1
|
Bai Y, Wang Y, Wu D, Zhu J, Zou B, Ma Z, Xu J, Li L. Identify the seasonal differences in water quality and pollution sources between river-connected and gate-controlled lakes in the Yangtze River basin. MARINE POLLUTION BULLETIN 2024; 206:116760. [PMID: 39079476 DOI: 10.1016/j.marpolbul.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
The river-connected Dongting Lake (DT) and Poyang Lake (PY), and the gate-controlled Taihu Lake (TH) and Chaohu Lake (CH) are the four important lakes in the Yangtze River Basin. The comprehensive Water Quality Index (WQI), the Eutrophication Integrated Index (TLI(Σ)), and the Positive Matrix Factorization (PMF) model were employed to evaluate water quality and the contribution of pollution sources for these lakes. The results show that WQI for all lakes indicated generally good water quality, with DT scoring 73.52-86.18, the highest among them. During the wet season, the eutrophication degree of river-connected lake was medium, and that of gate-controlled lakes was high. The surface runoff and agricultural non-point sources are the main pollution sources for both types of lakes, but their impact is more pronounced in gate-controlled lakes during the wet season. The study provides evidence support for scientific understanding of water quality problems and management strategies in these areas.
Collapse
Affiliation(s)
- Yang Bai
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Yinuo Wang
- Information Center of Ministry of Ecology and Environment, Beijing 100029, PR China
| | - Daishe Wu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, PR China
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Binchun Zou
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Zhifei Ma
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China.
| | - Jinying Xu
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Peng J, Chen J, Liu S, Liu T, Cao M, Nanding N, Zhuang L, Bao A, De Maeyer P. Dynamics of algal blooms in typical low-latitude plateau lakes: Spatiotemporal patterns and driving factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123453. [PMID: 38286264 DOI: 10.1016/j.envpol.2024.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
The alpine lakes distributed on the plateau are crucial for the hydrological, and biogeochemical cycle, and also serve as a guarantee for regional economic development and human survival. However, under the influence of human interference and climate fluctuations, lakes are facing problems of eutrophication and subsequent algal blooms (ABs) with acceleration, and the development and driving factors of this phenomenon need to be considered as a whole. In this study, ten lakes located on the Yunnan-Guizhou Plateau were selected as the study area to analyze the spatiotemporal distribution of ABs and possible controlling forces. The FAI (Floating Algae Index) derived from multiple MODIS products and water quality data under high-frequency monitoring were selected as the data sources for characterizing ABs. Three nutrient parameters and five meteorological variables were used to explore the driving factors affecting ABs. Various methods of trend detection and correlation analysis have been applied. The main results are as follows: (1) Dianchi Lake (in lake area) and Xingyun Lake (in area proportion) are the two lakes with the most serious ABs in the historical period; (2) ABs are mainly distributed on the shoreline and northern edge of lakes, and tend to stay away from the lake center during high-temperature periods of the day; (3) Six lakes show a decreasing trend in ABs, especially after 2018, while other lakes (including Fuxian, Chenghai, Yangzong, and Erhai) are increasing, not only in peak value but also in duration; (4) Lakes with severe ABs are all P-restricted lakes, the minimum temperature is the most sensitive meteorological factor, while the impact of precipitation against ABs has a time lag; (5) Establishing a warning system of temperature and nutrient concentration is critical in ABs adaptive strategy. This study is expected to provide scientific references for regional water management and the restoration of the eutrophic aquatic ecosystem.
Collapse
Affiliation(s)
- Jiabin Peng
- School of Earth Sciences, Yunnan University, Kunming, 650500, China
| | - Junxu Chen
- School of Earth Sciences, Yunnan University, Kunming, 650500, China; International Joint Research Center for Karstology, Yunnan University, Kunming, 650091, China.
| | - Shiyin Liu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Tie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Min Cao
- School of Earth Sciences, Yunnan University, Kunming, 650500, China; International Joint Research Center for Karstology, Yunnan University, Kunming, 650091, China
| | - Nergui Nanding
- School of Earth Sciences, Yunnan University, Kunming, 650500, China
| | - Liangyu Zhuang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Anming Bao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | | |
Collapse
|
3
|
Geng M, Qian Z, Jiang H, Huang B, Huang S, Deng B, Peng Y, Xie Y, Li F, Zou Y, Deng Z, Zeng J. Assessing the impact of water-sediment factors on water quality to guide river-connected lake water environment improvement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168866. [PMID: 38016546 DOI: 10.1016/j.scitotenv.2023.168866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
The substantial impacts of exogenous pollutants on lake water quality have been extensively reported. Water-sediment factors, which are essential for regulating water quality in river-connected lakes, have not been studied in depth under different hydrological conditions. This study has combined a 31-year water environmental dataset (1991-2021) regarding Dongting Lake and a vector autoregression model (VAR) in order to investigate the impulse response characteristics and contributions of water quality caused by water-sediment factors across different periods. Our analysis suggests that total nitrogen (TN) exhibited a significant increasing trend, whereas total phosphorus (TP) increased to 0.17 mg/L, and then decreased to 0.07 mg/L from 1991 to 2021. The inflow of suspended sediment discharge (SSD) decreased significantly during the study period, mainly because of the decrease in SSD in the three channels (TC). In the pre-Three Gorges Dam (TGD) period, water discharge (WD) and SSD were the Granger causes of TN and TP. In the post-TGD periods this relationship disappeared because of the construction of the TGD, which reduced the inflow of SSD and WD into the lake. Water quality indicators showed an instant response to the shock from themselves with high values, whereas the impulse response of the water quality to water-sediment factors exhibited lagged variations. This meant that the water quality indicators displayed a high impact by themselves across the different periods, with values varying from 67 % to 95 %. Water level (WL) and SSD were the predominant water-sediment factors for TP in the pre-TGD period, with the impact on TP changes accounting for 11 % and 9 %, respectively, whereas the contribution of SSD decreased to 2 % in the post-TGD period. WL was the most crucial water-sediment factor for CODMn during the different periods, with contributions varying from 17 % to 20 %. To improve the water quality of Dongting Lake, in addition to the implementation of strict controls on excessive external nutrient loading, regulating water-sediment factors according to the hydrological features of Dongting Lake during different periods is vital.
Collapse
Affiliation(s)
- Mingming Geng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Zhan Qian
- Engineering Technology Research Center of Hunan Dongting Lake Flood Control and Water Resources Protection of Hunan Province, Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd, Changsha 410007, Hunan, China
| | - Heng Jiang
- Engineering Technology Research Center of Hunan Dongting Lake Flood Control and Water Resources Protection of Hunan Province, Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd, Changsha 410007, Hunan, China
| | - Bing Huang
- Engineering Technology Research Center of Hunan Dongting Lake Flood Control and Water Resources Protection of Hunan Province, Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd, Changsha 410007, Hunan, China
| | - Shuchun Huang
- Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin, Ministry of Natural Resources, Changsha 410000, Hunan, China
| | - Bo Deng
- Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin, Ministry of Natural Resources, Changsha 410000, Hunan, China
| | - Yi Peng
- Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China; Changsha Natural Resources Comprehensive Survey Center, China Geological Survey, Changsha 410000, Hunan, China
| | - Yonghong Xie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Feng Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.
| | - Yeai Zou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Zhengmiao Deng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Jing Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
4
|
Cui J, Xu H, Cui Y, Song C, Qu Y, Zhang S, Zhang H. Improved eutrophication model with flow velocity-influence function and application for algal bloom control in a reservoir in East China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119209. [PMID: 37837758 DOI: 10.1016/j.jenvman.2023.119209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
Improving hydrodynamic conditions is considered an effective method for facilitating the eutrophication management. However, the effect of hydrodynamic conditions on algal growth has rarely been quantified. In this work, a eutrophication model was developed and flow velocity was introduced into the algae growth kinetic formula to simulate the dynamics of algae growth in a drinking water source reservoir in East China. Based on the previous research and model calibration, the flow velocity-influence function f(v) and its parameters were determined. Accordingly, the optimal flow velocity for the dominant algae growth and critical flow velocity for algal growth inhibition were presented to be 0.055 m/s and 0.200 m/s for the study reservoir. Modeled results considering f(v) agreed with better with observations and reproduced the algal overgrowth process more accurately. The spatial-temporal differences in chlorophyll a (Chl a) concentration distribution during the algal proliferation period were analyzed on the basis of simulation results, which corroborated the significant influence of flow velocity on algal growth. The established model was applied to investigate the effect of improvement in hydrodynamic conditions on algal bloom control in the reservoir, and the scenario simulation of the additional sluice was conducted. Results showed that the additional sluice operation inhibited algal overgrowth effectively, resulting in an average decrease of 24.8%, 3.3%, 43.0%, and 37.5% in modeled Chl a concentration upstream north, upstream south, midstream and downstream, respectively. The established model might serve as a practical tool for eutrophication management in the study reservoir and other water bodies with similar hydrological characteristics and geographical features.
Collapse
Affiliation(s)
- Jingyuan Cui
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hanling Xu
- Hunan Architectural Design Institute Group Co., Limited Company, Changsha, 410006, China
| | - Yafei Cui
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chenyu Song
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yao Qu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Sheng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haiping Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Wang Y, Peng Z, Liu G, Zhang H, Zhou X, Hu W. A mathematical model for phosphorus interactions and transport at the sediment-water interface in a large shallow lake. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Xu S, Liu Y, Zhang J. Transcriptomic mechanisms for the promotion of cyanobacterial growth against eukaryotic microalgae by a ternary antibiotic mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58881-58891. [PMID: 35377122 DOI: 10.1007/s11356-022-20041-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the responses of a mixed culture of two cyanobacterial species (Microcystis aeruginosa and Synechocystis sp.) and two eukaryotic microalgal species (Raphidocelis subcapitata and Tetradesmus obliquus) to a mixture of three frequently detected antibiotics (tetracycline, ciprofloxacin and sulfamethoxazole) at environmentally relevant exposure doses of 60-300 ng/L. Mixed antibiotics selectively stimulated (p < 0.05) the growth and photosynthetic activity as well as generated transcriptomic responses in cyanobacteria without disrupting co-existing eukaryotic microalgae. Mixed antibiotics stimulated the growth of M. aeruginosa through the regulation of genes related to ribosome, photosynthesis, redox homeostasis, quorum sensing and nutrient metabolism. The proportion of M. aeruginosa among the four phytoplankton species in the mixed-culture system was increased from 33% to 38-44% under antibiotic exposure, which promoted the dominance of M. aeruginosa. Up-regulation of carbon catabolism-related genes contributed to the increased growth of Synechocystis sp. under antibiotic exposure. Since the antibiotic-stimulated growth rate of Synechocystis sp. was still lower than that of M. aeruginosa, the proportion of Synechocystis sp. in the mixed-culture system remained stable. Synechocystis sp. was less adaptive to antibiotic exposure than M. aeruginosa, due to a lower number of up-regulated ribosomal genes and photosynthesis-related genes. Antibiotic exposure reduced the proportions of two eukaryotic microalgal species in the mixed-culture system through a selective promotion of cyanobacterial competitiveness against eukaryotic microalgae, which may facilitate the formation of cyanobacteria bloom.
Collapse
Affiliation(s)
- Sijia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| |
Collapse
|