1
|
Amirhosseini K, Alizadeh M, Azarbad H. Harnessing the Ecological and Genomic Adaptability of the Bacterial Genus Massilia for Environmental and Industrial Applications. Microb Biotechnol 2025; 18:e70156. [PMID: 40325956 PMCID: PMC12053321 DOI: 10.1111/1751-7915.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
The bacterial genus Massilia was first described in 1998, and since then has attracted growing interest due to its ecological plasticity and biotechnological promise. Certain species of the genus Massilia inhabit a variety of ecosystems, from arid deserts to polar glaciers, and exhibit unique adaptations such as resistance to cold and heat. In contaminated environments, some members of Massilia contribute significantly to the detoxification of heavy metals and the degradation of organic pollutants, presenting them as promising agents for bioremediation. In addition, Massilia species improve plant resistance and facilitate pollutant absorption in phytoremediation strategies. New research also highlights their potential as bioindicators of environmental health, given their abundance in anthropogenically influenced ecosystems and airborne microbial communities. In addition to their ecological roles, some Massilia species have potential in biotechnological applications by producing biopolymers and secondary metabolites. Here, we integrate findings across various habitats to present a comprehensive overview of the ecological and biotechnological importance of the genus Massilia. We highlight critical knowledge gaps and propose future research directions to fully harness the potential of this not fully explored bacterial genus to address environmental challenges, including contamination.
Collapse
Affiliation(s)
- Kamyar Amirhosseini
- Department of Soil Science, College of Agriculture and Natural ResourcesUniversity of TehranTehranIran
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hamed Azarbad
- Department of Biology, Evolutionary Ecology of PlantsPhilipps‐University MarburgMarburgGermany
| |
Collapse
|
2
|
Xu M, Luo X, Yan XL, Cai XY, Wang LL, Ge F, Wang HW. A new strategy for removing insecticide etoxazole from soil using a combination of a novel Paracoccus versutus Y4 and a fungal mycelium carrier. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138448. [PMID: 40315708 DOI: 10.1016/j.jhazmat.2025.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Etoxazole is a widely used insecticide that poses a serious threat to both ecosystems and human health. In present study, a novel strain Paracoccus versutus Y4 was isolated and identified. More than 98 % of the etoxazole (10 mg/L) was degraded as the sole carbon source within 8 d by strain Y4 in liquid culture. HPLCMS/MS analysis revealed three possible intermediates, and a novel metabolic pathway of etoxazole including oxidation, dehydrogenation, and hydrolysis reactions was proposed. The Toxicity Estimation Software Tool suggests that the biodegradation intermediates were less harmful than etoxazole. Whole-genome sequencing revealed that the genome size of P. versutus Y4 was 5320,902 bp containing 5187 coding sequences. Among them, the gene coding monooxygenase, dehydrogenase and hydrolase may be responsible for etoxazole biodegradation. The results of molecular docking analysis suggested that the monooxygenase, dehydrogenase, and hydrolase from strain Y4 may facilitate catalytic degradation through efficient substrate binding. Compared with diatomite carrier, fungal mycelium carrier can promote the growth of strain Y4. In the soil degradation experiments, the fungal mycelium carrier promoted etoxazole degradation by strain Y4 in both fresh and sterilized soil. Treatment with Y4 +fungal mycelium significantly reduced the half-life of etoxazole in fresh soil from 24.2 to 6.3 d. Our study is the first to isolate etoxazole-degrading bacteria and provides a new strategy for the bioremediation of pesticide pollution by combining degrading microbes and fungal mycelium carriers.
Collapse
Affiliation(s)
- Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Xue Luo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Xin-Li Yan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Xiao-Yu Cai
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Lin-Lin Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Feng Ge
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China.
| | - Hong-Wei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China.
| |
Collapse
|
3
|
Jia J, Zhang B, Li A, Wang W, Xiao B, Gao X, Yuan H, Han Y, Zhao X, Naidu R. Optimized bacterial consortium-based strategies for bioremediation of PAHs-contaminated soils: insights into microbial communities, and functional responses. ENVIRONMENTAL RESEARCH 2025; 279:121718. [PMID: 40306457 DOI: 10.1016/j.envres.2025.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Microbial technologies hold great promise for in situ remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. However, the selection of enhancement measures and corresponding remediation strategies remains insufficiently understood. In this study, a series of enhancement treatments, including bacterial consortium inoculation (comprising Achromobacter denitrificans BP1, Rhodococcus aetherivorans BW2, and Lysinibacillus sp. BS3), nutrient addition, and bio-ventilation, were implemented to develop effective in situ remediation strategies for PAHs-contaminated soil. Over a 60-day incubation, the enhancement treatments achieved phenanthrene (PHE) degradation efficiencies of 68.0-94.7 % and benzo[a]pyrene (BaP) degradation efficiencies of 12.9-82.4 %. Degradation rates across soil layers followed the pattern: upper layer > lower layer > middle layer. Enhancement treatments significantly boosted soil dehydrogenase (DH) and fluorescein diacetate (FDAH) activities. Among these, the sequential consortium inoculation with nutrient addition treatment (T6) demonstrated the highest degradation efficacy. In the treatment T6, the relative abundance of consortium genera was significantly increased, playing critical roles in PAHs degradation. The connectivity and stability of the soil bacterial network were enhanced, providing greater resilience to pollutants. Quantitative PCR analysis showed that the enhancement strategy increased RHDα-GN gene abundance by 1.98-fold at the initial and maintained a positive correlation with PAHs residues throughout the process (p < 0.05), and the phe gene exhibited a continuous upward trend during remediation, ultimately reaching 1.61-1.96 times its initial abundance. Overall, this study provides a strong candidate of integrated enhancement strategies to advance in situ bioremediation of PAH-contaminated sites.
Collapse
Affiliation(s)
- Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China.
| | - Ben Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Aoran Li
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Bing Xiao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xiaolong Gao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Haokun Yuan
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Yuxin Han
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xiwang Zhao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia
| |
Collapse
|
4
|
Shi F, Meng X, Li J, Yang D, Liu J, Liu X, Xiang M, Zhu Y. Impact of nitrogen fertilization on soil microbial diversity, its mediated enzyme activities, and stem nematode population in sweet potato fields. Front Microbiol 2025; 16:1528575. [PMID: 40303474 PMCID: PMC12037629 DOI: 10.3389/fmicb.2025.1528575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Excessive nitrogen fertilization in sweet potato cultivation poses significant ecological and economic challenges in China, negatively impacting soil health by altering microbial community diversity, enzyme activities, and increasing the risk of stem nematode damage. In this study, we conducted a field trial in Northeast China, applying 0-72 kg of urea-N per hectare to brown soil under a five-year sweet potato cropping system. The results demonstrated that optimal nitrogen fertilization (64.8 kg ha-1) significantly promoted beneficial microbial populations, enhanced soil urease activity, and reduced the incidence of stem nematode disease while maintaining high sweet potato yields.
Collapse
Affiliation(s)
- Fengyu Shi
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xinpeng Meng
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jiaxin Li
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Dan Yang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jianbin Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingbo Zhu
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
5
|
Zhou H, Yu K, Nie L, Liu L, Zhou J, Wu K, Ye H, Wu Z. Effects of biological agents on rhizosphere microecological environment and nutrient availability for rice. Front Microbiol 2025; 15:1447527. [PMID: 39845035 PMCID: PMC11752750 DOI: 10.3389/fmicb.2024.1447527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 01/24/2025] Open
Abstract
As the world's population grows, pursuing sustainable agricultural production techniques to increase crop yields is critical to ensuring global food security. The development and application of biological agents is of great significance in promoting the sustainable development of agriculture. This study aimed to investigate the role of JZ (compound microbial agent) and MZ (biological agent made from plant materials) in improving the rhizosphere microecological environment and nutrient availability for rice. This study found that JZ enriched Cyanobacteria with biological nitrogen fixation functions; spraying MZ can enrich some beneficial microbiota, such as Bradyrhizobium, playing a role in symbiotic nitrogen fixation. Meanwhile, JZ and MZ were found to affect rhizosphere soil metabolism and improve potassium and nitrogen availability. JZ may promote the degradation of fungicides in the rhizosphere soil environment. Overall, applying biological agents through optimizing rice growing environment to improve yield showed great potential.
Collapse
Affiliation(s)
- Hang Zhou
- National Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Saline-Alkali Tolerant Rice Technology Innovation Center, Changsha, China
| | - Kaibo Yu
- Heilongjiang Jiaze Complex Enzyme Technology Research Center, Harbin, China
| | - Lingli Nie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Saline-Alkali Tolerant Rice Technology Innovation Center, Changsha, China
| | - Lang Liu
- Heilongjiang Jiaze Complex Enzyme Technology Research Center, Harbin, China
| | - Jianqun Zhou
- Hunan Institute of Agricultural Information and Engineering, Changsha, China
| | - Kunlun Wu
- National Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Saline-Alkali Tolerant Rice Technology Innovation Center, Changsha, China
| | - Honghong Ye
- Heilongjiang Jiaze Complex Enzyme Technology Research Center, Harbin, China
| | - Zhaohui Wu
- National Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Saline-Alkali Tolerant Rice Technology Innovation Center, Changsha, China
| |
Collapse
|
6
|
Xie Y, Feng NX, Huang L, Wu M, Li CX, Zhang F, Huang Y, Cai QY, Xiang L, Li YW, Zhao HM, Mo CH. Improving key gene expression and di-n-butyl phthalate (DBP) degrading ability in a novel Pseudochrobactrum sp. XF203 by ribosome engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174207. [PMID: 38914327 DOI: 10.1016/j.scitotenv.2024.174207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.
Collapse
Affiliation(s)
- Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Functional Molecules, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Miaoer Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Cheng-Xuan Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yunhong Huang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Zhao J, Lu L, Chai Q, Jin W, Zhu M, Qi S, Shentu J, Long Y, Shen D. Combined application of resveratrol and a ryegrass endophyte in PAH-contaminated soil remediation and its impact on soil microbial communities. RSC Adv 2024; 14:31768-31776. [PMID: 39380652 PMCID: PMC11459276 DOI: 10.1039/d4ra05648e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024] Open
Abstract
The unique capacity of certain plant endophytes to degrade organic pollutants has garnered considerable interest in recent years. However, it remains uncertain whether endophytes can maintain high degradation activity after in vitro culture and whether they can be used directly in the remediation of contaminated soils. This study reveals that resveratrol, a plant secondary metabolite, selectively boosts the degradation of polycyclic aromatic hydrocarbons (PAHs) by endophytic Methylobacterium extorquens C1 (C1) in vitro, while exerting negligible effects on the activity of indigenous soil bacteria. For the first time, a combined application of C1 and resveratrol was employed in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. The findings indicate that the sole use of resveratrol failed to promote the removal of PAHs by indigenous soil microorganisms, whereas sole application of C1 boosted Methylobacterium-related PAH-degrading bacterial abundance, enhancing PAH removal, yet concurrently reduced overall soil microbial diversity. The combination of resveratrol and C1 not only stimulated the PAH removal but also mitigated the impact of C1 on the soil microbial community structure when C1 was applied individually. Specifically, the optimal removal efficacy was achieved with a treatment combination of 5 mg kg-1 resveratrol and 1.2 × 107 CFU kg-1 of C1, leading to a 130% and 231% increase in the removal of phenanthrene and acenaphthene, respectively, over a 15 days period. This study proposes a novel approach for the bioremediation of organic-contaminated soil by using the specific biological response of plant endophytic bacteria to secondary metabolites.
Collapse
Affiliation(s)
- Jiawei Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Qiwei Chai
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
- Zhoushan Municipal Ecology and Environment Bureau Zhoushan China
| | - Wei Jin
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| |
Collapse
|
8
|
Liu L, Jin Y, Lian H, Yin Q, Wang H. Exploring the Biocontrol Potential of Phanerochaete chrysosporium against Wheat Crown Rot. J Fungi (Basel) 2024; 10:641. [PMID: 39330400 PMCID: PMC11432967 DOI: 10.3390/jof10090641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The worldwide occurrence of wheat crown rot, predominantly caused by the pathogen Fusarium pseudograminearum, has a serious impact on wheat production. Numerous microorganisms have been employed as biocontrol agents, exhibiting effectiveness in addressing a wide array of plant pathogens through various pathways. The mycelium of the white-rot fungus Phanerochaete chrysosporium effectively inhibits the growth of F. pseudograminearum by tightly attaching to it and forming specialized penetrating structures. This process leads to the release of intracellular inclusions and the eventual disintegration of pathogen cells. Furthermore, volatile organic compounds and fermentation products produced by P. chrysosporium exhibit antifungal properties. A comprehensive understanding of the mechanisms and modalities of action will facilitate the advancement and implementation of this biocontrol fungus. In order to gain a deeper understanding of the mycoparasitic behavior of P. chrysosporium, transcriptome analyses were conducted to examine the interactions between P. chrysosporium and F. pseudograminearum at 36, 48, and 84 h. During mycoparasitism, the up-regulation of differentially expressed genes (DEGs) encoding fungal cell-wall-degrading enzymes (CWDEs), iron ion binding, and mycotoxins were mainly observed. Moreover, pot experiments revealed that P. chrysosporium not only promoted the growth and quality of wheat but also hindered the colonization of F. pseudograminearum in wheat seedlings. This led to a delay in the development of stem base rot, a reduction in disease severity and incidence, and the activation of the plant's self-defense mechanisms. Our study provides important insights into the biocontrol mechanisms employed by P. chrysosporium against wheat crown rot caused by F. pseudograminearum.
Collapse
Affiliation(s)
| | | | | | | | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (L.L.); (Y.J.); (H.L.); (Q.Y.)
| |
Collapse
|
9
|
Luo C, Guan G, Dai Y, Cai X, Huang Q, Li J, Zhang G. Determination of soil phenanthrene degradation through a fungal-bacterial consortium. Appl Environ Microbiol 2024; 90:e0066224. [PMID: 38752833 PMCID: PMC11218650 DOI: 10.1128/aem.00662-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Fungal-bacterial consortia enhance organic pollutant removal, but the underlying mechanisms are unclear. We used stable isotope probing (SIP) to explore the mechanism of bioaugmentation involved in polycyclic aromatic hydrocarbon (PAH) biodegradation in petroleum-contaminated soil by introducing the indigenous fungal strain Aspergillus sp. LJD-29 and the bacterial strain Pseudomonas XH-1. While each strain alone increased phenanthrene (PHE) degradation, the simultaneous addition of both strains showed no significant enhancement compared to treatment with XH-1 alone. Nonetheless, the assimilation effect of microorganisms on PHE was significantly enhanced. SIP revealed a role of XH-1 in PHE degradation, while the absence of LJD-29 in 13C-DNA indicated a supporting role. The correlations between fungal abundance, degradation efficiency, and soil extracellular enzyme activity indicated that LJD-29, while not directly involved in PHE assimilation, played a crucial role in the breakdown of PHE through extracellular enzymes, facilitating the assimilation of metabolites by bacteria. This observation was substantiated by the results of metabolite analysis. Furthermore, the combination of fungus and bacterium significantly influenced the diversity of PHE degraders. Taken together, this study highlighted the synergistic effects of fungi and bacteria in PAH degradation, revealed a new fungal-bacterial bioaugmentation mechanism and diversity of PAH-degrading microorganisms, and provided insights for in situ bioremediation of PAH-contaminated soil.IMPORTANCEThis study was performed to explore the mechanism of bioaugmentation by a fungal-bacterial consortium for phenanthrene (PHE) degradation in petroleum-contaminated soil. Using the indigenous fungal strain Aspergillus sp. LJD-29 and bacterial strain Pseudomonas XH-1, we performed stable isotope probing (SIP) to trace active PHE-degrading microorganisms. While inoculation of either organism alone significantly enhanced PHE degradation, the simultaneous addition of both strains revealed complex interactions. The efficiency plateaued, highlighting the nuanced microbial interactions. SIP identified XH-1 as the primary contributor to in situ PHE degradation, in contrast to the limited role of LJD-29. Correlations between fungal abundance, degradation efficiency, and extracellular enzyme activity underscored the pivotal role of LJD-29 in enzymatically facilitating PHE breakdown and enriching bacterial assimilation. Metabolite analysis validated this synergy, unveiling distinct biodegradation mechanisms. Furthermore, this fungal-bacterial alliance significantly impacted PHE-degrading microorganism diversity. These findings advance our understanding of fungal-bacterial bioaugmentation and microorganism diversity in polycyclic aromatic hydrocarbon (PAH) degradation as well as providing insights for theoretical guidance in the in situ bioremediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqing Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qihui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
11
|
Ganesh J, Hewitt K, Devkota AR, Wilson T, Kaundal A. IAA-producing plant growth promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. FRONTIERS IN PLANT SCIENCE 2024; 15:1374877. [PMID: 38807777 PMCID: PMC11131947 DOI: 10.3389/fpls.2024.1374877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
Climate-induced drought impacts plant growth and development. Recurring droughts increase the demand for water for food production and landscaping. Native plants in the Intermountain West region of the US are of keen interest in low water use landscaping as they are acclimatized to dry and cold environments. These native plants do very well at their native locations but are difficult to propagate in landscape. One of the possible reasons is the lack of associated microbiome in the landscaping. Microbiome in the soil contributes to soil health and impacts plant growth and development. Here, we used the bulk soil from the native plant Ceanothus velutinus (snowbrush ceanothus) as inoculant to enhance its propagation. Snowbrush ceanothus is an ornamental plant for low-water landscaping that is hard to propagate asexually. Using 50% native bulk soil as inoculant in the potting mix significantly improved the survival rate of the cuttings compared to no-treated cuttings. Twenty-four plant growth-promoting rhizobacteria (PGPR) producing indole acetic acid (IAA) were isolated from the rhizosphere and roots of the survived snowbrush. Seventeen isolates had more than 10µg/mL of IAA were shortlisted and tested for seven different plant growth-promoting (PGP) traits; 76% showed nitrogen-fixing ability on Norris Glucose Nitrogen free media,70% showed phosphate solubilization activity, 76% showed siderophore production, 36% showed protease activity, 94% showed ACC deaminase activity on DF-ACC media, 76% produced catalase and all of isolates produced ammonia. Eight of seventeen isolates, CK-6, CK-22, CK-41, CK-44, CK-47, CK-50, CK-53, and CK-55, showed an increase in shoot biomass in Arabidopsis thaliana. Seven out of eight isolates were identified as Pseudomonas, except CK-55, identified as Sphingobium based on 16S rRNA gene sequencing. The shortlisted isolates are being tested on different grain and vegetable crops to mitigate drought stress and promote plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Amita Kaundal
- Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
12
|
Peng F, Liu J, Ping J, Dong Y, Xie L, Zhou Y, Liao L, Song H. An effective strategy for biodegradation of high concentration phenol in soil via biochar-immobilized Rhodococcus pyridinivorans B403. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33752-33762. [PMID: 38687450 DOI: 10.1007/s11356-024-33386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
High concentration of phenol residues in soil are harmful to human health and ecological safety. However, limited information is available on the in-situ bioremediation of phenol-contaminated soil using biochar as a carrier for bacteria. In this study, bamboo -derived biochar was screened as a carrier to assemble microorganism-immobilized composite with Rhodococcus pyridinivorans B403. Then, SEM used to observe the micromorphology of composite and its bioactivity was detected in solution and soil. Finally, we investigated the effects of free B403 and biochar-immobilized B403 (BCJ) on phenol biodegradation in two types of soils and different initial phenol concentrations. Findings showed that bacterial cells were intensively distributed in/onto the carriers, showing high survival. Immobilisation increased the phenol degradation rate of strain B403 by 1.45 times (37.7 mg/(L·h)). The phenol removed by BCJ in soil was 81% higher than free B403 on the first day. Moreover, the removal of BCJ remained above 51% even at phenol concentration of 1,500 mg/kg, while it was only 15% for free B403. Compared with the other treatment groups, BCJ showed the best phenol removal effect in both tested soils. Our results indicate that the biochar-B403 composite has great potential in the remediation of high phenol-contaminated soil.
Collapse
Affiliation(s)
- Fang Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yishan Zhou
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lipei Liao
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
13
|
Tang L, Yang J, Liu X, Kang L, Li W, Wang T, Qian T, Li B. Biodegradation of phenanthrene-Cr (VI) co-contamination by Pseudomonas aeruginosa AO-4 and characterization of enhanced degradation of phenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170744. [PMID: 38325483 DOI: 10.1016/j.scitotenv.2024.170744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Microorganisms capable of simultaneously remediating heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) pollution hold significant importance in bioremediation efforts. In this study, we investigated the ability of Pseudomonas aeruginosa AO-4 to simultaneously degrade phenanthrene (PHE) and reduce Cr (VI). Specifically, it has the ability to reduce 100 % of Cr (VI) (30 mg/L) while degrading 43.8 % of PHE (50 mg/L). In batch experiments, it was observed that the presence of Cr (VI) can enhance the degradation of PHE by strain AO-4. The solubility of PHE in soluble extracellular polymeric substances (S-EPS) was found to be related to the initial concentration of Cr (VI), which could explain why Cr (VI) promotes the degradation of PHE. Additionally, XPS analysis confirmed that Cr (VI) was reduced to Cr (III) with S-EPS produced by Pseudomonas aeruginosa AO-4. GC-MS analysis was conducted to analyze the degradation metabolites of phenanthrene, di(2-ethylhexyl) phthalate and 2TMS derivatives of salicylic acid were detected, indicating that Pseudomonas aeruginosa AO-4 is capable of degrading phenanthrene through two distinct pathways. These findings demonstrate the potential of Pseudomonas aeruginosa AO-4 in the treatment of co-contamination scenarios involving PAHs and HMs.
Collapse
Affiliation(s)
- Liuyuan Tang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Jing Yang
- Shanxi Transportation Holding Ecological Environment Co., Ltd, Shanxi 030000, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Lingke Kang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Wenjun Li
- Shanxi Transportation Holding Ecological Environment Co., Ltd, Shanxi 030000, China
| | - Ting Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| |
Collapse
|
14
|
Amirbekov A, Strojsova M, Nemecek J, Riha J, Hrabak P, Arias C, Sevcu A, Černík M. Biodiversity in wetland+ system: a passive solution for HCH dump effluents. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:3095-3109. [PMID: 38154796 PMCID: wst_2023_395 DOI: 10.2166/wst.2023.395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The hexachlorocyclohexane isomers (HCH) are long-banned pesticides. Even though their use has been prohibited for decades, their presence in the environment is still reported worldwide. Wetland + is a registered trademark of the remedial treatment technology consisting of an aerobic sedimentary tank, a permeable reactive barrier, a biosorption system, and an aerobic wetland. This proven method combines a reductive treatment known from PRBs with the natural wetland self-cleaning processes. The average efficiency of the system is 96.8% for chlorobenzenes (ClB) and 81.7% for HCH, during the first 12 months of the system operation. The presence of the genes encoding enzymes involved in the degradation of the HCH compounds indicates that the removal of HCH and ClB occurs not only by chemical removal but also through aerobic and anaerobic combining biodegradation. Changes in abundance and the composition of the diatom community were found to be suitable indicators of the water quality and of the impact of the Wetland + operation on the water ecosystem. The system's annual operation exhibited a markedly higher number of diatom species in the closing profiles of the Ostrovský Creek, the Wetland + effluent recipient.
Collapse
Affiliation(s)
- Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic E-mail:
| | - Martina Strojsova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Trebízskeho 1244/2, Liberec 460 01, Czech Republic
| | - Jan Nemecek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| | - Pavel Hrabak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| | - Carlos Arias
- Department of Biology, Aquatic Biology, Ole Worms Allé 1, Aarhus University, Aarhus C 8000, Denmark; WATEC Aarhus University Centre for Water Technology, Aarhus University, Ole Worms Allé 3, Building 1171, Aarhus C 8000, Denmark
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Trebízskeho 1244/2, Liberec 460 01, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| |
Collapse
|
15
|
Qi X, Zhu M, Yuan Y, Dang Z, Yin H. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132408. [PMID: 37647661 DOI: 10.1016/j.jhazmat.2023.132408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Biochar-assisted microbial remediation has been proposed as a promising strategy to eliminate environmental pollutants. However, studies on this strategy used in the remediation of persistent organic pollutants and heavy metals co-contaminated soil are lacking, and the effect of the combined incorporation of biochar and inoculant on the assembly, functions, and microbial interactions of soil microbiomes are unclear. Here, we studied 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) degradation and heavy metal immobilization by and biochar-based bacterial inoculant (BC/PP) in an e-waste contaminated soil, and corresponding microbial regulation mechanisms. Results showed that BC/PP addition was more effective in reducing Cu and Pb availability and degrading BDE-47 than inoculant alone. Notably, BC/PP facilitated bound-residue formation of BDE-47, reducing the ecological risk of residual BDE-47. Meanwhile, microbial carbon metabolism and enzyme activities (related to C-, N-, and P- cycles) were enhanced in soil amended with BC/PP. Importantly, biochar played a crucial role in inoculant colonization, community assembly processes, and microbiome multifunction. In the presence of biochar, positive interactions in co-occurrence networks of the bacterial community were more frequent, and higher network stability and more keystone taxa were observed (including potential degraders). These findings provide a promising strategy for decontaminating complex-polluted environments and recovering soil ecological functions.
Collapse
Affiliation(s)
- Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
16
|
Yi S, Li F, Wu C, Ge F, Feng C, Zhang M, Liu Y, Lu H. Co-transformation of HMs-PAHs in rhizosphere soils and adaptive responses of rhizobacteria during whole growth period of rice (Oryza sativa L.). J Environ Sci (China) 2023; 132:71-82. [PMID: 37336611 DOI: 10.1016/j.jes.2022.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/21/2023]
Abstract
This study investigated the transformations of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in rhizosphere soils and adaptive responses of rhizobacterial community under the real field conditions during four growth stages (e.g., greening, tillering, heading, and maturity) of early rice (Zhongjiazao 17) and late rice (Zhongyou 9918) in Jiangshe village (JSV) and Yangji village (YJV). Results showed that rhizosphere soils of YJV were mildly polluted by Cd and PAHs compared to that of JSV. The relative abundance of bioavailable Cd (bio-Cd) and bioavailable As (bio-As) in rhizosphere soil increased before the heading stage but decreased at the subsequent growth stage, but the content of ΣPAHs in rhizosphere soil decreased gradually during whole growth period. The dominant rhizobacteria genera at YJV (e.g., Bacillus, Massilia, Sphingomonas, and Geobacter) increased at an abundance level from the tillering to heading stage. Rhizobacteria interacted with the above co-pollutant more intensely at the tillering and heading stage, where genes involved in HM-resistance and PAH-degradation appeared to have a significant enhancement. The contents of bio-Cd and bio-As in rhizosphere soil of early rice were higher than that of late rice at each growth stage, especially at the heading stage. Bio-Cd, ΣPAHs, and organic matter were key factors influencing the community structure of rhizobacteria. Results of this study provide valuable insights about the interactions between HM-PAH co-pollutant and rhizobacterial community under real field conditions and thus develop in-situ rhizosphere remediation techniques for contaminated paddy fields.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Chuang Feng
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Hainan Lu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
17
|
Xu A, Liu C, Zhao S, Song Z, Sun H. Dynamic distribution of Massilia spp. in sewage, substrate, plant rhizosphere/phyllosphere and air of constructed wetland ecosystem. Front Microbiol 2023; 14:1211649. [PMID: 37577432 PMCID: PMC10413979 DOI: 10.3389/fmicb.2023.1211649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Massilia bacteria are widely distributed and have various ecological functions. Preliminary studies have shown that Massilia is the dominant species in constructed wetland ecosystems, but its species composition and distribution in constructed wetlands are still unclear. Methods In this paper, the in-house-designed primers were used to construct a 16S rDNA clone library of Massilia. The RFLP sequence analysis method was used to analyze the diversity of Massilia clone library and the composition of Massilia in sewage, substrate, plant rhizosphere, plant phyllosphere and air in a constructed wetland sewage treatment system. Redundancy analysis (RDA) and canonical correspondence analysis (CCA) were used to analyze the correlation between environmental factors and the population characteristics of Massilia in the corresponding environment. The dominant species of Massilia were analyzed for differences. Results The results showed that the 16S rDNA clone library in primer 5 worked well. According to the clone library diversity index analysis, the richness of Massilia varied significantly in different environments in different seasons, where the overall summer and autumn richness was higher than that in the spring and winter. The relative abundance of 5 Massilia in the constructed wetland ecosystem was greater than 1% in all samples, which were M. alkalitolerans, M. albidiflava, M. aurea, M. brevitalea, and M. timonae. The seasonal variation of dominant genera was significantly correlated with environmental factors in constructed wetlands. Discussion The above results indicated that the species of Massilia were abundant and widely distributed in the constructed wetland ecosystem, and there were significant seasonal differences. In addition, the Massilia clone library of constructed wetland was constructed for the first time in this study and the valuable data of Massilia community structure were provided, which was conducive to the further study of microbial community in constructed wetland.
Collapse
Affiliation(s)
- Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, Shandong, China
| | - Congcong Liu
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, Shandong, China
| | - Shuke Zhao
- Qingdao sub-Center, Shandong Water Transfer Project Operation and Maintenance Center, Qingdao, Shandong, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, Shandong, China
| | - Hui Sun
- Qingdao sub-Center, Shandong Water Transfer Project Operation and Maintenance Center, Qingdao, Shandong, China
| |
Collapse
|
18
|
Cui JQ, He ZQ, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Artificial mixed microbial system for polycyclic aromatic hydrocarbons degradation. Front Microbiol 2023; 14:1207196. [PMID: 37396390 PMCID: PMC10309208 DOI: 10.3389/fmicb.2023.1207196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with major risks to human health. Biological degradation is environmentally friendly and the most appealing remediation method for a wide range of persistent pollutants. Meanwhile, due to the large microbial strain collection and multiple metabolic pathways, PAH degradation via an artificial mixed microbial system (MMS) has emerged and is regarded as a promising bioremediation approach. The artificial MMS construction by simplifying the community structure, clarifying the labor division, and streamlining the metabolic flux has shown tremendous efficiency. This review describes the construction principles, influencing factors, and enhancement strategies of artificial MMS for PAH degradation. In addition, we identify the challenges and future opportunities for the development of MMS toward new or upgraded high-performance applications.
Collapse
Affiliation(s)
- Jia-Qi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Qiang He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Lara-Moreno A, Merchán F, Morillo E, Zampolli J, Di Gennaro P, Villaverde J. Genome analysis for the identification of genes involved in phenanthrene biodegradation pathway in Stenotrophomonas indicatrix CPHE1. Phenanthrene mineralization in soils assisted by integrated approaches. Front Bioeng Biotechnol 2023; 11:1158177. [PMID: 37214282 PMCID: PMC10192627 DOI: 10.3389/fbioe.2023.1158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Phenanthrene (PHE) is a highly toxic compound, widely present in soils. For this reason, it is essential to remove PHE from the environment. Stenotrophomonas indicatrix CPHE1 was isolated from an industrial soil contaminated by polycyclic aromatic hydrocarbons (PAHs) and was sequenced to identify the PHE degrading genes. Dioxygenase, monooxygenase, and dehydrogenase gene products annotated in S. indicatrix CPHE1 genome were clustered into different trees with reference proteins. Moreover, S. indicatrix CPHE1 whole-genome sequences were compared to genes of PAHs-degrading bacteria retrieved from databases and literature. On these basis, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis pointed out that cysteine dioxygenase (cysDO), biphenyl-2,3-diol 1,2-dioxygenase (bphC), and aldolase hydratase (phdG) were expressed only in the presence of PHE. Therefore, different techniques have been designed to improve the PHE mineralization process in five PHE artificially contaminated soils (50 mg kg-1), including biostimulation, adding a nutrient solution (NS), bioaugmentation, inoculating S. indicatrix CPHE1 which was selected for its PHE-degrading genes, and the use of 2-hydroxypropyl-β-cyclodextrin (HPBCD) as a bioavailability enhancer. High percentages of PHE mineralization were achieved for the studied soils. Depending on the soil, different treatments resulted to be successful; in the case of a clay loam soil, the best strategy was the inoculation of S. indicatrix CPHE1 and NS (59.9% mineralized after 120 days). In sandy soils (CR and R soils) the highest percentage of mineralization was achieved in presence of HPBCD and NS (87.3% and 61.3%, respectively). However, the combination of CPHE1 strain, HPBCD, and NS showed to be the most efficient strategy for sandy and sandy loam soils (LL and ALC soils showed 35% and 74.6%, respectively). The results indicated a high degree of correlation between gene expression and the rates of mineralization.
Collapse
Affiliation(s)
- Alba Lara-Moreno
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francisco Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Esmeralda Morillo
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Jaime Villaverde
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
20
|
Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, Lam SS, Naushad M, Li C, Sonne C. Autochthonous bioaugmentation accelerates phenanthrene degradation in acclimated soil. ENVIRONMENTAL RESEARCH 2023; 224:115543. [PMID: 36822540 DOI: 10.1016/j.envres.2023.115543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
Collapse
Affiliation(s)
- Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Yan
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Xuewei Yu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Feng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuanyi Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark.
| |
Collapse
|
21
|
Ge H, Peng Z, Fang Y, Liu X, Li H. Revealing the key species for pyrene degradation in Vallisneria natans rhizosphere sediment via triple chamber rhizome-box experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117340. [PMID: 36716543 DOI: 10.1016/j.jenvman.2023.117340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
To identify key species associated with pyrene degradation in Vallisneria natans (V.natans) rhizosphere sediment, this work investigated the temporal and spatial changes in the rhizosphere microbial community and the relationship between the changes and the pyrene degradation process through a three-compartment rhizome-box experiment under pyrene stress. The degradation kinetics of pyrene showed that the order of degradation rate was rhizosphere > near-rhizosphere > non-rhizosphere. The difference in the pyrene degradation behavior in the sediments corresponded to the change in the proportions of dominant phyla (Firmicutes and Proteobacteria) and genera (g_Massilia f_Comamonadaceae, g_Sphingomonas). The symbiosis networks and hierarchical clustering analysis indicated that the more important phyla related to the pyrene degradation in the rhizosphere was Proteobacteria, while g_Sphigomonas, f_Comamonadaceae, and especially g_Massilia were the core genera. Among them, f_Comamonadaceae was the genus most affected by rhizosphere effects. These findings strengthened our understanding of the PAHs-degradation microorganisms in V.natans rhizosphere and are of great significance for enhancing phytoremediation on PAHs-contaminated sediment.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoxia Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
22
|
Bonatti E, Dos Santos A, Birolli WG, Rodrigues-Filho E. Endophytic, extremophilic and entomophilic fungi strains biodegrade anthracene showing potential for bioremediation. World J Microbiol Biotechnol 2023; 39:152. [PMID: 37029326 DOI: 10.1007/s11274-023-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Anthropogenic activities have been increasing Polycyclic Aromatic Hydrocarbons (PAHs) release, promoting an urgent need for decontamination methods. Therefore, anthracene biodegradation by endophytic, extremophilic, and entomophilic fungi was studied. Moreover, a salting-out extraction methodology with the renewable solvent ethanol and the innocuous salt K2HPO4 was employed. Nine of the ten employed strains biodegraded anthracene in liquid medium (19-56% biodegradation) after 14 days at 30 °C, 130 rpm, and 100 mg L-1. The most efficient strain Didymellaceae sp. LaBioMMi 155, an entomophilic strain, was employed for optimized biodegradation, aiming at a better understanding of how factors like pollutant initial concentration, pH, and temperature affected this process. Biodegradation reached 90 ± 11% at 22 °C, pH 9.0, and 50 mg L-1. Futhermore, 8 different PAHs were biodegraded and metabolites were identified. Then, experiments with anthracene in soil ex situ were performed and bioaugmentation with Didymellaceae sp. LaBioMMi 155 presented better results than natural attenuation by the native microbiome and biostimulation by the addition of liquid nutrient medium into soil. Therefore, an expanded knowledge about PAHs biodegradation processes was achieved with emphasis to the action of Didymellaceae sp. LaBioMMi 155, which can be further employed for in situ biodegradation (after strain security test), or for enzyme identification and isolation aiming at oxygenases with optimal activity under alkaline conditions.
Collapse
Affiliation(s)
- Erika Bonatti
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Alef Dos Santos
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| |
Collapse
|
23
|
Bokade P, Bajaj A. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: Exploring fungal bacterial interactions. J Basic Microbiol 2023; 63:239-256. [PMID: 36670077 DOI: 10.1002/jobm.202200499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous high global concern environmental pollutants and tend to bioaccumulate due to hydrophobic properties. These xenobiotics, having variable concentrations along different matrices, gradually undergo various physical, chemical, and biological transformation processes. Myco-remediation aids accelerated degradation by effectively transforming complex ring structures to oxidized/hydroxylated intermediates, which can further funnel to bacterial degradation pathways. Exploitation of such complementing fungal-bacterial enzymatic activity can overcome certain limitations of incomplete bioremediation process. Furthermore, high-throughput molecular methods can be employed to unveil community structure, taxon abundance, coexisting community interactions, and metabolic pathways under stressed conditions. The present review critically discusses the role of different fungal phyla in PAHs biotransformation and application of fungal-bacterial cocultures for enhanced mineralization. Moreover, recent advances in bioassays for PAH residue detection, monitoring, developing xenobiotics stress-tolerant strains, and application of fungal catabolic enzymes are highlighted. Application of next-generation sequencing methods to reveal complex ecological networks based on microbial community interactions and data analysis bias in performing such studies is further discussed in detail. Conclusively, the review underscores the application of mixed-culture approach by critically highlighting in situ fungal-bacterial community nexus and its role in complete mineralization of PAHs for the management of contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Yan K, Zhou J, Feng C, Wang S, Haegeman B, Zhang W, Chen J, Zhao S, Zhou J, Xu J, Wang H. Abundant fungi dominate the complexity of microbial networks in soil of contaminated site: High-precision community analysis by full-length sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160563. [PMID: 36455747 DOI: 10.1016/j.scitotenv.2022.160563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
During the past decade, the characterization of microbial community in soil of contaminated sites was primarily done by high-throughput short-read amplicon sequencing. However, due to the similarity of 16S rRNA and ITS genes amplicon sequences, the short-read approach often limits the microbial composition analysis at the species level. Here, we simultaneously performed full-length and short-read amplicon sequencing to clarify the community composition and ecological status of different microbial taxa in contaminated soil from a high-resolution perspective. We found that (1) full-length 16S rRNA gene sequencing gave better resolution for bacterial identification at all levels, while there were no significant differences between the two sequencing platforms for fungal identification in some samples. (2) Abundant taxa were vital for microbial co-occurrences network constructed by both full-length and short-read sequencing data, and abundant fungal species such as Mortierella alpine, Fusarium solani, Mrakia frigida, and Chaetomium homopilatum served as the keystone species. (3) Heavy metal correlated with the microbial community significantly, and bacterial community and its abundant taxa were assembled by deterministic process, while the other taxa were dominated by stochastic process. These findings contribute to the understanding of the ecological mechanisms and microbial interactions in site soil ecosystems and demonstrate that full-length sequencing has the potential to provide more details of microbial community.
Collapse
Affiliation(s)
- Kang Yan
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahang Zhou
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suyuan Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bart Haegeman
- Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, Centre National de Recherche Scientifique, France
| | - Weirong Zhang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Chen
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Shouqing Zhao
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Sharma M, Salama ES, Usman M, Khan A, Arif M, Li X. Evaluation of aerobic biodegradation of phenanthrene using Pseudomonas turukhanskensis: an optimized study. Biodegradation 2023; 34:21-41. [PMID: 36369603 DOI: 10.1007/s10532-022-10002-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The ability of Pseudomonas turukhanskensis GEEL-01 to degrade the phenanthrene (PHE) was optimized by response surface methodology (RSM). Three factors as independent variables (including temperature, pH, and inoculum) were studied at 600 mg/L PHE where the highest growth of P. turukhanskensis GEEL-01 was observed. The optimum operating conditions were evaluated through the fit summary analysis, model summary statistics, fit statistics, ANOVA analysis, and model graphs. The degradation of PHE was monitored by high-performance liquid chromatography (HPLC) and the metabolites were identified by gas chromatography-mass spectrometry (GC-MS). The results showed that the correlation among independent variables with experimental and predicted responses was significant (p < 0.0001). The optimal temperature, pH, and inoculum were 30 ℃, 8, and 6 mL respectively. The HPLC peaks exhibited a reduction in PHE concentration from 600 mg/L to 4.97 mg/L with 99% degradation efficiency. The GC-MS peaks indicated that the major end products of PHE degradation were 1-Hydroxy-2-naphthoic acid, salicylic acid, phthalic acid, and catechol. This study demonstrated that the optimized parameters by RSM for P. turukhanskensis GEEL-01 could degrade PHE by phthalic and salicylic acid pathways.
Collapse
Affiliation(s)
- Monika Sharma
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.,Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| | - Muhammad Usman
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.,Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Muhammad Arif
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.,Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
26
|
Zhou N, Guo H, Liu Q, Zhang Z, Sun J, Wang H. Bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil with the nitrate-reducing bacterium PheN7 under anaerobic condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129643. [PMID: 35908400 DOI: 10.1016/j.jhazmat.2022.129643] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil under anaerobic condition is still a huge challenge. In this study, an anaerobic Bacillus firmus strain named PheN7 was firstly isolated from mixture of contaminated soil and sludge samples with phenanthrene as the sole carbon resource under nitrate reducing environment. The anaerobic strain was then inoculated combining with nitrate into the phenanthrene-spiked PAH-contaminated soil to investigate the remediation efficiency by anaerobic bioaugmentation (BA). Results showed that the synergy between PheN7 and indigenous degrading bacteria promoted the remediation efficiency of soil. The average removal efficiencies of phenanthrene in 56 days were 1.73 mg/kg soil·d in BA group, much higher than biostimulation group (sole nitrate addition) and natural degradation which achieved 1.48 mg/kg soil·d and 1.24 mg/kg soil·d of degradation rate, respectively. The outstanding adaptability of PheN7 made it become the dominant species in soil in the terminal period, but the invasion of PheN7 also resulted in the decline of diversity of the indigenous microbial community. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt 2) results showed that a series of functional genes encoding anaerobic phenanthrene degradation and nitrate reductase enzymes in soil were remarkably strengthened with the addition of PheN7. This study confirmed the contribution of PheN7 as the anaerobic inoculum in PAH-contaminated soil remediation, further evaluating the practical applicability of anaerobic bioaugmentation technology in on-site remediation of real PAH-contaminated sites.
Collapse
Affiliation(s)
- Nan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qingxin Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiao Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
27
|
Geng S, Xu G, You Y, Xia M, Zhu Y, Ding A, Fan F, Dou J. Occurrence of polycyclic aromatic compounds and interdomain microbial communities in oilfield soils. ENVIRONMENTAL RESEARCH 2022; 212:113191. [PMID: 35351456 DOI: 10.1016/j.envres.2022.113191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Soil polycyclic aromatic compound (PAC) pollution as a result of petroleum exploitation has caused serious environmental problems. The unclear assembly and functional patterns of microorganisms in oilfield soils limits the understanding of microbial mechanisms for PAC elimination and health risk reduction. This study investigated the polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) occurrence, and their impact on the bacteria-archaea-fungi community diversity, co-occurrence network and functionality in the soil of an abandoned oilfield. The results showed that the PAC content in the oilfield ranged from 3429.03 μg kg-1 to 6070.89 μg kg-1, and risk assessment results suggested a potential cancer risk to children and adults. High molecular weight PAHs (98.9%) and SPAHs (1.0%) contributed to 99.9% of the toxic equivalent concentration. For microbial analysis, the abundantly detected degraders and unigenes indicated the microbial potential to mitigate pollutants and reduce health risks. Microbial abundance and diversity were found to be negatively correlated with health risk. The co-occurrence network analysis revealed nonrandom assembly patterns of the interdomain microbial communities, and species in the network exhibited strong positive connections (59%). The network demonstrated strong ecological linkages and was divided into five smaller coherent modules, in which the functional microbes were mainly involved in organic substance and mineral component degradation, biological electron transfer and nutrient cycle processes. The keystone species for maintaining microbial ecological functions included Marinobacter of bacteria and Neocosmospora of fungi. Additionally, benzo [g,h,i]pyrene, dibenz [a,h]anthracene, indeno [1,2,3-cd]perylene and total phosphorus were the key environmental factors driving the assembly and functional patterns of microbial communities under pollution stress. This work improves the knowledge of the functional pattern and environmental adaptation mechanisms of interdomain microbes, and provides valuable guidance for the further bioremediation of PAC-contaminated soils in oilfields.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yue You
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Meng Xia
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
28
|
Zhao X, Xu K, Wang J, Wang Z, Pan R, Wang Q, Li S, Kumar S, Zhang Z, Li R. Potential of biochar integrated manganese sulfate for promoting pig manure compost humification and its biological mechanism. BIORESOURCE TECHNOLOGY 2022; 357:127350. [PMID: 35609751 DOI: 10.1016/j.biortech.2022.127350] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to clarify the effect of the integrated addition of different proportions of biochar (0 and 5%) and MnSO4 (0, 0.25%, and 0.50%) to pig manure compost. The results indicated the integrated use of biochar (BC) and Mn2+ advanced the compost humification. In particular, the integrated use of 0.50% Mn2+ and 5% BC showed higher total organic carbon degradation (20.67%) and humic acid production (81.26 g kg-1) than other treatments. Microbial community analysis showed the integrated use of BC and Mn2+ regulated the diversity and community structure of organic matter-mineralizing microbes by maintaining the relative abundance of bacteria Firmicutes (54.62%) and Proteobacteria (38.05%) at high levels during the thermophilic period and boosting those of the fungi of Ascomycota (58.91%) and Actinobacteria (15.60%) during the maturity period of composting. This study illustrated the potential and biological mechanisms of integrating BC and Mn2+ as additives in compost humification.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kaili Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ziqi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ruokun Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Songling Li
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai 810016, PR China
| | - Sunil Kumar
- Solid & Hazardous Waste Management Division, National Environmental Engineering Research Institute (Council of Scientific & Industrial Research-India) Nehru Marg, Nagpur 440020, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
29
|
Yi M, Zhang L, Qin C, Lu P, Bai H, Han X, Yuan S. Temporal changes of microbial community structure and nitrogen cycling processes during the aerobic degradation of phenanthrene. CHEMOSPHERE 2022; 286:131709. [PMID: 34340117 DOI: 10.1016/j.chemosphere.2021.131709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Phenanthrene (PHE) is frequently detected in worldwide soils. But it is still not clear that how the microbial community succession happens and the nitrogen-cycling processes alter during PHE degradation. In this study, the temporal changes of soil microbial community composition and nitrogen-cycling processes during the biodegradation of PHE (12 μg g-1) were explored. The results showed that the biodegradation of PHE followed the second-order kinetics with a half-life of 7 days. QPCR results demonstrated that the bacteria numbers increased by 67.1%-194.7% with PHE degradation, whereas, no significant change was observed in fungi numbers. Thus, high-throughput sequencing based on 16 S rRNA was conducted and showed that the abundances of Methylotenera, Comamonadaceae, and Nocardioides involved in PHE degradation and denitrification were significantly increased, while those of nitrogen-metabolism-related genera such as Nitrososphaeraceae, Nitrospira, Gemmatimonadacea were decreased in PHE-treated soil. Co-occurrence network analysis suggested that more complex interrelations were constructed, and Proteobacteria instead of Acidobacteriota formed intimate associations with other microbes in responding to PHE exposure. Additionally, the abundances of nifH and narG were significantly up-regulated in PHE-treated soil, while that of amoA especially AOAamoA was down-regulated. Finally, correlation analysis found several potential microbes (Methylotenera, Comamonadaceae, and Agromyces) that could couple PHE degradation and nitrogen transformation. This study confirmed that PHE could alter microbial community structure, change the native bacterial network, and disturb nitrogen-cycling processes.
Collapse
Affiliation(s)
- Meiling Yi
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Cunli Qin
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Peili Lu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Hongcheng Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xinkuan Han
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shupei Yuan
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| |
Collapse
|
30
|
Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions. Biodegradation 2021; 33:17-31. [PMID: 34609628 DOI: 10.1007/s10532-021-09963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
4-Hydroxybenzoic acid (4-HBA) is a common organic compound that is prevalent in the environment, and the persistence of 4-HBA residues results in exertion of pollution-related detrimental effects. Bioremediation is an effective method for the removal of 4-HBA from the environment. In this study, two bacterial strains FZ-5 and FZ-8 capable of utilizing 4-HBA as the sole carbon and energy source under anaerobic conditions were isolated from marine sediment samples. Phylogenetic analysis identified the two strains FZ-5 and FZ-8 as Acinetobacter johnsonii and Klebsiella oxytoca, respectively. The strains FZ-5 and FZ-8 degraded 2000 mg·L-1 4-HBA in 72 h with degradation rates of 71.04% and 80.10%, respectively. The optimum culture conditions for degradation by the strains and crude enzymes were also investigated. The strains FZ-5 and FZ-8 also exhibited the ability to degrade other lignin-derived compounds, such as protocatechuic acid, cinnamic acid, and vanillic acid. Immobilization of the two strains showed that they could be used for the bioremediation of 4-HBA in an aqueous environment. Soils inoculated with the strains FZ-5 and FZ-8 showed higher degradation of 4-HBA than the uninoculated soil, and the strains could survive efficiently in anaerobic soil. This is the first report of 4-HBA-degrading bacteria, belonging to the two genera, which showed degradation ability under anaerobic conditions. This study expound the strains could efficiently degrade 4-HBA in anaerobic soil and will help in the development of 4-HBA anaerobic bioremediation systems.
Collapse
|