1
|
Xia Y, Long B, Liu A, Truhlar DG. Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:1216-1224. [PMID: 39431129 PMCID: PMC11489503 DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Atmospheric oxidation processes are of central importance in atmospheric climate models. It is often considered that volatile organic molecules are mainly removed by hydroxyl radical; however, the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow. Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates. These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling (DL-MS-CVT/SCT). The treatment contains beyond-CCSD(T) electronic structure calculations for transition state theory, and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory. We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F + CH2OO and HC(O)F + anti-CH3CHOO reactions. We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F + CH2OO/anti-CH3CHOO to the rate constant for HC(O)F + OH. We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride, and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH3CHOO Criegee intermediates.
Collapse
Affiliation(s)
- Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Ai Liu
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, United States
| |
Collapse
|
2
|
Sun Y, Yao B, Ma M, Hu X, Ji M, Fang X. Emissions of HCFC-22 and HCFC-142b in China during 2018-2021 Inferred from Inverse Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39034468 DOI: 10.1021/acs.est.4c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Hydrochlorofluorocarbons (HCFCs) are transitional substitutes for chlorofluorocarbons (CFCs). However, they still have the capacity to be ozone-depleting substances (ODSs). Therefore, they are scheduled to be phased out in China by 2030 under the Montreal Protocol. The emission estimates of HCFC-22 (CHClF2) and HCFC-142b (CH3CClF2) in China using atmospheric observations are lacking after 2017, making it hard to understand the effectiveness of the phase-out process of HCFCs in China. Here, we use flask and in situ measurements of HCFC-22 and HCFC-142b during 2018-2021 and inverse modeling to determine the emission magnitude and changes in China. It was determined that China's emissions were 172 ± 40, 154 ± 39, 160 ± 22, and 155 ± 33 Gg yr-1 of HCFC-22 and 8.3 ± 1.8, 7.8 ± 1.6, 7.4 ± 1.7, and 7.9 ± 1.7 Gg yr-1 of HCFC-142b from 2018 to 2021, respectively. Top-down estimates show that HCFC-22 emissions in China were stable, while HCFC-142b emissions were decreasing during 2013-2021, although both substances were in the stage of being phased out during 2013-2021. This study reveals that 46 and 39% of the global HCFC-22 and HCFC-142b emissions, respectively, cannot be traced to certain countries in 2020. We suggest that more studies on HCFC emissions around the world in the future are needed to better safeguard the ozone layer recovery and climate mitigation by ensuring compliance with the Montreal Protocol during HCFC phase-out processes.
Collapse
Affiliation(s)
- Yahui Sun
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Bo Yao
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, P. R. China
- Meteorological Observation Centre of China Meteorological Administration (MOC/CMA), Beijing 100081, P. R. China
- Shanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Shanghai 200438, P. R. China
| | - Mengyue Ma
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Xiaoyi Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Mingrui Ji
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Xuekun Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
- Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Wang Y, Liu L, Qiao X, Sun M, Guo J, Zhao B, Zhang J. Atmospheric fate and impacts of HFO-1234yf from mobile air conditioners in East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170137. [PMID: 38242457 DOI: 10.1016/j.scitotenv.2024.170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
HFO-1234yf (2,3,3,3-tetrafluoropropene) is being used as refrigerant to replace HFC-134a (1,1,1,2-tetrafluoroethane), a potent greenhouse gas, in mobile air conditioners. However, the environmental impacts of HFO-1234yf, which is quickly and almost completely transformed to the persistent and phytotoxic trifluoroacetic acid (TFA), is of great concern. Here, we used the nested-grid chemical transport model, GEOS-Chem, to assess the fate and environmental impacts of HFO-1234yf emissions from mobile air conditioners in East Asia. With total emissions of 30.3 Gg yr-1, the annual mean concentrations of HFO-1234yf in China, Japan, and South Korea were 4.00, 3.23, and 5.54 pptv (parts per trillion volume), respectively, and the annual deposition fluxes (dry plus wet) of TFA in these regions were 0.35, 0.48, and 0.53 kg km-2 yr-1, dominated by wet deposition. About 14 %, 13 % and 11 % of HFO-1234yf emissions were deposited as TFA in China, Japan and South Korea, respectively, i.e. a large portion of TFA was deposited in areas outside of the emission boundary regions. The TFA characteristics in Japan and South Korea was significantly influenced by emission from China, which contributions ranged from 43 % to 94 % for the TFA concentrations and 44 % to 98 % for the TFA depositions across the four seasons. This suggests that the influence of neighboring emission sources cannot be ignored when assessing the impact of HFO-1234yf emissions in individual countries.
Collapse
Affiliation(s)
- Yifei Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xueqi Qiao
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Sun
- Beijing Ecological Environment Assessment and Complaints Center, Beijing 100161, China
| | - Junyu Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bu Zhao
- School for Environment and Sustainability and Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Sun Y, Yao B, Hu X, Yang Y, Li B, Ma M, Chi W, Du Q, Hu J, Fang X. Inverse Modeling Revealed Reversed Trends in HCFC-141b Emissions for China during 2018-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19557-19564. [PMID: 37978918 DOI: 10.1021/acs.est.3c04881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Having the highest ozone-depleting potential among hydrochlorofluorocarbons (HCFCs), the production and consumption of HCFC-141b (1,1-dichloro-1-fluoroethane, CH3CCl2F) are controlled by the Montreal Protocol. A renewed rise in global HCFC-141b emissions was found during 2017-2020; however, the latest changes in emissions across China are unclear for this period. This study used the FLEXible PARTicle dispersion model and the Bayesian framework to quantify HCFC-141b emissions based on atmospheric measurements from more sites across China than those used in previous studies. Results show that the estimated HCFC-141b emissions during 2018-2020 were on average 19.4 (17.3-21.6) Gg year-1, which was 3.9 (0.9-7.0) Gg year-1 higher than those in 2017 (15.5 [13.4-17.6] Gg year-1), showing a renewed rise. The proportion of global emissions that could not be exactly traced in 2020 was reduced from about 70% reported in previous studies to 46% herein. This study reconciled the global emission rise of 3.0 ± 1.2 Gg year-1 (emissions in 2020 - emissions in 2017): China's HCFC-141b emissions changed by 4.3 ± 4.5 Gg year-1, and the combined emissions from North Korea, South Korea, western Japan, Australia, northwestern Europe, and the United States changed by -2.2 ± 2.6 Gg year-1, while those from other countries/regions changed by 0.9 ± 5.3 Gg year-1.
Collapse
Affiliation(s)
- Yahui Sun
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Yao
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, P. R. China
- Meteorological Observation Centre of China Meteorological Administration (MOC/CMA), Beijing 100081, P. R. China
| | - Xiaoyi Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yang Yang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Bowei Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengyue Ma
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Wenxue Chi
- Meteorological Observation Centre of China Meteorological Administration (MOC/CMA), Beijing 100081, P. R. China
| | - Qianna Du
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Jianxin Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuekun Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Wang Y, Liu L, Qiao X, Sun M, Guo J, Zhang J, Zhao B. Projections of National-Gridded Emissions of Hydrofluoroolefins (HFOs) in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8650-8659. [PMID: 37235871 DOI: 10.1021/acs.est.2c09263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydrofluoroolefins (HFOs) are being used as substitutes for potent greenhouse gas hydrofluorocarbons (HFCs). However, the use and environmental impacts of HFOs are of great concern due to the rapid degradation of HFOs to produce persistent and phytotoxic trifluoroacetic acid (TFA). Here, we provide a comprehensive projection of HFO emissions in China during 2024-2060 for the first time. Under the Kigali Amendment to the Montreal Protocol, China's HFO emissions are estimated to increase from 1.7 (1.3-2.3) to 148.8 (111.4-185.4) kt in 2024-2060 with cumulative emissions of 2.8 (2.0-3.5) Gt, and cumulative reduced HFCs emissions are evaluated to be 5.4 Gt CO2-equivalent. High HFO emissions would be distributed mainly in the North China Plain and the eastern and coastal areas. HFO-1234yf (2,3,3,3-tetrafluoropropene) contributes most of HFO emissions with a cumulative emission of 1.7 Gt in 2024-2060, while the cumulative increment of TFA deposition from HFO-1234yf emissions would reach 0.4-1.0 Gt. The long-term national-gridded HFO emission inventories can provide scientific support for evaluating the environmental risks of HFOs and developing HFC phase-out pathways for addressing climate change.
Collapse
Affiliation(s)
- Yifei Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xueqi Qiao
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Sun
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Junyu Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bu Zhao
- School for Environment and Sustainability and Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Madronich S, Sulzberger B, Longstreth JD, Schikowski T, Andersen MPS, Solomon KR, Wilson SR. Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate. Photochem Photobiol Sci 2023; 22:1129-1176. [PMID: 37310641 PMCID: PMC10262938 DOI: 10.1007/s43630-023-00369-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation drives the net production of tropospheric ozone (O3) and a large fraction of particulate matter (PM) including sulfate, nitrate, and secondary organic aerosols. Ground-level O3 and PM are detrimental to human health, leading to several million premature deaths per year globally, and have adverse effects on plants and the yields of crops. The Montreal Protocol has prevented large increases in UV radiation that would have had major impacts on air quality. Future scenarios in which stratospheric O3 returns to 1980 values or even exceeds them (the so-called super-recovery) will tend to ameliorate urban ground-level O3 slightly but worsen it in rural areas. Furthermore, recovery of stratospheric O3 is expected to increase the amount of O3 transported into the troposphere by meteorological processes that are sensitive to climate change. UV radiation also generates hydroxyl radicals (OH) that control the amounts of many environmentally important chemicals in the atmosphere including some greenhouse gases, e.g., methane (CH4), and some short-lived ozone-depleting substances (ODSs). Recent modeling studies have shown that the increases in UV radiation associated with the depletion of stratospheric ozone over 1980-2020 have contributed a small increase (~ 3%) to the globally averaged concentrations of OH. Replacements for ODSs include chemicals that react with OH radicals, hence preventing the transport of these chemicals to the stratosphere. Some of these chemicals, e.g., hydrofluorocarbons that are currently being phased out, and hydrofluoroolefins now used increasingly, decompose into products whose fate in the environment warrants further investigation. One such product, trifluoroacetic acid (TFA), has no obvious pathway of degradation and might accumulate in some water bodies, but is unlikely to cause adverse effects out to 2100.
Collapse
Affiliation(s)
- S Madronich
- National Center for Atmospheric Research, Boulder, USA.
- USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, USA.
| | - B Sulzberger
- Academic Guest after retirement from Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Duebendorf, Switzerland
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - M P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
| | - K R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
7
|
Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Madronich S, Wilson SR, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Neale RE, Bornman JF, Jansen MAK, Klekociuk AR, Martinez-Abaigar J, Robinson SA, Wang QW, Banaszak AT, Häder DP, Hylander S, Rose KC, Wängberg SÅ, Foereid B, Hou WC, Ossola R, Paul ND, Ukpebor JE, Andersen MPS, Longstreth J, Schikowski T, Solomon KR, Sulzberger B, Bruckman LS, Pandey KK, White CC, Zhu L, Zhu M, Aucamp PJ, Liley JB, McKenzie RL, Berwick M, Byrne SN, Hollestein LM, Lucas RM, Olsen CM, Rhodes LE, Yazar S, Young AR. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem Photobiol Sci 2022; 21:275-301. [PMID: 35191005 PMCID: PMC8860140 DOI: 10.1007/s43630-022-00176-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/07/2022]
Abstract
The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA
| | | | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Apex, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece
| | - R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, La Rioja, Logroño, Spain
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - A T Banaszak
- Unidad Académica De Sistemas Arrecifales, Universidad Nacional Autónoma De México, Puerto Morelos, Mexico
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - K C Rose
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | - S-Å Wängberg
- Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - W-C Hou
- Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - R Ossola
- Environmental System Science (D-USYS), ETH Zürich, Zürich, Switzerland
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - M P S Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- Research Group of Environmental Epidemiology, Leibniz Institute of Environmental Medicine, Düsseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - L S Bruckman
- Materials Science and Engineering, Case Western Reserve University, Cleveland, USA
| | - K K Pandey
- Wood Processing Division, Institute of Wood Science and Technology, Bangalore, India
| | - C C White
- Polymer Science and Materials Chemistry (PSMC), Exponent, Bethesda, USA
| | - L Zhu
- College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - J B Liley
- National Institute of Water and Atmospheric Research, Alexandra, New Zealand
| | - R L McKenzie
- National Institute of Water and Atmospheric Research, Alexandra, New Zealand
| | - M Berwick
- Internal Medicine, University of New Mexico, Albuquerque, USA
| | - S N Byrne
- Applied Medical Science, University of Sydney, Sydney, Australia
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - C M Olsen
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London (KCL), London, UK
| |
Collapse
|
8
|
Kairytė A, Członka S, Boris R, Vėjelis S. Evaluation of the Performance of Bio-Based Rigid Polyurethane Foam with High Amounts of Sunflower Press Cake Particles. MATERIALS 2021; 14:ma14195475. [PMID: 34639873 PMCID: PMC8509374 DOI: 10.3390/ma14195475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023]
Abstract
In the current study, rigid polyurethane foam (PUR) was modified with 10-30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics-i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion-was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10-20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.
Collapse
Affiliation(s)
- Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenu Str. 28, LT-08217 Vilnius, Lithuania;
- Correspondence:
| | - Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Renata Boris
- Laboratory of Composite Materials, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenu Str. 28, LT-08217 Vilnius, Lithuania;
| | - Sigitas Vėjelis
- Laboratory of Thermal Insulating Materials and Acoustics, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenu Str. 28, LT-08217 Vilnius, Lithuania;
| |
Collapse
|