1
|
Liu R, Chen Y, Li SY, Chen YP, Guo JS, Liu SY, Yan P. Filamentous bacteria in activated sludge: Geographic distribution and impact of treatment processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124859. [PMID: 40056591 DOI: 10.1016/j.jenvman.2025.124859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/15/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
In this study, a global activated sludge communities database was used to investigate the global distribution of filamentous bacteria. The dominant filamentous bacteria worldwide were Zoogloea ramigera and Eikelboom type 1863. The incidence of sludge bulking in samples from Europe (22.4%), South America (18.8%), and North America (15.6%) was significantly higher than in other continents. The distribution of remaining filamentous bacteria shows significant regional variability. In addition, climate significantly affects the distribution of filamentous bacterial populations. The filamentous bacterial abundance in samples from polar climates (7.36%) and cold climates (4.13%) was significantly higher than in other climates. Candidatus Microthrix parvicella and Tetrasphaera spp. were the dominant filamentous bacteria in cold region. Wastewater treatment processes are also key factors affecting filamentous bacterial populations. The incidence of sludge bulking (21.6%) and the average abundance of filamentous bacteria (5.08%) in samples from CM processes were the highest, mainly induced by Thiothrix spp. In addition, filamentous sludge bulking is easily induced by Thiothrix spp. in SBR processes, and sludge bulking is easily induced by Zoogloea ramigera in PFR processes. This study provides new insights into preventing and controlling filamentous sludge bulking globally.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yang Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Song-Ya Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, 36082, AL, USA
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
2
|
Krohn C, Khudur L, Biek SK, Elliott JA, Tabatabaei S, Jiang C, Wood JL, Dias DA, Dueholm MKD, Rees CA, O'Carroll D, Stuetz R, Batstone DJ, Surapaneni A, Ball AS. Microbial population shifts during disturbance induced foaming in anaerobic digestion of primary and activated sludge. WATER RESEARCH 2025; 281:123548. [PMID: 40174565 DOI: 10.1016/j.watres.2025.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/28/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
Foaming during anaerobic digestion (AD) of sewage sludge is poorly understood and remains an uncontrollable operational obstacle for sewage treatment systems globally, causing mechanical damage, increased hazards and reduced biogas recovery. Foams during AD commonly occur after process disturbances, such as organic loading shocks. However, it is still unclear whether these foam events are biologically driven and linked to the abundance of organisms like filamentous or hydrophobic bacteria. A time-series study was conducted, comparing digestion performance, microbial community succession, metagenomes, and metabolomes in six anaerobic continuous stirred-tank reactors (CSTRs): a control group fed normally (n = 3), and one treated group inhibited through organic shock loading of more than twice the steady state loading rate with glycerol (treatment, n = 3). As soon as microbial activity and methanogenesis recovered after inhibition, significant volumes of foam accumulated simultaneously in the reactor headspace of the three treated CSTRs. Microbial abundance profiles (16S rRNA, V3-V4) from 165 days of operation showed that filamentous or mycolic acid-producing organisms were not associated with this foam event. Shock loading led to acidification, biomass decline and microbial imbalance, contributing indirectly to the foam event. During that period, metabolomes and functional pathway abundances indicated that the stressed microbial biomass was enriched in long-chain fatty acids prior to foaming. This biomass, combined with pH changes, may have modified the physicochemical properties of sludge, leading to the fractionation of organic mass once gas production resumed. More research is needed to understand how abiotic and biotic interactions contribute to foam formation.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia.
| | - Leadin Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
| | - Sali Khair Biek
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
| | - Jake Ak Elliott
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
| | - Seyedali Tabatabaei
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
| | - Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Jennifer L Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Daniel Anthony Dias
- ARC Training Centre for Hyphenated Analytical Separation Technologies (HyTECH), CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Catherine A Rees
- Melbourne Water Corporation, 990 La Trobe Street, Docklands, Victoria 3008, Australia
| | - Denis O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Richard Stuetz
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Damien J Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; South East Water Corporation, Frankston, VIC 3199, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia; School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
| |
Collapse
|
3
|
He K, Liu Y, Tian L, He W, Cheng Q. Review in anaerobic digestion of food waste. Heliyon 2024; 10:e28200. [PMID: 38560199 PMCID: PMC10979283 DOI: 10.1016/j.heliyon.2024.e28200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the special property of food waste (FW), anaerobic digestion of food waste is facing many challenges like foaming, acidification, ammonia nitrogen and (NH4+-N) inhibition which resulted in a low biogas yield. A better understanding on the problems exiting in the FW anaerobic digestion would enhance the bio-energy recovery and increase the stable operation. Meanwhile, to overcome the bottle necks, pretreatment, co-digestion and additives is proposed as well as the solutions to improve biogas yield in FW digestion system. At last, future research directions regarding FW anaerobic digestion were proposed.
Collapse
Affiliation(s)
- Kefang He
- School of Management, Wuhan Polytechnic University, China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Longjin Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Wanyou He
- School of Management, Wuhan Polytechnic University, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| |
Collapse
|
4
|
Leca E, Zennaro B, Hamelin J, Carrère H, Sambusiti C. Use of additives to improve collective biogas plant performances: A comprehensive review. Biotechnol Adv 2023; 65:108129. [PMID: 36933869 DOI: 10.1016/j.biotechadv.2023.108129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Nowadays, anaerobic digestion (AD) is being increasingly encouraged to increase the production of biogas and thus of biomethane. Due to the high diversity among feedstocks used, the variability of operating parameters and the size of collective biogas plants, different incidents and limitations may occur (e.g., inhibitions, foaming, complex rheology). To improve performance and overcome these limitations, several additives can be used. This literature review aims to summarize the effects of the addition of various additives in co-digestion continuous or semi-continuous reactors to fit as much as possible with collective biogas plant challenges. The addition of (i) microbial strains or consortia, (ii) enzymes and (iii) inorganic additives (trace elements, carbon-based materials) in digester is analyzed and discussed. Several challenges associated with the use of additives for AD process at collective biogas plant scale requiring further research work are highlighted: elucidation of mechanisms, dosage and combination of additives, environmental assessment, economic feasibility, etc.
Collapse
Affiliation(s)
- Estelle Leca
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France
| | - Bastien Zennaro
- INRAE Transfert, 60 Rue Nicolas Leblanc, 11100 Narbonne, France
| | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Hélène Carrère
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Cecilia Sambusiti
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France.
| |
Collapse
|
5
|
Duan JL, Han Y, Feng LJ, Ma JY, Sun XD, Liu XY, Geng FS, Jiang JL, Liu MY, Sun YC, Peu P, Ni BJ, Yuan XZ. Single bubble probe atomic force microscope and impinging-jet technique unravel the interfacial interactions controlled by long chain fatty acid in anaerobic digestion. WATER RESEARCH 2023; 231:119657. [PMID: 36709568 DOI: 10.1016/j.watres.2023.119657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion of lipid-rich wastewater generally suffers from foaming induced by long chain fatty acid (LCFA). However, a systematic understanding of LCFA inhibition, especially the physical inhibition on interfacial interaction still remains unclear. Here, we combined bubble probe atomic force microscope and impinging-jet technique to unravel the interfacial interactions controlled by long chain fatty acids in anaerobic digestion. We showed that LCFA had a significant inhibition on methane production in anaerobic reactors for the inhibition of the conversion of VFAs to methane. By measuring the LCFA influence on methanogenic archaea Methanosarcina acetivorans C2A, the results demonstrated that methanogenesis was limited for substrates utilization but not metabolic pathways. The impinging-jet technique results indicated that LCFA enhanced bubble separation from anaerobic granules and reduced the bubble-bubble coalescence probability. In addition, the bubble probe atomic force microscope (AFM) revealed that LCFA enhanced the adhesion force between bubbles by enhancing electrical double layer (EDL) repulsion and decreasing hydrophobic interactions. Overall, these results complement framework of LCFA inhibition in anerobic digestion and provide a nanomechanical insight into the fundamental interfacial interactions related to bubbles in anaerobic reactors.
Collapse
Affiliation(s)
- Jian-Lu Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yi Han
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Li-Juan Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fan-Shu Geng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jia-Li Jiang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Mei-Yan Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Chen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Pascal Peu
- Department of Ecotechnologies, French National Institute for Agriculture, Food, and Environment (INRAE), Rennes 35044, France; Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia.
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
6
|
Zhang L, Tang C, Li M, Wang H, Zhang S, Wang J, Dong X, Fang D, Bai H, Sun Y, Yue D. Identification of key surfactant in municipal solid waste leachate foaming and its influence mechanism. WATER RESEARCH 2023; 231:119487. [PMID: 36680826 DOI: 10.1016/j.watres.2022.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Serious foaming problems and the excessive consumption of defoamer have undoubtedly become one of the most critical problems that hinder municipal solid waste (MSW) leachate treatment efficiency and industry development. Since there is limited research penetrating the foaming mechanism and identification of the key surfactants, current defoaming and surfactant removal techniques lack pertinence and orientation. In this study, a foaming characterization device was developed and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) was optimized to accurately identify the key surfactants affecting leachate foaming and offer a glimpse into their interaction mechanisms. This study collected leachate samples from 9 typical landfills and waste-to-energy facilities of various waste compositions, climatic conditions, ages, and geographical locations. The foaming problem of leachate was mainly centered on raw leachate and nanofiltration membrane concentrate (NFC). Fresh leachate performed with relatively low foaming capacity and foam stability, associated with low surfactant concentration. The pH value of the system was positively correlated with the concentration of anionic surfactants, indicating significant impacts on surfactant release in MSW. Since the distribution characteristics of linear alkylbenzene sulfonate (LAS) in leachate were consistent with the variety of foaming performances, LAS proved to be an indispensable surfactant in the leachate involved in this study, and its content proportion escalated to 92.87% in aged leachate.
Collapse
Affiliation(s)
- Lingyue Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chu Tang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mingchun Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijing Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sijia Zhang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Jianchao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinwei Dong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ding Fang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hao Bai
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Sun
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|
7
|
Krohn C, Khudur L, Dias DA, van den Akker B, Rees CA, Crosbie ND, Surapaneni A, O'Carroll DM, Stuetz RM, Batstone DJ, Ball AS. The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge. Front Microbiol 2022; 13:1079136. [PMID: 36590430 PMCID: PMC9801413 DOI: 10.3389/fmicb.2022.1079136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,*Correspondence: Christian Krohn,
| | - Leadin Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, STEM College, RMIT University, Bundoora, VIC, Australia
| | | | | | | | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Denis M. O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Richard M. Stuetz
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Damien J. Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,Australian Centre for Water and Environmental Biotechnology, Gehrmann Building, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
8
|
Christensen ML, Jakobsen AH, Hansen CSK, Skovbjerg M, Andersen RBM, Jensen MD, Sundmark K. Pilot-scale hydrolysis of primary sludge for production of easily degradable carbon to treat biological wastewater or produce biogas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157532. [PMID: 35872189 DOI: 10.1016/j.scitotenv.2022.157532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Organic compounds in wastewater are required for the biological removal of nitrogen, but they can also be used for biogas production. Distribution of the internal organic carbon at the plant is therefore critical to ensure high quality of the treated water, reduce greenhouse gas emissions, and optimize biogas production. We describe a wastewater treatment plant designed to focus equally on energy production, water quality, and reduced emissions of greenhouse gases. A disk filter was installed to remove as much carbon as possible during primary treatment. Primary sludge was then hydrolyzed and centrifuged. The hydrolysate centrate contained volatile fatty acids and was used either for the secondary wastewater treatment or to produce biogas. The yield during hydrolysis was 30-35 g volatile fatty acid per kg dry material or 40-65 g soluble COD per kg total solid. The specific denitrification rate was 20-40 g/(g·min), which is on the same order of magnitude as that for commonly used external carbon sources. Hydrolysis at around 35 °C and pH 7 gave the best results. The hydrolysate centrate can be stored and added to the biological treatment to improve water quality and reduce emissions of nitrous oxide or it can be used to produce biogas to optimize the operation of the plant.
Collapse
Affiliation(s)
| | - Anne Højmark Jakobsen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Skovbjerg
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | - Rikke Bruun Munk Andersen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
9
|
Liang J, Luo L, Wong JWC, He D. Recent advances in conductive materials amended anaerobic co-digestion of food waste and municipal organic solid waste: Roles, mechanisms, and potential application. BIORESOURCE TECHNOLOGY 2022; 360:127613. [PMID: 35840024 DOI: 10.1016/j.biortech.2022.127613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recently, conductive materials (i.e., carbon-based and iron-based materials) as a feasible and attractive approach have been introduced to anaerobic co-digestion (ACoD) system for promoting its performance and stability through direct interspecies electron transfer. Owing to the key roles of conductive materials in ACoD process, it is imperative to gain a profound understanding of their specific functions and mechanisms. Here, this review critically examined the state of the art of conductive materials assisted ACoD of food waste and common municipal organic solid waste. Then, the fundamental roles of conductive materials on ACoD enhancement and the relevant mechanisms were discussed. Last, the perspectives for co-digestate treatment, reutilization, and disposal were summarized. Moreover, the main challenges to conductive materials amended ACoD in on-site application were proposed and the future remarks were put forward. Collectively, this review poses a scientific basis for the potential application of conductive materials in ACoD process in the future.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Romero-Güiza MS, Flotats X, Asiain-Mira R, Palatsi J. Enhancement of sewage sludge thickening and energy self-sufficiency with advanced process control tools in a full-scale wastewater treatment plant. WATER RESEARCH 2022; 222:118924. [PMID: 35933817 DOI: 10.1016/j.watres.2022.118924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
On their path to becoming sustainable facilities, it is required that wastewater treatment plants reduce their energy demand, sludge production, and chemical consumption, as well as increase on-site power generation. This study describes the results obtained from upgrading the sludge line of a full-scale wastewater treatment plant over 6 years (2015-2021) using three advanced process control strategies. The advanced process control tools were designed with the aim of (i) enhancing primary and secondary sludge thickening, (ii) improving anaerobic digestion performance, and (iii) reducing chemical consumption in the sludge line. The results obtained show that the use of advanced process control tools allows for optimising sludge thickening (increasing solids content by 9.5%) and anaerobic digestion (increasing both the removal of volatile solids and specific methane yield by 10%, respectively), while reducing iron chloride and antifoam consumption (by 75% and 53%, respectively). With the strategies implemented, the plant increased its potential energy self-sufficiency from 43% to 51% and reduced de-watered sludge production by 11%. Furthermore, the upgrade required a low investment, with a return of capital expense (CAPEX) in 1.98 years, which presents a promising and affordable alternative for upgrading existing wastewater treatment plants.
Collapse
Affiliation(s)
- M S Romero-Güiza
- Aqualia, Production Area, Cami Sot de Fontanet, 29, Lleida 25197, Spain
| | - X Flotats
- UPC BarcelonaTECH, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - R Asiain-Mira
- Aqualia, Innovation and Technology Department, Av. Camino de Santiago, 40, Madrid 28050, Spain
| | - J Palatsi
- Aqualia, Production Area, Cami Sot de Fontanet, 29, Lleida 25197, Spain.
| |
Collapse
|
11
|
Kegl T. Consideration of biological and inorganic additives in upgraded anaerobic digestion BioModel. BIORESOURCE TECHNOLOGY 2022; 355:127252. [PMID: 35513240 DOI: 10.1016/j.biortech.2022.127252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
This paper deals with the numerical simulation of biogas production in the anaerobic digestion process of organic waste. Special attention is focused on the modeling of the activities of biological and inorganic additives, which are used to enhance the process and reduce H2S content in the biogas. For this purpose, an existing BioModel is upgraded with the modified Michaelis-Menten kinetics in order to model the enzymatic hydrolysis and with adequate modeling of physicochemical processes. The upgraded BioModel was calibrated with experimental data obtained from a full-scale biogas plant, used in combination with an active set optimization procedure; the relative agreement indices were 0.9376, 0.9419, 0.7957, and 0.7663 for biogas, CH4, H2, and H2S flow rates, respectively. Statistical efficiency criteria differ up to 5% in model calibration and validation. The obtained results confirm the importance of additives modeling and the usefulness of the proposed model for industrial biogas plants' performance improvement.
Collapse
Affiliation(s)
- Tina Kegl
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia.
| |
Collapse
|
12
|
Yang P, Peng Y, Liu H, Wu D, Yuan R, Wang X, Li L, Peng X. Multi-scale analysis of the foaming mechanism in anaerobic digestion of food waste: From physicochemical parameter, microbial community to metabolite response. WATER RESEARCH 2022; 218:118482. [PMID: 35489148 DOI: 10.1016/j.watres.2022.118482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Foaming is a key issue that threatens the efficient and stable operation of the anaerobic digestion process. This study introduced three disturbances to induce foaming and explored the responses of physicochemical parameters, microbial communities, and metabolites to reveal the foaming mechanism. Under the three disturbance conditions, extracellular polymeric substances (EPS)-related parameters are significantly positively correlated with foam height, and EPS may cause foam by lowering the surface tension. Microorganisms that are more tolerant to high acid or high ammonia stress environments were identified after foaming, and they could resist the stress environment by producing more EPS. The up-regulated expression of sphingomyelin or ceramide was discovered after foaming, involved in the signal molecular transduction process of cell apoptosis or necrosis, which might be related to EPS production. Pantothenic acid involved in pantothenate and CoA biosynthesis pathways was down-regulated expression after foaming, which might be related to the hindered degradation of EPS. The response of multi-scale parameters in the foaming process shows that EPS is the key factor in foaming events.
Collapse
Affiliation(s)
- Pingjin Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yun Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hengyi Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ronghuan Yuan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
13
|
Wang K, Lu C, Zhang H, Guo S, Ru G, Wang J, Hu J, Zhang N, Zhang Q. Enhancement effect of defoamer additives on photo-fermentation biohydrogen production process. BIORESOURCE TECHNOLOGY 2022; 352:127070. [PMID: 35351562 DOI: 10.1016/j.biortech.2022.127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Foaming is a key issue should be solved in the process of photo-fermentation biohydrogen production (PFHP), since it has negative influence on the hydrogen yield potential, especially when taken straw as substrate. Appropriate foam control measures must be considered for industrialization. Hence, in this work, foam height and biohydrogen yield were selected as index, the effect of defoamer addition on PFHP was investigated. The defoamer has no negative effect on bacterial growth. In the addition range of 0-1 mL/L, the higher addition amount, indicates better foam control effect. The maximum foam height could be reduced by 55% and the foam existence time by 36 h. The reduction of foam was beneficial to biohydrogen production, and the highest cumulative hydrogen yield was increased 23% at the addition level of 0.125 mL/L.
Collapse
Affiliation(s)
- Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Siyi Guo
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Guangming Ru
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Jian Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Ningyuan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
14
|
Cai Y, Zhu M, Meng X, Zhou JL, Zhang H, Shen X. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review. BIORESOURCE TECHNOLOGY 2022; 351:126924. [PMID: 35272033 DOI: 10.1016/j.biortech.2022.126924] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 05/16/2023]
Abstract
This paper reviewed the mechanisms of biochar in relieving ammonia inhibition. Biochar affects nitrogen-rich waste's anaerobic digestion (AD) performance through four ways: promotion of direct interspecies electron transfer (DIET) and microbial growth, adsorption, pH buffering, and provision of nutrients. Biochar enhances the DIET pathway by acting as an electron carrier. The role of DIET in relieving ammonia nitrogen may be exaggerated because many related studies don't provide definite evidence. Therefore, some bioinformatics technology should be used to assist in investigating DIET. Biochar absorbs ammonia nitrogen by chemical adsorption (electrostatic attraction, ion exchange, and complexation) and physical adsorption. The absorption efficiency, mainly affected by the properties of biochar, pH and temperature of AD, can reach 50 mg g-1 on average. The biochar addition can buffer pH by reducing the concentrations of VFAs, alleviating ammonia inhibition. In addition, biochar can release trace elements and increase the bioavailability of trace elements.
Collapse
Affiliation(s)
- Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; Department of Biochemical Conversion, Deutsches Biomassforschungszentrum Gemeinnützige GmbH, Torgauer Straße116, 04347 Leipzig, Germany.
| | - Mingming Zhu
- Centre for Climate and Environmental Protection, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control Beijing 100048, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
| | - Huan Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing 210014, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Agudelo-Escobar LM, Cabrera SE, Avignone Rossa C. A Bioelectrochemical System for Waste Degradation and Energy Recovery From Industrial Coffee Wastewater. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.814987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The primary production of coffee involves the extensive use of water resources, since it is not only used for irrigation of coffee plantations, but it is also required in large volumes for the processing of the coffee berry to obtain high quality green beans. It is calculated that for every kg of dry coffee grain produced, up to 40 L of water are consumed, and its disposal represents a significant environmental problem, since most coffee growers are small producers with no access to efficient technologies for wastewater treatment. This situation leads to these liquid wastes to be discarded untreated in natural water sources, generating environmental pollution and public health problems. Bioelectrochemical Systems (BES) have been proposed as an alternative to conventional wastewater treatments, either as a primary bioremediation strategy or for secondary wastewater treatment systems. Among BES, microbial fuel cells (MFCs) are designed to exploit the metabolic capability of andophilic microorganisms to degrade the organic matter present in the waste. Anodophilic microorganisms use electrodes as terminal electron acceptors, generating a flow of electrons that can be used in the generation of electricity. In this work, we evaluated the ability of native microbial communities to degrade the organic matter present in wastewater from the coffee agroindustry and its electrogenic potential for the co-generation of electricity was evaluated using an MFC device developed by the authors. Wastewater samples obtained at different stages of the coffee wet process were used as inoculum and feedstocks. The system was operated in fed-batch, in both open and closed-circuit conditions, for 60 days. The degree of decontamination or bioremediation of the wastewater was assessed by measurements of physicochemical parameters. For the characterization of the native microbial community, microscopic and molecular techniques were used and the electrogenic potential was established by assessing the electrochemical performance of the system. With the proposed bioelectrochemical system, a reduction of up to 70% of the initial content of organic matter of the residual water from the coffee benefit was achieved, and open circuit voltages of up to 400 mV were recorded, comparable to those reported for conventional air breathing cathode MFC.
Collapse
|
16
|
Hojeij A, Jossic L, Séchet P, Magnin A, Hattou S. Agitation of yield stress fluids by gas injection. AIChE J 2022. [DOI: 10.1002/aic.17562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ali Hojeij
- Laboratoire Rhéologie et Procédés Université Grenoble Alpes, Grenoble INP, CNRS (UMR 5520) BP 53, Domaine Universitaire Grenoble France
| | - Laurent Jossic
- Laboratoire Rhéologie et Procédés Université Grenoble Alpes, Grenoble INP, CNRS (UMR 5520) BP 53, Domaine Universitaire Grenoble France
| | - Philippe Séchet
- LEGI Université Grenoble Alpes, Grenoble INP, CNRS (UMR 5519) BP 53, Domaine Universitaire Grenoble France
| | - Albert Magnin
- Laboratoire Rhéologie et Procédés Université Grenoble Alpes, Grenoble INP, CNRS (UMR 5520) BP 53, Domaine Universitaire Grenoble France
| | | |
Collapse
|