1
|
Bernardini I, Mezzelani M, Panni M, Dalla Rovere G, Nardi A, El Idrissi O, Peruzza L, Gorbi S, Ferraresso S, Bargelloni L, Patarnello T, Regoli F, Milan M. Transcriptional modulation in Mediterranean Mussel Mytilus galloprovincialis following exposure to four pharmaceuticals widely distributed in coastal areas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107255. [PMID: 39904231 DOI: 10.1016/j.aquatox.2025.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
Ecotoxicological risk and the mode of action of human drugs on non-target marine animals remain unclear, keeping a gap of knowledge on risks related to ecosystem disruption and chemical contamination of food chains. Understanding these impacts is critical to developing proper waste management practices and regulatory frameworks to prevent long-term environmental and human health problems. This study investigates the impacts of Gemfibrozil, Metformin, Ramipril, and Venlafaxine, individually and combined on Mytilus galloprovincialis over 30 days and assesses persistent effects post-recovery using RNA-seq and 16S rRNA microbiota profiling. All pharmaceuticals caused few changes in the microbiota while gene expression analyses highlighted drug-specific alterations. Gemfibrozil exposure led to alterations in lipid and fatty acid metabolism, suggesting a similar mode of action to that observed in target species. Metformin significantly impacted the mussels' energy metabolism, with disruptions in specific genes and pathways potentially related to glucose uptake and insulin signaling. Metformin was also the treatment leading to the most significant changes in predicted functional profiles of the microbiota, suggesting that it may influence the microbiota's potential to interact with host glucose metabolism. Ramipril exposure resulted in the up-regulation of stress response and cell cycle regulation pathways and Venlafaxine induced changes in serotonin and synapse pathways, indicating potential similarities in mechanisms of action with target species. Mixture of the four pharmaceuticals severely impacted mussel physiology, including impairment of oxidative phosphorylation and compensatory activation of several pathways involved in energy metabolism. Despite recovery after depuration, changes in stress and energy related metabolism pathways suggests potential persistent effects from combined pharmaceutical exposure. Notably, the up-regulation of mTOR1 signaling in all treatments after 30 days underscores its key role in coordinating bivalve stress responses. The Transcriptomic Hazard Index (THI) calculated for each treatment indicates major/severe hazards after exposure that decreased to slight/moderate hazards after depuration.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy
| | - Michela Panni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy
| | - Giulia Dalla Rovere
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Ouafa El Idrissi
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Serena Ferraresso
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Luca Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| |
Collapse
|
2
|
Terzic S, Ivankovic K, Jambrosic K, Kurtovic B, Ahel M. Bioaccumulation and tissue distribution of pharmaceuticals and their transformation products in fish along the pollution gradients of a wastewater-impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177339. [PMID: 39505042 DOI: 10.1016/j.scitotenv.2024.177339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
A field study on the occurrence and distribution of forty-three pharmaceutically active compounds (PhACs) in water and fish samples from anthropogenically impacted section of the Sava River (Croatia) was performed to estimate the importance of bioaccumulation for the environmental risk assessment of PhACs. The study was performed using a highly specific LC-MS/MS method, tailored to include the most prominent PhACs from different therapeutic categories as well as their major metabolites and/or transformation products (TPs). The results revealed a widespread occurrence of PhAC residues both in water and fish samples with a large spatial variability reflecting the distance from the dominant wastewater discharges. The most prominent PhAC categories in less polluted upstream part of the river were common psychostimulants caffeine and cotinine, therapeutic opioids and cardiovascular drugs, while in the river section affected by the local municipal and industrial wastewater inputs, antibiotic drugs became clearly predominant, especially in fish tissue samples. The apparent bioconcentration factors (BCFs) of investigated PhACs varied over several orders of magnitude, from 0.02 ± 0.01 L kg-1 for O-desmethyl tramadol in fish muscle to 784 ± 260 L kg-1 for terbinafine in fish liver, indicating rather large differences in their bioconcentration potential and affinity to different tissues, with the tissue-specific BCFs increasing in the following order: muscle < gills < gonads < heart < liver < kidneys. The bioconcentration potential of most of the PhACs included in this study was only low to moderate however moderately high BCFs of certain PhACs (e.g. sertraline, terbinafine, loratadine, diazepam and azithromycin) in some tissues should be taken into consideration when assessing their potential environmental risks. Moreover, it was shown that BCFs could be strongly affected by biotransformation in fish. Risk prioritization based on risk quotient (RQ) and ToxPi index, revealed antibiotics, in particular azithromycin, and therapeutic psychoactive substances as the most hazardous pharmaceutical contaminants in the Sava River.
Collapse
Affiliation(s)
- Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| | - Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Bozidar Kurtovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Lemaire E, Gomez E, Le Yondre N, Malherbe A, Courant F. Mediterranean mussels (Mytilus galloprovincialis) exposure to fluoxetine: Bioaccumulation and biotransformation products. CHEMOSPHERE 2024; 365:143314. [PMID: 39278326 DOI: 10.1016/j.chemosphere.2024.143314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
The significant rise in antidepressant consumption in recent years was accentuated by COVID-19 pandemic. Among these antidepressant, fluoxetine, a selective serotonin re-uptake inhibitor (SSRI), is the most prescribed worldwide. The present study investigated its bioaccumulation and metabolization in the mussel Mytilus galloprovincialis, generally recognized as a reliable bioindicator for assessing environmental quality and the accumulation of various contaminants. Mussels were exposed to a nominal concentration of fluoxetine (3.1 μg/L) for 28 days. Mussels were sacrificed at day 2, 7, 14 and 28 of exposure. The order of accumulation level was gills > digestive glands > soft tissues, and a regular increase in fluoxetine and norfluoxetine was observed across the various sampling days for both digestive glands and soft tissues. The calculated bioconcentration factor (BCF) ranged from 253 at D2 to 1734 at D28 for fluoxetine, and pseudo-BCF from 7 at D2 to 64 at D28 for norfluoxetine. Non-targeted approaches highlighted ten metabolites, which are reported for the first time in Mytilus, in addition to norfluoxetine. Notably, this study highlighted two phase I metabolites and one phase II metabolite previously unreported. These findings contribute to the understanding of fluoxetine accumulation and metabolism in Mytilus and enhance the knowledge of pharmaceuticals detoxification processes in non-target organisms.
Collapse
Affiliation(s)
- E Lemaire
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - E Gomez
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform on non-target exposomics and metabolomics (PONTEM), Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - N Le Yondre
- Univ. Rennes, CNRS, Centre Régional de Mesures Physiques de l'Ouest (CRMPO), UAR 2025 ScanMAT, F-35042, Rennes, France
| | - A Malherbe
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - F Courant
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform on non-target exposomics and metabolomics (PONTEM), Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Ivankovic K, Krizman-Matasic I, Dragojevic J, Mihaljevic I, Smital T, Ahel M, Terzic S. Uptake/depuration kinetics, bioaccumulation potential and metabolic transformation of a complex pharmaceutical mixture in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134144. [PMID: 38554516 DOI: 10.1016/j.jhazmat.2024.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Uptake and elimination kinetics, bioconcentration factors (BCFs), and metabolic transformation of 20 different pharmaceutically active compounds (PhACs), covering a wide range of therapeutic categories and physico-chemical properties, were studied using zebrafish (Danio rerio). The fish were exposed to the mixture of the selected PhACs at environmentally relevant concentrations similar to 10 µg L-1. The experiments were performed in semi-static conditions and comprised a 7-day uptake period followed by a 7-day depuration period. Most of the PhACs reached a concentration plateau within the 7-day uptake-phase which was followed by an efficient depuration, with the observed uptake (ku) and depuration rate constants (kd,) ranging between 0.002 and 3.752 L kg-1 h-1, and 0.010 to 0.217 h-1, respectively. The investigated PhACs showed low to moderate BCFs. The highest BCFs of 47.8, 28.6 and 47.6 L kg-1 were determined for sertraline, diazepam and desloratadine, respectively. A high contribution of metabolic products to the total internal concentration was observed for some PhACs such as codeine (69%), sulfamethoxazole (51%) and verapamil (87%), which has to be taken into account when assessing the bioconcentration potential. Moreover, most of the metabolites exhibited significantly longer half-lives in zebrafish than their parent compounds and affected the overall depuration kinetics.
Collapse
Affiliation(s)
- Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Ivona Krizman-Matasic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Jelena Dragojevic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Ivan Mihaljevic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Tvrtko Smital
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
5
|
Iranifam M, Royan M, Golshani P, Hassanpour-Khaneghah M, Al Lawati HAJ. FeS 2 nanosheets-luminol-O 2 chemiluminescence method for determination of venlafaxine hydrochloride, imipramine hydrochloride, and cefazolin sodium. LUMINESCENCE 2024; 39:e4745. [PMID: 38644416 DOI: 10.1002/bio.4745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Maryam Royan
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Pariya Golshani
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Mahdiyeh Hassanpour-Khaneghah
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
6
|
Wu G, Wu T, Chen Y, He X, Liu P, Wang D, Geng J, Zhang XX. A comprehensive insight into the transformation pathways and products of fluoxetine and venlafaxine in wastewater based on molecular networking nontarget screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167727. [PMID: 37864996 DOI: 10.1016/j.scitotenv.2023.167727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Fluoxetine (FLX) and venlafaxine (VEN) are widely used antidepressant pharmaceuticals and were frequently detected in wastewater. Despite incomplete mineralization during biological wastewater treatment processes has been revealed, little is known about their transformation products (TPs) formed in the biological systems. To fill this gap, batch reactors and molecular networking nontarget screening were employed to identify the TPs and explore the transformation pathways of FLX and VEN in wastewater. On the basis, the concentrations of the TPs in wastewater treatment plants (WWTPs) were determined and their toxicity was predicted. The removal rate constants per unit of biomass of FLX and VEN were up to 0.3192 and 0.1644 L/(gMLSS*d) in batch experiments, respectively. Subsequently, 11 TPs of VEN and 11 TPs of FLX were tentatively identified, among which 9 TPs of FLX and 5 TPs of VEN were newly reported in this study. The proposed transformation pathways provided new insights into the transformation reactions including dehydrogenation, N-formylation and hydroxylation for FLX, and formylation, epoxidation and methylation for VEN. Particularly, N-succinylation and demethylation were the dominant transformation pathways for FLX and VEN during transformation processes. The results of sampling campaigns revealed that the accumulated concentration of TPs were higher than the concentrations of VEN in effluent of WWTPs. In silico prediction results suggested that certain TPs have higher toxicity, persistence and biodegradability than their corresponding parent compounds of FLX and VEN. In addition, VEN-TP264(a) showed higher ecological risks than VEN. This study revealed the transformation processes and fate of FLX and VEN in wastewater, indicating that greater concerns should be exerted on the toxicity detection and control of the TPs of FLX and VEN in the treated wastewater.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Tianshu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yiran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China; School of Environment, Hohai University, Nanjing 211100, Jiangsu, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
7
|
Dumas T, Gomez E, Boccard J, Ramirez G, Armengaud J, Escande A, Mathieu O, Fenet H, Courant F. Mixture effects of pharmaceuticals carbamazepine, diclofenac and venlafaxine on Mytilus galloprovincialis mussel probed by metabolomics and proteogenomics combined approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168015. [PMID: 37879482 DOI: 10.1016/j.scitotenv.2023.168015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Exposure to single molecules under laboratory conditions has led to a better understanding of the mechanisms of action (MeOAs) and effects of pharmaceutical active compounds (PhACs) on non-target organisms. However, not taking the co-occurrence of contaminants in the environment and their possible interactions into account may lead to underestimation of their impacts. In this study, we combined untargeted metabolomics and proteogenomics approaches to assess the mixture effects of diclofenac, carbamazepine and venlafaxine on marine mussels (Mytilus galloprovincialis). Our multi-omics approach and data fusion strategy highlighted how such xenobiotic cocktails induce important cellular changes that can be harmful to marine bivalves. This response is mainly characterized by energy metabolism disruption, fatty acid degradation, protein synthesis and degradation, and the induction of endoplasmic reticulum stress and oxidative stress. The known MeOAs and molecular signatures of PhACs were taken into consideration to gain insight into the mixture effects, thereby revealing a potential additive effect. Multi-omics approaches on mussels as sentinels offer a comprehensive overview of molecular and cellular responses triggered by exposure to contaminant mixtures, even at environmental concentrations.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Gaëlle Ramirez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Aurélie Escande
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Jin L, Wang Q, Yan M, Gu J, Zhang K, Lam PKS, Ruan Y. Enantiospecific Uptake and Depuration Kinetics of Chiral Metoprolol and Venlafaxine in Marine Medaka ( Oryzias melastigma): Tissue Distribution and Metabolite Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4471-4480. [PMID: 36877486 DOI: 10.1021/acs.est.2c08379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing use of chiral pharmaceuticals has led to their widespread presence in the environment. However, their toxicokinetics have rarely been reported. Therefore, the tissue-specific uptake and depuration kinetics of two pairs of pharmaceutical enantiomers, S-(-)-metoprolol versus R-(+)-metoprolol and S-(+)-venlafaxine versus R-(-)-venlafaxine, were studied in marine medaka (Oryzias melastigma) during a 28-day exposure and 14-day clearance period. The toxicokinetics of the studied pharmaceuticals, including uptake and depuration rate constants, depuration half-life (t1/2), and bioconcentration factor (BCF), were reported for the first time. The whole-fish results demonstrated a higher S- than R-venlafaxine bioaccumulation potential, whereas no significant difference was observed between S- and R-metoprolol. O-desmethyl-metoprolol (ODM) and α-hydroxy-metoprolol (AHM) were the main metoprolol metabolites identified by suspect screening, and the ratios of ODM to AHM were 3.08 and 1.35 for S- and R-metoprolol, respectively. N,O-Didesmethyl-venlafaxine (NODDV) and N-desmethyl-venlafaxine (NDV) were the main venlafaxine metabolites, and the ratios of NODDV to NDV were 1.55 and 0.73 for S- and R-venlafaxine, respectively. The highest tissue-specific BCFs of the four enantiomers were all found in the eyes, meriting in-depth investigation.
Collapse
Affiliation(s)
- Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jiarui Gu
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Paul K S Lam
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
9
|
Ramirez G, Gomez E, Dumas T, Rosain D, Mathieu O, Fenet H, Courant F. Early Biological Modulations Resulting from 1-Week Venlafaxine Exposure of Marine Mussels Mytilus galloprovincialis Determined by a Metabolomic Approach. Metabolites 2022; 12:metabo12030197. [PMID: 35323640 PMCID: PMC8949932 DOI: 10.3390/metabo12030197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
There is growing evidence of the presence of pharmaceuticals in natural waters and their accumulation in aquatic organisms. While their mode of action on non-target organisms is still not clearly understood, their effects warrant assessment. The present study assessed the metabolome of the Mediterranean mussel (Mytilus galloprovincialis) exposed to a 10 µg/L nominal concentration of the antidepressant venlafaxine (VLF) at 3 time-points (1, 3, and 7 days). Over the exposure period, we observed up- or down-modulations of 113 metabolites, belonging to several metabolisms, e.g., amino acids (phenylalanine, tyrosine, tryptophan, etc.), purine and pyrimidine metabolisms (adenosine, cyclic AMP, thymidine, etc.), and several other metabolites involved in diverse functions. Serotonin showed the same time-course modulation pattern in both male and female mussels, which was consistent with its mode of action in humans, i.e., after a slight decrease on the first day of exposure, its levels increased at day 7 in exposed mussels. We found that the modulation pattern of impacted metabolites was not constant over time and it was gender-specific, as male and female mussels responded differently to VLF exposure.
Collapse
Affiliation(s)
- Gaëlle Ramirez
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Elena Gomez
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Thibaut Dumas
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - David Rosain
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Olivier Mathieu
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
- Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Frédérique Courant
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
- Correspondence: ; Tel.: +33-411-759-414
| |
Collapse
|
10
|
Canesi L, Miglioli A, Balbi T, Fabbri E. Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Front Endocrinol (Lausanne) 2022; 13:792589. [PMID: 35282445 PMCID: PMC8913902 DOI: 10.3389/fendo.2022.792589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Contaminants of Emerging Concerns (CECs) are defined as chemicals not commonly monitored in aquatic ecosystems, but with the potential to cause adverse effects on biota. CECs include Endocrine Disrupting Chemicals (EDCs) and Neuro-Endocrine disruptors (NEDs) of vertebrates. However, most invertebrates only rely on neuroendocrine systems to maintain homeostatic processes. Although conserved neuroendocrine components have been characterized in ecologically relevant groups, limited knowledge on invertebrate neuroendocrinology makes it difficult to define EDCs and NEDs in most species. The monoamine serotonin (5-hydroxytryptamine, 5-HT) acts both as a neurotransmitter and as a peripheral hormone in mammals. In molluscs, 5-HT is involved in multiple physiological roles and molecular components of the serotonergic system have been identified. This review is focused on the effects of CECs on the serotonergic system of bivalve molluscs. Bivalves are widespread in all aquatic environments, estuarine and coastal areas in particular, where they are exposed to a variety of chemicals. In bivalves, 5-HT is involved in gametogenesis and spawning, oocyte maturation and sperm motility, regulates heart function, gill ciliary beating, mantle/siphon function, the ''catch'' state of smooth muscle and immune responses. Components of 5-HT transduction (receptors and signaling pathways) are being identified in several bivalve species. Different CECs have been shown to affect bivalve serotonergic system. This particularly applies to antidepressants, among the most commonly detected human pharmaceuticals in the aquatic environment. In particular, selective serotonin reuptake inhibitors (SSRIs) are frequently detected in seawater and in bivalve tissues. Information available on the effects and mechanisms of action of SSRIs on the serotonergic system of adult bivalves is summarized. Data are also reported on the effects of CECs on development of neuroendocrine pathways of early larval stages, in particular on the effects of model EDCs in the marine mussel Mytilus galloprovincialis. Overall, available data point at the serotonergic system as a sensitive target for neuroendocrine disruption in bivalves. The results contribute drawing Adverse Outcome Pathways (AOPs) for model EDCs and SSRIs in larvae and adults. However, basic research on neuroendocrine signaling is still needed to evaluate the potential impact of neuroendocrine disruptors in key invertebrate groups of aquatic ecosystems.
Collapse
Affiliation(s)
- Laura Canesi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Laura Canesi,
| | - Angelica Miglioli
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Teresa Balbi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Ravenna, Italy
| |
Collapse
|
11
|
Gomez E, Boillot C, Martinez Bueno MJ, Munaron D, Mathieu O, Courant F, Fenet H. In vivo exposure of marine mussels to venlafaxine: bioconcentration and metabolization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68862-68870. [PMID: 34278554 DOI: 10.1007/s11356-021-14893-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are present in natural waters, thus contributing to the general exposure of aquatic organisms, but few data are available on the accumulation of these substances in marine organisms. The present study evaluated the in vivo bioconcentration of an antidepressant-venlafaxine (VLF)-in marine mussels (Mytilus galloprovincialis) during 7 days of exposure at nominal 10 μg/L concentration, followed by a 7-day depuration period. The bioconcentration factor (BCF) was 265 mL/g dry weight (dw). VLF accumulation reached an average tissue concentration of 2146 ± 156 ng/g dw within 7 days, showing a first-order kinetics process. N-desmethylvenlafaxine (N-VLF) and O-desmethylvenlafaxine (O-VLF) metabolites were quantified in mussel tissues, whereas N,N-didesmethylvenlafaxine (NN-VLF) was only recorded as being detected. These three metabolites were also quantified in water, indicating an active metabolism and VLF excretion in Mediterranean mussels. Complementary experiments conducted at nominal concentrations of 1, 10, and 100 μg/L for 7 days confirmed the VLF bioconcentration and metabolism and allowed us to quantify a supplementary metabolite, i.e., N,O-didesmethylvenlafaxine (NO-VLF), in mussel tissues. These results encourage further research on a more complete characterization of metabolism and on any disturbances linked to bioconcentration of VLF on bivalves.
Collapse
Affiliation(s)
- Elena Gomez
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France.
| | - Clothilde Boillot
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| | - Maria Jesus Martinez Bueno
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
- Residuos De Plaguicidas, Departamento de Fisica y Quimica, Almeria University, Almería, Spain
| | - Dominique Munaron
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Sète, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| | - Frédérique Courant
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| | - Hélène Fenet
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| |
Collapse
|