effective in reducing bioavailability and sediment-to-water release of hydrophobic organic contaminants. However, AC may cause positive or negative biological responses in benthic organisms. The causes of these effects, which include changes in growth, reproduction, and mortality, are unclear but are thought to be related to the size of AC particles. The present study investigated biological response to AC ranging from ingestible powdered AC to noningestible granular AC in two benthic deposit feeders: the polychaete Marenzelleria spp. and the clam Limecola balthica (syn. Macoma balthica). In the polychaete, exposure to powdered AC (ingestible) reduced both dry weight and carbon assimilation, whereas exposure to granular AC (noningestible) increased both dry weight and carbon assimilation. Responses in the clam were similar but less pronounced, indicating that response levels are species-specific and may vary within a benthic community. In addition, worms exposed to the finest ingestible AC particles had reduced gut microvilli length and reduced gut lumen, indicating starvation. These results strongly suggest that biological responses to AC depend on particle ingestibility, whereby exposure to ingestible particles may cause starvation through reduced bioavailability of food coingested with AC or due to rejection of AC-treated sediment as a food source. Environ Toxicol Chem 2021;40:3465-3477. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Robert A Rämö
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Johanna Honkanen
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Inna Nybom
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jonas S Gunnarsson
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Wikström J, Bonaglia S, Rämö R, Renman G, Walve J, Hedberg J, Gunnarsson JS. Sediment Remediation with New Composite Sorbent Amendments to Sequester Phosphorus, Organic Contaminants, and Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11937-11947. [PMID: 34435488 PMCID: PMC8427744 DOI: 10.1021/acs.est.1c02308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 05/27/2023]
Abstract
This study tested two sediment amendments with active sorbents: injection of aluminum (Al) into sediments and thin-layer capping with Polonite (calcium-silicate), with and without the addition of activated carbon (AC), for their simultaneous sequestration of sediment phosphorus (P), hydrophobic organic contaminants (HOCs), and metals. Sediment cores were collected from a eutrophic and polluted brackish water bay in Sweden and incubated in the laboratory to measure sediment-to-water contaminant release and effects on biogeochemical processes. We used diffusive gradients in thin-film passive samplers for metals and semi-permeable membrane devices for the HOC polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Al injection into anoxic sediments completely stopped the release of P and reduced the release of cadmium (Cd, -97%) and zinc (Zn, -95%) but increased the sediment fluxes of PAH (+49%), compared to the untreated sediment. Polonite mixed with AC reduced the release of P (-70%), Cd (-67%), and Zn (-89%) but increased methane (CH4) release. Adding AC to the Al or Polonite reduced the release of HOCs by 40% in both treatments. These results not only demonstrate the potential of innovative remediation techniques using composite sorbent amendments but also highlight the need to assess possible ecological side effects on, for example, sedimentary microbial processes.
Collapse
Affiliation(s)
- Johan Wikström
- Department
of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Stefano Bonaglia
- Department
of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Robert Rämö
- Department
of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Gunno Renman
- Department
of Sustainable Development, Environmental Sciences and Technology,
Division of Water and Environmental Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Jakob Walve
- Department
of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Johanna Hedberg
- Department
of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Jonas S. Gunnarsson
- Department
of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|