1
|
Huang T, Sage J, Técher D, Gromaire MC. Hydrological performance of bioretention in field experiments and models: A review from the perspective of design characteristics and local contexts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178684. [PMID: 39904179 DOI: 10.1016/j.scitotenv.2025.178684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Bioretention is a widely used countermeasure to address stormwater runoff issues and restore the urban water balance. This review investigated the variety of designs and local contexts covered by earlier studies, as well as the means for assessing the hydrological performance of a bioretention system. It built on the analysis of 75 documents to discuss the adequacy of experimental setups or models for the evaluation of different performance indicators, and to summarise current knowledge regarding the impact of local context or design parameters on the hydrologic functioning of bioretention systems. The current literature was found to only partially cover the potential variety of local contexts or bioretention designs, and to sometimes omit critical information. Studies were for instance concentrated in regions with low seasonal rainfall variability for which limits the potential for investigating drought resilience issues and more generally restricts the applicability of their findings to other climate conditions. Regarding bioretention design, the use of environmental-friendly materials (renewable and local materials) as alternatives to traditional materials (sand, gravel, geotextile), as well as simpler designs with limited inputs of external materials (e.g. limited use of concrete or polymeric materials), remains largely overlooked. Besides, the over representation of lined system in current studies leads to a lack of understanding of the interactions between bioretention and the surrounding soil, despite evidence of their potential impact on the overall performance of bioretention in the case of unlined systems. In the reviewed studies, certain limitations of the most commonly used monitoring and modelling methods were identified. Event-based and short-term approaches made up a large proportion of the modelling and monitoring methods, but they lead to inaccuracies in annual and long-term performance. 1D models gained popularity due to their ease of use, but the simplification of configuration and hydrological processes and thus their influence on performance was rarely discussed.
Collapse
Affiliation(s)
- Tinghao Huang
- LEESU, ENPC, Institut Polytechnique de Paris, Univ Paris Est Creteil, 77455 Marne-la-Vallée, France.
| | - Jérémie Sage
- Cerema, Equipe TEAM, 12 rue Teisserenc de Bort, 78190 Trappes, France.
| | - Didier Técher
- Cerema, Equipe TEAM, 71 rue de la Grande Haie, 54510 Tomblaine, France.
| | - Marie-Christine Gromaire
- LEESU, ENPC, Institut Polytechnique de Paris, Univ Paris Est Creteil, 77455 Marne-la-Vallée, France.
| |
Collapse
|
2
|
Hodgins G, Robinson CE, Power C, Roy JW. Road salt chloride exposure in urban streambeds and links to groundwater - surface water interactions and salt sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177488. [PMID: 39528214 DOI: 10.1016/j.scitotenv.2024.177488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Groundwater transport of chloride (Cl) containing road salt deicers is an important contributor to salinization of fresh surface waters in temperate climates. While mass loading of salt to streams via groundwater has received greater recognition lately, only a few studies have demonstrated the unique risk posed by the direct discharge of salt-laden groundwater to aquatic life residing in the benthic zone (e.g., macroinvertebrates, mussels, plant roots, fish eggs). These studies revealed high Cl concentrations in stream porewater but provided limited information on its spatio-temporal variability and factors influencing it. To address this gap, this study conducted a detailed 2-year field investigation on 100-m scale reaches of two streams adjacent to salt-receiving roads in London, Ontario, applying year-round streambed porewater sampling, streambed surface electrical conductivity mapping, and electrical imaging (geophysics) techniques. Areas of probable groundwater upwelling and surface water downwelling were identified using streambed temperature mapping and hydraulic head gradients. Benthic porewater Cl concentrations were commonly above water quality guidelines, but also varied substantially over small spatial scales, ranging from <100 to >5000 mg/L over ≤10 m distances. Generally, porewater Cl concentrations were relatively stable seasonally compared to the stream water, leading to benthic areas with year-round exposure to elevated Cl and limiting prospects for benthic zone refugia. Key factors affecting this spatial and temporal variability included proximity to roads, impacts from point sources (snow storage locations), and surface water downwelling (hyporheic flows). These observations have direct implications for the health of urban stream benthic communities and for designing management and remediation strategies.
Collapse
Affiliation(s)
- Grant Hodgins
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond St., London, Ontario N6A 3K7, Canada.
| | - Clare E Robinson
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Christopher Power
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - James W Roy
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond St., London, Ontario N6A 3K7, Canada; Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
3
|
Brown A, Hoffman MC, McPhillips LE. Impacts of Deicer Salt on Water Quality Performance of Stormwater Bioretention Systems with Varied Vegetation and Hydrology. ACS ES&T WATER 2024; 4:2882-2893. [PMID: 39021577 PMCID: PMC11251420 DOI: 10.1021/acsestwater.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Sodium chloride (NaCl) deicers contaminate bioretention and influence effluent water quality, the effects of which are not yet fully understood. We tested this by constructing 48 mesocosms in a greenhouse, each having Panicum virgatum, Eutrochium purpureum, or no vegetation; having an internal water storage (IWS) zone or not; and being exposed to high or low NaCl doses in the late winters of 2022 and 2023. Synthetic stormwater was applied and effluent was monitored through May 2023 with an end-of-experiment analysis of soil and plant biomass for nitrogen, phosphorus, copper, zinc, and total suspended solids (TSS). Average effluent loads increased in spring, after NaCl application, for total phosphorus (+61%), copper (+61%), zinc (+88%), and TSS (+66%). These four analytes recovered by summer, with average annual percent removals >85%. Vegetation and IWS reduced annual phosphorus (by -33 and -70%, respectively) and copper (by -24 and -40%) loads, while higher NaCl concentrations increased annual phosphorus (+107%), copper (+22%), and TSS (+51%) loads. Nitrogen removal was not linked with NaCl but was dependent upon the presence of IWS or vegetation. Post-NaCl effluent spikes pose seasonal risks to aquatic ecosystems, emphasizing the need for active maintenance, redundant removal mechanisms, and minimized exposure to NaCl.
Collapse
Affiliation(s)
- Alexander
H. Brown
- Department
of Civil and Environmental Engineering, The Pennsylvania State University, 408 Sackett Building, University
Park, Pennsylvania 16802, United States
| | - Margaret C. Hoffman
- Department
of Plant Science, The Pennsylvania State
University, 306 Tyson
Building, University Park, Pennsylvania 16802, United States
| | - Lauren Elyse McPhillips
- Department
of Civil and Environmental Engineering, The Pennsylvania State University, 226B Sackett Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Zhou B, Parsons C, Van Cappellen P. Urban Stormwater Phosphorus Export Control: Comparing Traditional and Low-impact Development Best Management Practices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11376-11385. [PMID: 38886008 PMCID: PMC11223491 DOI: 10.1021/acs.est.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Data from the International Stormwater Best Management Practices (BMP) Database were used to compare the phosphorus (P) control performance of six categories of stormwater BMPs representing traditional systems (stormwater pond, wetland basin, and detention basin) and low-impact development (LID) systems (bioretention cell, grass swale, and grass strip). Machine learning (ML) models were trained to predict the reduction or enrichment factors of surface runoff concentrations and loadings of total P (TP) and soluble reactive P (SRP) for the different categories of BMP systems. Relative to traditional BMPs, LIDs generally enriched TP and SRP concentrations in stormwater surface outflow and yielded poorer P runoff load control. The SRP concentration reduction and enrichment factors of LIDs also tended to be more sensitive to variations in climate and watershed characteristics. That is, LIDs were more likely to enrich surface runoff SRP concentrations in drier climates, when inflow SRP concentrations were low, and for watersheds exhibiting high impervious land cover. Overall, our results imply that stormwater BMPs do not universally attenuate urban P export and that preferentially implementing LIDs over traditional BMPs may increase TP and SRP export to receiving freshwater bodies, hence magnifying eutrophication risks.
Collapse
Affiliation(s)
- Bowen Zhou
- Ecohydrology
Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
- Water
Institute, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Chris Parsons
- Watershed
Hydrology and Ecology Research Division, Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington L7S 1A1, Ontario, Canada
| | - Philippe Van Cappellen
- Ecohydrology
Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
- Water
Institute, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
5
|
Rullander G, Lorenz C, Strömvall AM, Vollertsen J, Dalahmeh SS. Bark and biochar in horizontal flow filters effectively remove microplastics from stormwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124335. [PMID: 38848957 DOI: 10.1016/j.envpol.2024.124335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 μm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by μFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 μm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.
Collapse
Affiliation(s)
- Gabriella Rullander
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden.
| | - Claudia Lorenz
- Environmental Dynamics, Department of Science and Environment, Roskilde University, Universitetsvej 1, 11.2 DK-4000, Roskilde, Denmark
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jes Vollertsen
- Aalborg University, Department of The Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| | - Sahar S Dalahmeh
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden
| |
Collapse
|
6
|
Caplan JS, Salisbury AB, McKenzie ER, Behbahani A, Eisenman SW. Spatial, temporal, and biological factors influencing plant responses to deicing salt in roadside bioinfiltration basins. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120761. [PMID: 38703641 DOI: 10.1016/j.jenvman.2024.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024]
Abstract
Plants are arguably the most visible components of stormwater bioretention basins and play key roles in stabilizing soils and removing water through transpiration. In regions with cold winters, bioretention basins along roadways can receive considerable quantities of deicing salt, much of which migrates out of the systems prior to the onset of plant growth but the rest remains in the soil. The resulting effects on plants presumably vary with time (due to annual weather patterns), space (because stormwater exposure is location-dependent), and biology (because plant taxa differ in their salt tolerance). The goal of this study was to investigate the magnitude of deicing salt's effects on bioretention plants and how it varies with spatial, temporal, and biological factors. The study took place in a set of five bioretention basins in Philadelphia, USA that receive runoff from a major highway. Over a five-year period, the electrical conductivity (EC) of influent stormwater frequently exceeded 1 mS cm-1 in winter, and occasionally surpassed that of seawater (∼50 mS cm-1). In both of the years when soil EC was measured as well, it remained elevated through all spring months, especially near basin inlets and centers. Mortality of nine plant taxa ranged widely after three years (0-90%), with rankings largely corresponding to salt tolerances. Moreover, leaf areas and/or crown volumes were strongly reduced in proportion to stormwater exposure in seven of these taxa. In the three taxa evaluated for tissue concentrations of 14 potentially toxic elements (Hemerocallis 'Happy Returns', Iris 'Caesar's Brother', and Cornus sericea 'Cardinal'), only sodium consistently exceeded the toxicity limit for salt intolerant plants (500 mg kg-1). However, exceedance of the sodium toxicity limit was associated with plants' topographic positions, with median concentrations greatest in the bottom of basins and least on basin rims. This study demonstrates that deicing salts can have detrimental effects on plants in bioretention basins, with the strongest effects likely to occur in years with the greatest snowfall (and therefore deicing salt use), in portions of basins with greatest stormwater exposure (typically around inlets and centers), and in plants with minimal salinity tolerance. Our results therefore underscore the value of installing salt-tolerant taxa in basins likely to experience any frequency of deicing salt exposure.
Collapse
Affiliation(s)
- Joshua S Caplan
- Department of Architecture & Environmental Design, Temple University, 580 Meetinghouse Road, Ambler 19002, PA, USA.
| | - Allyson B Salisbury
- Department of Architecture & Environmental Design, Temple University, 580 Meetinghouse Road, Ambler 19002, PA, USA.
| | - Erica R McKenzie
- Department of Civil & Environmental Engineering, Temple University, 1947 N. 12th Street, Philadelphia 19122, PA, USA.
| | - Ali Behbahani
- Department of Civil & Environmental Engineering, Temple University, 1947 N. 12th Street, Philadelphia 19122, PA, USA.
| | - Sasha W Eisenman
- Department of Architecture & Environmental Design, Temple University, 580 Meetinghouse Road, Ambler 19002, PA, USA.
| |
Collapse
|
7
|
Yang W, Zhang J, Hua P, Krebs P. Investigating non-point pollution mitigation strategies in response to changing environments: A cross-regional study in China and Germany. WATER RESEARCH 2023; 244:120432. [PMID: 37549547 DOI: 10.1016/j.watres.2023.120432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Climate change and urbanization have altered regional hydro-environments. Yet, the impact of future changes on the pollution risk and associated mitigation strategies requires further exploration. This study proposed a hydraulic and water-quality modeling framework, to investigate the spatiotemporal characteristics of pollution risk mitigation by low impact development (LID) strategies under future Representative Concentration Pathways (RCP) and Shared Socioeconomic Pathways (SSP) scenarios. Results demonstrated that the LID strategies exhibited an effective performance of pollutant removal in the current hydro-environment, with the removal rates ranging from 33% to 56%. In future climate and urbanization scenarios, the LID performance declined and turned to be uncertain as the greenhouse gas (GHG) emissions increased, with the removal rates ranging from 12% to 59%. Scenario analysis suggested that the LID performance was enhanced by a maximum of 73% through the diversified implementation of LID practices, and the performance uncertainty was reduced by a maximum of 67% through the increased LID deployment. In addition, comparative analysis revealed that the LID strategies in a well-developed region (Dresden, Germany) were more resilient in response to changing environments, while the LID strategy in a high-growth region (Chaohu, China) exhibited a better pollutant removal performance under low-GHG scenarios. The methods and findings in this study could provide additional insights into sustainable water quality management in response to climate change and urbanization.
Collapse
Affiliation(s)
- Wenyu Yang
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden 01062, Germany
| | - Jin Zhang
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Pei Hua
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
8
|
Zhou B, Shafii M, Parsons CT, Passeport E, Rezanezhad F, Lisogorsky A, Van Cappellen P. Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162749. [PMID: 36906029 DOI: 10.1016/j.scitotenv.2023.162749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) export from urban areas via stormwater runoff contributes to eutrophication of downstream aquatic ecosystems. Bioretention cells are a Low Impact Development (LID) technology promoted as a green solution to attenuate urban peak flow discharge, as well as the export of excess nutrients and other contaminants. Despite their rapidly growing implementation worldwide, a predictive understanding of the efficiency of bioretention cells in reducing urban P loadings remains limited. Here, we present a reaction-transport model to simulate the fate and transport of P in a bioretention cell facility in the greater Toronto metropolitan area. The model incorporates a representation of the biogeochemical reaction network that controls P cycling within the cell. We used the model as a diagnostic tool to determine the relative importance of processes immobilizing P in the bioretention cell. The model predictions were compared to multi-year observational data on 1) the outflow loads of total P (TP) and soluble reactive P (SRP) during the 2012-2017 period, 2) TP depth profiles collected at 4 time points during the 2012-2019 period, and 3) sequential chemical P extractions performed on core samples from the filter media layer obtained in 2019. Results indicate that exfiltration to underlying native soil was principally responsible for decreasing the surface water discharge from the bioretention cell (63 % runoff reduction). From 2012 to 2017, the cumulative outflow export loads of TP and SRP only accounted for 1 % and 2 % of the corresponding inflow loads, respectively, hence demonstrating the extremely high P reduction efficiency of this bioretention cell. Accumulation in the filter media layer was the predominant mechanism responsible for the reduction in P outflow loading (57 % retention of TP inflow load) followed by plant uptake (21 % TP retention). Of the P retained within the filter media layer, 48 % occurred in stable, 41 % in potentially mobilizable, and 11 % in easily mobilizable forms. There were no signs that the P retention capacity of the bioretention cell was approaching saturation after 7 years of operation. The reactive transport modeling approach developed here can in principle be transferred and adapted to fit other bioretention cell designs and hydrological regimes to estimate P surface loading reductions at a range of temporal scales, from a single precipitation event to long-term (i.e., multi-year) operation.
Collapse
Affiliation(s)
- Bowen Zhou
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada; Water Institute, University of Waterloo, Waterloo, Canada.
| | - Mahyar Shafii
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada; Water Institute, University of Waterloo, Waterloo, Canada
| | - Chris T Parsons
- Watershed Hydrology and Ecology Research Division, Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, Canada
| | - Elodie Passeport
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Fereidoun Rezanezhad
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada; Water Institute, University of Waterloo, Waterloo, Canada
| | - Ariel Lisogorsky
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada; Water Institute, University of Waterloo, Waterloo, Canada
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada; Water Institute, University of Waterloo, Waterloo, Canada
| |
Collapse
|
9
|
Wan Y, Liu N, Wang J, Pei J, Mei G. Experimental and numerical research on the hydrological characteristics of sunken green space with a new type of composite structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47892-47912. [PMID: 36749511 DOI: 10.1007/s11356-023-25621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Based on the characteristics of concentrated rainwater runoff in the mountainous areas of southwestern China and the low rates of rainwater infiltration into low-permeability soils. We have built a new type of sunken green space structure with a combination of a "overflow port and rainwater storage layer" and carried out model tests of storage and drainage performance under heavy rain conditions. The hydrological response of the new composite structure parameters to the sunken green space was analyzed using the HYDRUS-2D program. The results show that the new composite structure has a significant impact on runoff reduction, drainage, and rainwater storage. For the 100a return period, compared with RSL-0 (0 cm rainwater storage layer), the initial and peak drainage times of RSL-25 were delayed by 30 min and 38 min, respectively, and the rainwater storage rate increased by 13.5%. Compared with no overflow port, the peak drainage increased by 78%, the initial drainage time advanced by 73 min, and the cumulative drainage volume increased by 186%. In addition, as the height of the overflow increased, the surface rainwater absorbed by the sunken green space gradually decreased. The sunken green space with OPH-5 (overflow port height of 5 cm) could absorb more than 75% of the rainwater in the rainwater overflow layer, while the absorption capacities of OPH-7.5 and OPH-10 (overflow port height of 7.5 cm and 10 cm) were basically below 75%. In this case, the OPH-5 and the depth of the storage layer not being less than 250 cm provide the best setting for the new combined structure of the sunken green space. In conclusion, the new composite structure designed in this experiment effectively increased the hydrological performance of the layered sunken green space.
Collapse
Affiliation(s)
- Yonghao Wan
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guiyang, 550025, China
| | - Ning Liu
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guiyang, 550025, China.
| | - Jun Wang
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Junhao Pei
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guiyang, 550025, China
| | - Guoxiong Mei
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
10
|
Gong Y, Li X, Xie P, Fu H, Nie L, Li J, Li Y. The migration and accumulation of typical pollutants in the growing media layer of bioretention facilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44591-44606. [PMID: 36694065 PMCID: PMC9873394 DOI: 10.1007/s11356-023-25305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
A series of complex physical and chemical processes, such as interception, migration, accumulation, and transformation, can occur when pollutants in stormwater runoff enter the growing media layer of bioretention facilities, affecting the purification of stormwater runoff by bioretention facilities. The migration and accumulation of pollutants in the growing media layer need long-term monitoring in traditional experimental studies. In this study, we established the Hydrus-1D model of water and solution transport for the bioretention facilities. By analyzing the variation of cumulative fluxes of NO3--N and Pb with time and depth, we investigated pollutant migration and accumulation trends in the growing media layer of bioretention facilities. It can provide support for reducing runoff pollutants in bioretention facilities. The Hydrus-1D model was calibrated and verified with experimental data, and the input data (runoff pollutant concentration) for the pollutant concentration boundary was obtained from the SWMM model. The results demonstrated that the cumulative fluxes of NO3--N and Pb increased with the passage of simulation time and depth of the growing media layer overall. From the top to the bottom of the growing media layer, the change rates of the peak cumulative fluxes of NO3--N and Pb were strongly linked with their levels in the runoff. An increase in rainfall decreased the content of NO3--N and Pb in the growing media layer, and this phenomenon was more obvious in the lower part of the layer.
Collapse
Affiliation(s)
- Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xia Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Xie
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hongyan Fu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Qingdao Planning Engineering Design Research Institute Co., Ltd., Qingdao, 266000, China
| | - Linmei Nie
- Centre for Sustainable Development and Innovation of Water Technology, 0957, Oslo, Norway
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yanhong Li
- Beijing Guohuan Tsinghua Environmental Engineering Design & Research Institute Co., Ltd., Beijing, 100084, China
| |
Collapse
|
11
|
Zhou J, Xiong J, Zhu J, Xie X, Ni J, Liu Y, Wang X. Effects of freeze-thaw cycles on nutrient removal from bioretention cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116556. [PMID: 36283173 DOI: 10.1016/j.jenvman.2022.116556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
There have been numerous summaries of the runoff purification characteristics of bioretention cells in warm climates. However, little has been done on the effects of freeze-thaw cycles (FTCs) that frequently occur in cold regions on bioretention cell performance. Three experimental columns were constructed to simulate the operation of the bioretention cell under the FTCs. The effects of FTCs on the nutrient removal efficiency of different filling bioretention cells were analyzed. The results showed that the ammonia nitrogen (NH4+-N) concentration in the effluent of the wood chip bioretention cell under the T3 conditions (WBCF) (2.35 mg/L) was significantly higher than that of the wood chip bioretention cell operating at room temperature (WBCR) (0.62 mg/L). The effluent NH4+-N concentration of aluminum sludge bioretention cell (ABCF) (0.096 mg/L) under the FTCs was lower than that of WBCF (0.91 mg/L). Under the T3 condition, the effluent nitrate nitrogen (NO3--N) and total nitrogen (TN) concentrations of WBCF (5.33 mg/L and 8.86 mg/L) were higher than those of WBCR (5 mg/L and 6.11 mg/L) at room temperature. Under FTCs conditions, both WBCF and ABCF had high NO3--N removal efficiency (up to 85.87% and 24.75%) at the initial stage of thawing of the filler, and the efficiency gradually decreased with the thawing of the filler. With the increase of FTCs, the NO3--N removal efficiency of WBCF gradually decreased (always higher than 13.6%), while the removal efficiency of ABCF fluctuated wildly (the removal efficiency was primarily negative). The total phosphorus (TP) concentration in the effluent of WBCF (0.11 mg/L) under the T3 conditions was lower than that of WBCR (0.02 mg/L) at room temperature, and the TP concentration of ABCF (0.021 mg/L) in the effluent under the FTCs was slightly lower than that of WBCF (0.031 mg/L). The FTCs have a more significant impact on removing nitrogen pollutants in runoff, but have little effect on phosphorus. Compared with aluminum sludge, wood chips are more suitable for efficient removal of nitrogen pollutants in runoff under the FTCs. The experimental conclusions can provide a reference for the construction of bioretention cells in cold regions.
Collapse
Affiliation(s)
- Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China.
| | - Junguo Zhu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Xiaofei Xie
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Junjie Ni
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yanzheng Liu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Xi'an University of Architecture and Technology and University of South Australia, An De College, Xi'an 710055, China
| | - Xiangjun Wang
- Shanghai Yijing Architectural Design Co., Ltd. Xi'an Branch, Baisha Road, Yanta District No.8, Xi'an 710055, China
| |
Collapse
|
12
|
Chai G, Wang D, Shan J, Jiang C, Yang Z, Liu E, Meng H, Wang H, Wang Z, Qin L, Xi J, Ma Y, Li H, Qian Y, Li J, Lin Y. Accumulation of high-molecular-weight polycyclic aromatic hydrocarbon impacted the performance and microbial ecology of bioretention systems. CHEMOSPHERE 2022; 298:134314. [PMID: 35292274 DOI: 10.1016/j.chemosphere.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Bioretention has been considered as an effective management practice for urban stormwater in the removal of pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the accumulation of high-molecular-weight (HMW) PAHs in bioretention systems and their potential impact on the pollutants removal performance and microbial ecology are still not fully understood. In this study, comparisons of treatment effectiveness, enzyme activity and microbial community in bioretention systems with different types of media amendments were carried out at different spiking levels of pyrene (PYR). The results showed that the removal efficiencies of chemical oxygen demand (COD) and total nitrogen in the bioretention systems were negatively impacted by the PYR levels. The relative activities of soil dehydrogenase and urease were increasingly inhibited by the elevated PYR level, indicating the declining microbial activity regarding organic matter decomposition. The spiking of PYR negatively affected microbial diversity, and distinct time- and influent-dependent changes in microbial communities were observed. The relative abundance of PAH-degrading microorganisms increased in PYR-spiked systems, while the abundance of nitrifiers decreased. The addition of media amendments was beneficial for the enrichment of microorganisms that are more resistant to PYR-related stress, therefore elevating the COD concentration removal rate by ∼50%. This study gives new insight into the multifaceted impacts of HMW PAH accumulation on microbial fingerprinting and enzyme activities, which may provide guidance on better stormwater management practices via bioretention in terms of improved system longevity and performance.
Collapse
Affiliation(s)
- Guodong Chai
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Dongqi Wang
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Jiaqi Shan
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhangjie Yang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Enyu Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiayao Xi
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuenan Ma
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Huaien Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yishi Qian
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Jiake Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
13
|
Impact of Environmental Factors and System Structure on Bioretention Evaporation Efficiency. SUSTAINABILITY 2022. [DOI: 10.3390/su14031286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bioretention is an important low impact technology that has prominent stormwater detention and purification capacity. Current study focused on analyzing the impact of environmental factors and system structure on bioretention evaporation efficiency. In operational phase, the moisture content in bioretention packing changes constantly, directly affecting the stagnation efficiency of the bioretention. Therefore, it is very important to study the evaporation efficiency of the bioretention for objective evaluation of hydrologic effects. In this study, an artificial climate chamber was used to investigate the effect of environmental factors and bioretention structure on the evaporation efficiency of bioretention. The evaporation capacity of bioretention was analyzed under different temperature and relative humidity conditions in a laboratory-scale artificial climate chamber. The result showed that evaporation rate at the initial stage was close to the maximum evaporation capacity under an environmentally controlled rapid decrease. Results revealed that after 15 h, the evaporation rate decreased more than 60%, and the evaporation rate decreased rapidly at the higher temperature, whereas the evaporation rate in the third stage was low and stable. It was about 1 mm/d (0.82~1.1 mm/d) and formed a dry soil layer. The results revealed that cumulative evaporation of the bioretention with a submerged zone was notably higher than that without the submerged zone, and the cumulative evaporation after 50 h was 16.48% higher. In the second stage of evaporation, the decreasing amplitude of the evaporation capacity of bioretention with the submerged zone was also relatively slow. Moisture content in upper layers in bioretention packing was recharged from the bottom submerged zone by capillary action and water vapor diffusion. These research findings can be used to evaluate the hydrologic effect of bioretention and can also be used to guide its design.
Collapse
|