1
|
Proshad R, Dey HC, Khan MSU, Baroi A, Kumar S, Idris AM. Source-oriented risks apportionment of toxic metals in river sediments of Bangladesh: a national wide application of PMF model and pollution indices. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6769-6792. [PMID: 36633753 DOI: 10.1007/s10653-022-01455-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Intense human activities, particularly industrial and agricultural output, has enriched metal(loid)s in riverine sediment and endangered aquatic ecosystems and human health. Promoting proper river management requires an assessment of the possible ecological hazards and pollution posed by metal(loid)s in sediments. However, there are limited large-scale risk assessments of metal(loid)s contamination in riverine sediment in heavily populated nations like Bangladesh. This study compiled data on sediment metal(loid)s, for example, Cd, As, Cu, Ni, Cr, Pb, Mn, and Zn, from 24 major rivers located across Bangladesh between 2011 and 2022 and applied positive matrix factorization (PMF) to identify the critical metal(loid)s sources and PMF model-based ecological risks. Based on studied metal(loid)s, 12-78% of rivers posed higher contents than the upper continental crust and 8% of the river sediments for Cr and Ni, whereas 4% for Cd and As exceeded probable effect concentration. Cr and Ni in the sum of toxic units (STU), whereas Mn, As and Cd in potential ecological risk (PER) posed the highest contribution to contaminate sediments. In the studied rivers, sediment contaminant Mn derived from natural sources; Zn and Ni originated from mixed sources; Cr and Cu were released from the tannery and industrial emissions and Cd originated from agricultural practices. Source-based PER and NIRI indicated that mixed source (4% rivers) and tannery and industrial emission (4% rivers) posed very high risks in sediments. For the creation of macroscale policies and the restoration of contaminated rivers, our national-scale comprehensive study offers helpful references.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki Patuakhali, 8602, Bangladesh
| | - Md Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sazal Kumar
- University of Newcastle, NSW, 2308, Australia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
2
|
Gupta S, Gupta SK. Application of Monte Carlo simulation for carcinogenic and non-carcinogenic risks assessment through multi-exposure pathways of heavy metals of river water and sediment, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3465-3486. [PMID: 36346487 DOI: 10.1007/s10653-022-01421-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/14/2022] [Indexed: 06/01/2023]
Abstract
Heavy metal contamination has severe detrimental impacts on the entire river ecosystem's quality and causes potential risks to human health. An integrated approach comprising deterministic and probabilistic (Monte Carlo simulation) models with sensitivity analysis was adopted to determine heavy metals' chronic daily intake (CDI) and their associated health risks from the riverine ecosystem. Both carcinogenic and non-carcinogenic risks of water and sediment were estimated through multi-exposure pathways. The analytical results indicated that the concentration patterns of heavy metals in sediment (Fe > Mn > Sr > Zn > Cr > Cu > Cd) were slightly different and higher than in water (Fe > Zn > Cr > Sr > Mn > Cu > Cd). The potential carcinogenic risks of Cr and Cd in sediment (5.06E-02, 5.98E-04) were significantly (p < 0.05) higher than in water (9.08E-04, 8.97E-05). Moreover, 95th percentile values of total cancer risk (TCR) for sediment (1.80E-02, 3.37E-02) were about 22 and 143 times higher than those of water (8.10E-04, 2.36E-04) for adults and children, respectively. The analysis of non-carcinogenic risk revealed a significantly higher overall hazard index (OHI) for both sediment (adults: 1.26E+02, children: 1.11E+03) and water (adults: 3.26E+00, children: 9.85E+00) than the USEPA guidelines (OHI ≤ 1). The sensitivity analysis identified that the concentration of heavy metals was the most influencing input factor in health risk assessment. Based on the reasonable maximum exposure estimate (RME), the study will be advantageous for researchers, scientists, policymakers, and regulatory authorities to predict and manage human health risks.
Collapse
Affiliation(s)
- Suyog Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Sunil Kumar Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
3
|
Wang Z, Huang W, Zhu D, Huang Q, Wu L, Liu X. Determining Critical Thresholds of Environmental Flow Restoration Based on Planktonic Index of Biotic Integrity (P-IBI): A Case Study in the Typical Tributaries of Poyang Lake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:169. [PMID: 36612489 PMCID: PMC9820035 DOI: 10.3390/ijerph20010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Hydropower construction and climate change have aggravated river hydrological changes, which have reduced the water flow regime in the Ruhe River Basin. The reduced flow of the river seriously affected the water supply of nearby residents and the operation of the river ecosystem. Therefore, in order to alleviate the contradiction between water use for hydropower facilities and environmental water use, the urgent need is to explore the ecological flow-threshold of rivers. This study took the Fuhe River Basin as the research object, and summarized the monitoring data of eight hydrological stations from recent decades. Based on this, we explored the response law of P-IBI and flow, a tool to quickly measure the health of the ecosystem. Through the response relationship between alterations in environmental factors of the river and phytoplankton index of biotic integrity (P-IBI), it was determined that environmental flow was the dominant influencing factor of P-IBI. According to P-IBI, the threshold of environmental discharge in the Fuhe River was limited to 273~826.8 m3/s. This study established a regulatory framework for the river flow of large rivers by constructing P-IBI and determining the critical thresholds of environmental flow by constraining the constitution. These results provide a theoretical basis for better planning and improvement of river ecosystem restoration and river utilization.
Collapse
Affiliation(s)
- Zhuowei Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Wei Huang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dayu Zhu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Qi Huang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Nanchang 330022, China
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Leixiang Wu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xingchen Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
4
|
Ma S, Qiao L, Liu X, Zhang S, Zhang L, Qiu Z, Yu C. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways. ENVIRONMENTAL RESEARCH 2022; 214:113822. [PMID: 35803340 DOI: 10.1016/j.envres.2022.113822] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/04/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Currently, understanding the structure and function of the microbial community is the key step in artificially constructing microbial communities to control soil heavy metal pollution. Abundant/rare microbial communities play different roles in different levels of concentrations. However, the correlation between heavy metals and rare/abundant subgroups is poorly understood. In this study, we used a metagenomics approach to comprehensively investigate the evolutionary changes in microbial diversity, structure, and function under different heavy metal concentration stress in soils surrounding gold tailings. The results show that the main pollutants were Pb, As, and Zn. Indigenous microorganisms have different responses to heavy metal concentrations. Bacteria are the main components of indigenous microorganisms, mainly including Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. With the increase of heavy metal pollution, the relative abundance of Proteobacteria increased, and that of Actinobacteria decreased. Archaea was significantly inhibited by heavy metal stress and was more sensitive to heavy metal concentration. The response of fungi to heavy metal concentration was not obvious. The results of KEGG pathways showed that carbon fixation was inhibited with increasing heavy metal concentrations, while nitrogen metabolism was in contrast. Abundant subcommunity had a greater correlation mainly with metal resistance mechanisms, and rare subcommunity plays a key role for soil nutrient cycling such as N, S cycling in soils contaminated. Overall, this study provides a comprehensive analysis of the effects of heavy metal stress at different concentrations on microorganisms in farmland around gold tailings and reveals the relationship between heavy metals on KEGG pathways.
Collapse
Affiliation(s)
- Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, 100032 Beijing, China
| | - Shuo Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Luying Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Ziliang Qiu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China.
| |
Collapse
|