1
|
Jang D, Kim M, Choi H, Im S, Jang A. Fouling characteristics and cleaning strategies of reverse osmosis membranes at different stages in a wastewater reclamation process. CHEMOSPHERE 2025; 377:144352. [PMID: 40186947 DOI: 10.1016/j.chemosphere.2025.144352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Membrane fouling is the main issue impeding reverse osmosis (RO), a crucial technology for the wastewater reuse process. This study systematically investigated the composition of membrane foulants at different positions on the RO element and the main causes contributing to membrane fouling using membrane autopsy in a pilot-scale RO process for wastewater reclamation. Membrane foulants were analyzed quantitatively and qualitatively using two fouled RO membrane elements from various vessels. The results revealed that the lead RO membrane suffers more severe membrane fouling, which mainly consists of organic matter (aromatic protein-like and soluble microbial product-like) and biofilm. The inorganic fouling, such as Ca, Fe, and Na, is the major foulant composition of the tail RO membrane. The physical cleaning process showed insufficient flux recovery in both fouled RO membranes. The alkaline cleaning was more effective for the lead-fouled membrane, while the acid cleaning was more effective for the tail-fouled membrane. This study offers control strategies for wastewater reclamation as well as a thorough comprehensive knowledge of the composition of membrane fouling and its major contributors at various locations along the RO membrane.
Collapse
Affiliation(s)
- Duksoo Jang
- Department of Civil and Environmental Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea.
| | - Myungchan Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Technology research team, taeyoung E&C, 111, Yeouigongwon-ro, Yeongdeungpo-gu, Seoul, Republic of Korea.
| | - Hanna Choi
- Technology research team, taeyoung E&C, 111, Yeouigongwon-ro, Yeongdeungpo-gu, Seoul, Republic of Korea.
| | - Sungju Im
- Department of Environmental Engineering, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
2
|
Soto-Salcido LA, Nieminen J, Pihlajamäki A, Mänttäri M. Effect of time delay after alkaline cleaning treatment on the properties of polyelectrolyte-coated end-of-life polyamide membranes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:253-263. [PMID: 39933415 DOI: 10.1016/j.wasman.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
End-of-life (EoL) reverse osmosis (RO) membranes were regenerated by an extended alkaline cleaning treatment (ACT) followed by polyelectrolyte (PE) deposition (coating). The effect of time delay between the ACT and PE coating on the membranes' stability and filtration properties was investigated. The permeance of the membranes increased more than twofold compared to the value exhibited by the EoL membrane before the ACT. Additionally, the surface charge decreased from -45 mV to -99 mV at pH 7.7, due to the ACT. However, the ACT-induced effects were predominantly time-dependent and were partially reversed over time. When the membrane was coated with one layer of polydiallyldimethylammonium chloride (PDADMAC) immediately after the ACT, the resulting membrane had approximately 800 g/mol molecular weight cut-off (MWCO) value and 30 L/(m2 h bar) pressure-corrected flux (PCF). In comparison, if the membrane was stored in deionized (DI) water for five hours between the ACT and coating, the resulting membrane had again approximately 30 L/(m2 h bar) PCF but a much higher 2,900 g/mol MWCO. Furthermore, the promptly coated membranes showcased better replicability and stability during storage, in comparison to the samples that were kept in water prior to coating.
Collapse
Affiliation(s)
- Luis A Soto-Salcido
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20 53851, Lappeenranta, Finland.
| | - Joona Nieminen
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20 53851, Lappeenranta, Finland.
| | - Arto Pihlajamäki
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20 53851, Lappeenranta, Finland.
| | - Mika Mänttäri
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20 53851, Lappeenranta, Finland.
| |
Collapse
|
3
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Deng Y, Bai X, Lin J, Yang L, Lin Y, Lin M, Xiu G. A Case Study on Recycling Industrial Wastewater with Nanofiltration Membrane Separation Technology. MEMBRANES 2024; 14:266. [PMID: 39728716 DOI: 10.3390/membranes14120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
As pressure on water resources intensifies and stringent regulations for groundwater and surface water are enacted, wastewater recycling has emerged as a key research objective for many enterprises. In this study, based on the actual wastewater discharged from Eternal Electronic (Suzhou, China) Co., Ltd., the performance differences in different membrane materials in treating this wastewater were analyzed and compared. The NF90 membrane was ultimately selected as the most suitable choice for treating this wastewater with optimal operating conditions of 150 psi, 25 °C, and 1 L/min, respectively. All the indices of wastewater treatment can satisfy the standard of circulating cooling water. In addition, this work is closely combined with the practical applications by using an HCl solution (pH = 3-4) to clean the fouled membranes, thus effectively solving the membrane fouling in the treatment process. This approach not only satisfies the environmental management requirements of enterprises but also provides valuable insights for similar wastewater treatment projects.
Collapse
Affiliation(s)
- Yiqiang Deng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoqian Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jialong Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linyan Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyue Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Zhuang X, Han SW, Shin MC, Hwang JY, Park JH. Optimized antifouling γ-Al 2O 3/α-Al 2O 3 nanofiltration composite membrane for lignin recovery from wastewater. WATER RESEARCH 2024; 267:122418. [PMID: 39342705 DOI: 10.1016/j.watres.2024.122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
This study focuses on the development of nanofiltration (NF) membranes with enhanced antifouling properties, high flux, and low molecular weight cut-off (MWCO) for the separation of lignin from paper mill wastewater. Using a sol-gel method by dip-coating, alumina hollow fiber membranes were fabricated with an interlayer to reduce surface roughness. The interlayer improved mechanical properties, effectively covering the surface irregularities and allowing for the subsequent application of a thinner functional layer. This approach significantly reduced surface roughness, from 112.6 nm to 62.9 nm, enhancing contamination resistance and lifetime. Characterization techniques, including X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), and water contact angle measurements, confirmed the successful fabrication and enhanced properties of the membranes. The C2T6T3 membrane demonstrated the smallest roughness and the highest flux recovery rate (FRR) of 82.39% after cleaning with a 0.1 M NaOH solution. Performance evaluations showed that the developed membranes maintained high permeability (initial flux of 25.58 L·m⁻²·h⁻¹, decreasing to 14.06 L·m⁻²·h⁻¹ over time), achieved effective lignin rejection (consistently above 80%), and exhibited excellent long-term operational stability over 144 h of operation.
Collapse
Affiliation(s)
- Xuelong Zhuang
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Sung Woo Han
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Min Chang Shin
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Jae Yeon Hwang
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Jung Hoon Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea.
| |
Collapse
|
6
|
Wu T, Phacharapan S, Inoue N, Sakamoto M, Kamitani Y. Antibacterial and cleaning efficacy of alkaline electrolytic silver ionized water on E.coli planktonic cells, biofilms and sweet potato stains on food contact surfaces. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
7
|
Kürzl C, Kulozik U. Comparison of the efficiency of pulsed flow membrane cleaning in hollow fibre (HFM) and spiral-wound microfiltration membranes (SWM). FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|
9
|
Ren Y, Qi P, Wan Y, Chen C, Chen X, Feng S, Luo J. Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18018-18029. [PMID: 36445263 DOI: 10.1021/acs.est.2c06582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO42-), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel "etching-swelling-planting" strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO42- ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (-OH and -COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.
Collapse
Affiliation(s)
- Yuling Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Pengfei Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou341119, China
| | - Chulong Chen
- ZheJiang MEY Membrane Technology Co., Ltd., Hangzhou310012, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
10
|
Liu L, Liu Y, Chen X, Feng S, Wan Y, Lu H, Luo J. A nanofiltration membrane with outstanding antifouling ability: Exploring the structure-property-performance relationship. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Tong Y, Wang Y, Bian S, Ge H, Xiao F, Li L, Gao C, Zhu G. Incorporating Ag@RF core-shell nanomaterials into the thin film nanocomposite membrane to improve permeability and long-term antibacterial properties for nanofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156231. [PMID: 35643139 DOI: 10.1016/j.scitotenv.2022.156231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Ag@resorcinol-formaldehyde resin (Ag@RF) core-shell nanomaterials were prepared by Stöber method, and introduced into polyamide (PA) selective layer of thin-film nanocomposite (TFN) membranes through the interfacial polymerization (IP) process. Due to the abundant hydroxyl groups on the surface and suitable particle size, Ag@RF nanoparticles (Ag@RFs) could be uniformly dispersed in the piperazine aqueous solution and participate in the IP process to precisely regulate the microstructure of the PA selective layer. The resulting "crater structure" and irregular granular structure enlarged the permeable area and contributed to the surface hydrophilicity. For the nanofiltration application, the water flux of TFN membrane modified by Ag@RFs to Na2SO4 solution reached 150 L·m-2·h-1 which was 87.5% greater than TFC, and salt rejection was maintained. The antibacterial efficiency of the prepared TFN membrane on E. coli reached 99.6% in the antibacterial experiment. In addition, due to the special structure of Ag@RFs, the TFN membrane also showed an expected slow-release capability of Ag+, allowing for long-term anti-biofouling properties. This work demonstrates that Ag@RF core-shell nanoparticles with high compatibility of organic nanoparticles and antibacterial properties of Ag nanoparticles could be used as promising nanofillers for designing functional nanofiltration TFN membranes.
Collapse
Affiliation(s)
- Yunbo Tong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanyi Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shengjun Bian
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haochen Ge
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Fangkun Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Lingling Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Congjie Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guiru Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
12
|
He X, Tang Y, Wu H, Wang S, Shi L, Xu B, Gao N. Fouling investigation of cartridge filter (CF) used as "firewall" in a nanofiltration drinking water plant. ENVIRONMENTAL RESEARCH 2022; 212:113289. [PMID: 35427592 DOI: 10.1016/j.envres.2022.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The cartridge filter (CF) as a "firewall" is crucial between pretreatment and nanofiltration (NF) units, but CF fouling with risk has received limited attention. The systematic autopsy for CFs (CF1 and CF2) applied in a NF drinking water plant was conducted to reveal CF fouling profile. Herein, scale blocks, irregular-shaped particles, and stacked-floc clusters were observed as the main morphologies of foulants. The major elements from foulants included Fe, Ca, Al, Mg, Na, P, and Si. The dissolved matters especially bioproducts resulted in the secondary pollution of permeated water. Biofouling was mainly caused by Proteobacteria phyla, and consisted of a large proportion of polysaccharides (11% and 25.1%), proteins (10.3% and 22.7%), lipids (21.7% and 22.4%), respectively. In addition, an obvious contrast was observed regarding the antifouling performance of CFs. The surface scaling degree of CF1 with horizontal irregular loose-pleats was more serious than CF2 with vertical regular compact-pleats, while the latter with high-density pleats appeared the higher fouling potential due to a greater capacity for organic foulants in the inner layers of "firewall" and better bio-diversity and bio-evenness of microbial communities. This study provides a deeper insight into CF fouling and contributes to the application of CFs.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Haowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shaohua Wang
- Zhangjiagang Water Supply and Drainage Co., Ltd, Jiangsu, 215600, China
| | - Lixian Shi
- Zhangjiagang Water Supply and Drainage Co., Ltd, Jiangsu, 215600, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
13
|
Liu L, Chen X, Feng S, Wan Y, Luo J. Enhancing the Antifouling Ability of a Polyamide Nanofiltration Membrane by Narrowing the Pore Size Distribution via One-Step Multiple Interfacial Polymerization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36132-36142. [PMID: 35881887 DOI: 10.1021/acsami.2c09408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Application of nanofiltration membranes in industries still has to contend with membrane fouling that causes a significant loss of separation performance. Herein, an innovative approach to design antifouling membranes with a narrowed pore size distribution by interfacial polymerization (IP) assisted by silane coupling agents is reported. An aqueous solution of piperazine anhydrous (PIP) and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) is employed to perform IP with an organic solution of trimesoyl chloride and tetraethyl orthosilicate (TEOS) on a porous support. In accordance with the results of molecular dynamics and dissipative particle dynamics simulations, the reactive additive KH560 accelerates the diffusion rate of PIP to enrich at the reaction boundary. Moreover, the hydrolysis/condensation of KH560 and TEOS at the aqueous/organic interface forms an interpenetrating network with the polyamide network, which regulates the separation layer structure. The characterization results indicate that the polyamide-silica membrane has a denser, thicker, and uniform separation layer. The mean pore size of the polyamide-silica membrane and the traditional polyamide membrane is 0.62 and 0.74 nm, respectively, and these correspond to the geometric standard deviation (namely, pore size distribution) of 1.39 and 1.97, respectively. It is proved that the narrower pore size distribution endows the polyamide-silica membrane with stronger antifouling performance (flux decay ratio decreases from 18.4 to 3.8%). Such a membrane also has impressive long-term antifouling stability during cane molasses decolorization at a high temperature (50 °C). The outcomes of this study not only provide a novel one-step multiple IP strategy to prepare antifouling nanofiltration membranes but also emphasize the importance of pore size distribution in fouling control for various industrial liquid separations.
Collapse
Affiliation(s)
- Lulu Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
14
|
Mitigation of an anion exchange membrane fouling by coupling electrodialysis to anodic oxidation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Sutariya B, Sargaonkar A, Raval H. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2089585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aabha Sargaonkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Cleaner Technology and Modelling Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Zhang J, Zhang H, Wan Y, Luo J. Chemoenzymatic Cascade Reaction for Green Cleaning of Polyamide Nanofiltration Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12204-12213. [PMID: 35234029 DOI: 10.1021/acsami.1c23466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemical cleaning is indispensable for the sustainable operation of nanofiltration (NF) in wastewater treatment. However, the common chemical cleaning methods are plagued by low cleaning efficiency, high chemical consumption, and separation performance deterioration. In this work, a chemoenzymatic cascade reaction is proposed for pollutant degradation and polyamide NF membrane cleaning. Glucose oxidase (GOD) enzymatic reaction in this cascade system produces hydrogen peroxide (H2O2) and gluconic acid to trigger the oxidation of foulants by Fe3O4-catalyzed Fenton reaction. By virtue of the microenvironment (pH and H2O2 concentration) engineering and substrate enrichments, this chemoenzymatic cascade reaction (GOD-Fe3O4) exhibits a favorable degradation efficiency for bisphenol A and methyl blue (MB). Thanks to the strong oxidizing degradation, the water flux of the NF10 membrane fouled by MB is almost completely recovered (∼95.8%) after a 3-cycle fouling/cleaning experiment. Meanwhile, the chemoenzymatic cascade reaction improves the applicability of the Fenton reaction in polyamide NF membrane cleaning because it prevents the membrane from damaging by high concentration of H2O2 and inhibits the secondary fouling caused by ferric hydroxide precipitates. By immobilizing GOD on the aminated Fe3O4 nanoparticles, a reusable cleaning agent is prepared for highly efficient membrane cleaning. This chemoenzymatic cascade reaction without the addition of an acid/base/oxidant provides a promising candidate for sustainable and cost-effective cleaning for the polyamide NF membrane.
Collapse
Affiliation(s)
- Jinxuan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huiru Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
17
|
Tuning pore size and surface charge of poly(piperazinamide) nanofiltration membrane by enhanced chemical cleaning treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Tian J, Zhao X, Gao S, Wang X, Zhang R. Progress in Research and Application of Nanofiltration (NF) Technology for Brackish Water Treatment. MEMBRANES 2021; 11:662. [PMID: 34564479 PMCID: PMC8468185 DOI: 10.3390/membranes11090662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/07/2022]
Abstract
Brackish water is a potential fresh water resource with lower salt content than seawater. Desalination of brackish water is an important option to alleviate the prevalent water crisis around the world. As a membrane technology ranging between UF and RO, NF can achieve the partial desalination via size exclusion and charge exclusion. So, it has been widely concerned and applied in treatment of brackish water during the past several decades. Hereon, an overview of the progress in research on and application of NF technology for brackish water treatment is provided. On the basis of expounding the features of brackish water, the factors affecting NF efficiency, including the feed water characteristics, operating conditions and NF membrane properties, are analyzed. For the ubiquitous membrane fouling problem, three preventive fouling control strategies including feed water pretreatment, optimization of operating conditions and selection of anti-fouling membranes are summarized. In addition, membrane cleaning methods for restoring the fouled membrane are discussed. Furthermore, the combined utilization of NF with other membrane technologies is reviewed. Finally, future research prospects are proposed to deal with the current existing problems. Lessons gained from this review are expected to promote the sustainable development of brackish water treatment with NF technology.
Collapse
Affiliation(s)
- Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Xingrui Zhao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Xiaoying Wang
- School of Architectural Engineering, Sanming University, Sanming 365004, China;
| | - Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| |
Collapse
|