1
|
Li J, Wang L, Wu B, Wang J, Yu Y, Kuzyakov Y, Ding S, Xu X. Convergence and divergence of microbial communities in river- Qinghai lake sediment continuum on Tibetan Plateau. WATER RESEARCH 2025; 282:123757. [PMID: 40347897 DOI: 10.1016/j.watres.2025.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Microbiota within interconnected river-lake systems define cycles of carbon and nutrients, yet the mechanisms underlying the assembly of microbial communities during their transition from tributaries to lake remains to be deciphered. This study examined the communities of protists, fungi and bacteria in sediments of Qinghai Lake - a saline lake on the Tibetan Plateau, China - and its connected upstream freshwater tributaries, using high-throughput amplicon sequencing targeting the 18S, ITS2 and 16S rDNA regions. Our findings reveal divergent assembly mechanisms across microbial groups: communities of microeukaryotes (protists and fungi) in tributaries were predominantly shaped by stochastic processes (∼85% contribution), shifting to environmental selection dominance in the lake (∼55%). In contrast, bacterial community assembly in tributaries was primarily deterministic (∼60% environmental selection), shifting to stochastic dominance (∼70%) in the lake. Despite the differences, all groups exhibited congruent biogeographic patterns in terms of diversity and network complexity. The tributary-to-lake transition enhanced the complexity of microbial co-occurrence network but resulted in significant species loss, with α-diversity reduced by 56%-62%. β-diversity increased from tributaries to the estuary but decreased within the lake. Microbial α- and β-diversity correlated positively with sediment C: N ratio but negatively with total sediment C content. Notably, only 1% to 13% of microbial taxa in lake sediments originated from tributaries, suggesting alternative pathways that warrant further geological investigation. This study provides new insights into the convergent biogeographical patterns of diversity and network complexity, coupled with divergent assembly mechanisms, among protist, fungal, and bacterial communities along the river-Qinghai Lake sediment continuum.
Collapse
Affiliation(s)
- Jie Li
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lingqing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Wu
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yajing Yu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, G¨ottingen, 37077, Germany
| | - Shiming Ding
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Zhang M, Bai L, Yao Z, Li W, Yang W. Seasonal lake ice cover drives the restructuring of bacteria-archaea and bacteria-fungi interdomain ecological networks across diverse habitats. ENVIRONMENTAL RESEARCH 2025; 269:120907. [PMID: 39848515 DOI: 10.1016/j.envres.2025.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN). The findings indicate significant variations in the structures of bacterial, archaeal, and fungal communities across different periods and habitats, with the pH of the water body being a crucial environmental variable affecting microbial community composition. In the frozen period, the functionality of microbial communities, especially in terms of energy metabolism, was significantly impacted, with water bodies experiencing more pronounced effects than sediments. Archaea and fungi significantly contribute to the stability of bacterial communities across various habitats, especially in ice-covered conditions, where stronger associations between bacterial communities, archaea, and fungi promote the microbial communities' adaptability to cold stress. Furthermore, our results indicate that the primary environmental variable influencing the structure of IDENs is the nutrient salt content in both water bodies and sediments. This study broadens our understanding of the responses and feedback mechanisms of inter-domain microbial interactions in lakes influenced by seasonal ice cover.
Collapse
Affiliation(s)
- Mingyu Zhang
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Long Bai
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Zhi Yao
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Weiping Li
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Wenhuan Yang
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China.
| |
Collapse
|
3
|
Onana VE, Beisner BE, Walsh DA. Water Quality and Land Use Shape Bacterial Communities Across 621 Canadian Lakes. Environ Microbiol 2025; 27:e70037. [PMID: 39868666 DOI: 10.1111/1462-2920.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones. At the pan-Canadian scale, total phosphorus (TP) was the most significant water quality variable influencing community structure, and the most pronounced shift was observed at 110 μg/L of TP, corresponding to the transition from eutrophic to hypereutrophic conditions. At the regional scale, water quality significantly explained bacterial community structure in all ecozones. In terms of land use effect, at the pan-Canadian scale, agriculture and, to a lesser extent, urbanisation were significant land use variables influencing community structure. Regionally, in ecozones characterised by extensive agriculture, this land cover variable was consistently significant in explaining community structure. Likewise, in extensively urbanised ecozones, urbanisation was consistently significant in explaining community structure. Overall, these results demonstrate that bacterial richness and community structure are influenced by water quality and shaped by agriculture and urban development in different ways.
Collapse
Affiliation(s)
- Vera E Onana
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Canada
- Department of Biology, Concordia University, Montréal, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | - David A Walsh
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Canada
- Department of Biology, Concordia University, Montréal, Canada
| |
Collapse
|
4
|
URycki DR, Good SP, Crump BC, Ceperley NC, Brooks JR. Microbial community storm dynamics signal sources of "old" stream water. PLoS One 2024; 19:e0306896. [PMID: 39316627 PMCID: PMC11421800 DOI: 10.1371/journal.pone.0306896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/25/2024] [Indexed: 09/26/2024] Open
Abstract
Accurate characterization of the movement of water through catchments, particularly during precipitation event response, is critical for hydrological efforts such as contaminant transport modeling or prediction of extreme flows. Abiotic hydrogeochemical tracers are commonly used to track sources and ages of surface waters but provide limited details about transit pathways or the spatial dynamics of water storage and release. Alternatively, biotic material in streams is derived from thousands of taxa originating from a variety of environments within watersheds, including groundwater, sediment, and upslope terrestrial environments, and this material can be characterized with genetic sequencing and bioinformatics. We analyzed the stable water isotopes (δ18O and δ2H) and microbiome composition (16S rRNA gene amplicon sequencing) of the Marys River of western Oregon, USA during an early season storm to describe the processes, storage, and flowpaths that shape surface water hydrology. Stable water isotopes (δ18O and δ2H) typified an event response in which stream water is composed largely of 'old' water introduced to the catchment before the storm, a common though not well understood phenomenon. In contrast, microbial biodiversity spiked during the storm, consisting of early- and late-event communities clearly distinguishable from pre-event communities. We applied concentration-discharge (cQ) analysis to individual microbial taxa and found that most Alphaproteobacteria sequences were positively correlated (i.e., were mobilized) with discharge, whereas most sequences from phyla Gammaproteobacteria and Bacteroidota were negatively correlated with discharge (i.e., were diluted). Source predictions using the prokaryote habitat preference database ProkAtlas found that freshwater-associated microbes composed a smaller fraction of the microbial community during the stream rise and a larger fraction during the recession, while soil and biofilm-associated microbes increased during the storm and remained high during recession. This suggests that the "old" water discharged during the storm was likely stored and released from, or passed through, soil- and biofilm-rich environments, demonstrating that this approach adds new, biologically derived tracer information about the hydrologic pathways active during and after this event. Overall, this study demonstrates an approach for integrating information-rich DNA into water resource investigations, incorporating tools from both hydrology and microbiology to demonstrate that microbial DNA is useful not only as an indicator of biodiversity but also functions as an innovative hydrologic tracer.
Collapse
Affiliation(s)
- Dawn R URycki
- Water Resources Graduate Program, Oregon State University, Corvallis, OR, United States of America
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, United States of America
- Department of Earth and Planetary Sciences, McGill University, Montréal, Canada
| | - Stephen P Good
- Water Resources Graduate Program, Oregon State University, Corvallis, OR, United States of America
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, United States of America
| | - Byron C Crump
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Natalie C Ceperley
- Hydrology Group, Institute of Geography (GIUB) and Oeschger Center of Climate Change Research (OCCR), University of Bern, Bern, Switzerland
| | - J Renée Brooks
- Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Corvallis, OR, United States of America
| |
Collapse
|
5
|
Wang A, He M, Liu H, Ouyang W, Liu X, Li Q, Lin C, Liu X. Distribution heterogeneity of sediment bacterial community in the river-lake system impacted by nonferrous metal mines: Diversity, composition and co-occurrence patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122715. [PMID: 37821043 DOI: 10.1016/j.envpol.2023.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Metal(loid) pollution caused by mining activities can affect microbial communities. However, knowledge of the diversity, composition, and co-occurrence patterns of bacterial communities in aquatic systems impacted by nonferrous metal mines. Here, the metal(loid) contents and bacterial communities in sediments from the Zijiang River (tributary to mainstream) to Dongting Lake were investigated by geochemical and molecular biology methods. The results indicated that the river sediments had lower pH and higher ecological risk of metal(loid)s than the lake sediment. The diversity and composition of bacterial communities in river sediments significantly (p < 0.05) differed from those in lake sediments, showing distributional heterogeneity. The biomarkers of tributary, mainstream, and lake sediments were mainly members of Deltaproteobacteria, Firmicutes, and Nitrospirae, respectively, reflecting species sorting in different habitats. Multivariate statistical analysis demonstrated that total and bioavailable Sb, As, and Zn were positively correlated with bacterial community richness. pH, TOC, TN, and Zn were crucial factors in shaping the distribution difference of bacterial communities. Environment-bacteria network analysis indicated that pH, SO42-, and total and bioavailable As and Sb greatly influenced the bacterial composition at the genus level. Bacteria-bacteria network analysis manifested that the co-occurrence network in mainstream sediments with a higher risk of metal(loid) pollution exhibited higher modularity and connectivity, which might be the survival mechanism for bacterial communities adapted to metal(loid) pollution. This study can provide a theoretical basis for understanding the ecological status of aquatic systems.
Collapse
Affiliation(s)
- Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| | - Xinyi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Sadeghi J, Chaganti SR, Johnson TB, Heath DD. Host species and habitat shape fish-associated bacterial communities: phylosymbiosis between fish and their microbiome. MICROBIOME 2023; 11:258. [PMID: 37981701 PMCID: PMC10658978 DOI: 10.1186/s40168-023-01697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND While many studies have reported that the structure of the gut and skin microbiota is driven by both species-specific and habitat-specific factors, the relative importance of host-specific versus environmental factors in wild vertebrates remains poorly understood. The aim of this study was to determine the diversity and composition of fish skin, gut, and surrounding water bacterial communities (hereafter referred to as microbiota) and assess the extent to which host habitat and phylogeny predict microbiota similarity. Skin swabs and gut samples from 334 fish belonging to 17 species were sampled in three Laurentian Great Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario). We also collected and filtered water samples at the time of fish collection. We analyzed bacterial community composition using 16S metabarcoding and tested for community variation. RESULTS We found that the water microbiota was distinct from the fish microbiota, although the skin microbiota more closely resembled the water microbiota. We also found that environmental (sample location), habitat, fish diet, and host species factors shape and promote divergence or convergence of the fish microbiota. Since host species significantly affected both gut and skin microbiota (separately from host species effects), we tested for phylosymbiosis using pairwise host species phylogenetic distance versus bacterial community dissimilarity. We found significant phylogenetic effects on bacterial community dissimilarity, consistent with phylosymbiosis for both the fish skin and gut microbiota, perhaps reflecting the longstanding co-evolutionary relationship between the host species and their microbiomes. CONCLUSIONS Analyzing the gut and skin mucus microbiota across diverse fish species in complex natural ecosystems such as the LGLs provides insights into the potential for habitat and species-specific effects on the microbiome, and ultimately the health, of the host. Video Abstract.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Timothy B Johnson
- Ontario Ministry of Natural Resources and Forestry, Glenora Fisheries Station, Picton, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
7
|
Anneberg TJ, Turcotte MM, Ashman TL. Plant neopolyploidy and genetic background differentiate the microbiome of duckweed across a variety of natural freshwater sources. Mol Ecol 2023; 32:5849-5863. [PMID: 37750335 DOI: 10.1111/mec.17142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
Whole-genome duplication has long been appreciated for its role in driving phenotypic novelty in plants, often altering the way organisms interface with the abiotic environment. Only recently, however, have we begun to investigate how polyploidy influences interactions of plants with other species, despite the biotic niche being predicted as one of the main determinants of polyploid establishment. Nevertheless, we lack information about how polyploidy affects the diversity and composition of the microbial taxa that colonize plants, and whether this is genotype-dependent and repeatable across natural environments. This information is a first step towards understanding whether the microbiome contributes to polyploid establishment. We, thus, tested the immediate effect of polyploidy on the diversity and composition of the bacterial microbiome of the aquatic plant Spirodela polyrhiza using four pairs of diploids and synthetic autotetraploids. Under controlled conditions, axenic plants were inoculated with pond waters collected from 10 field sites across a broad environmental gradient. Autotetraploids hosted 4%-11% greater bacterial taxonomic and phylogenetic diversity than their diploid progenitors. Polyploidy, along with its interactions with the inoculum source and genetic lineage, collectively explained 7% of the total variation in microbiome composition. Furthermore, polyploidy broadened the core microbiome, with autotetraploids having 15 unique bacterial taxa in addition to the 55 they shared with diploids. Our results show that whole-genome duplication directly leads to novelty in the plant microbiome and importantly that the effect is dependent on the genetic ancestry of the polyploid and generalizable over many environmental contexts.
Collapse
Affiliation(s)
- Thomas J Anneberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Qi L, Li R, Wu Y, Ibeanusi V, Chen G. Spatial distribution and assembly processes of bacterial communities in northern Florida freshwater springs. ENVIRONMENTAL RESEARCH 2023; 235:116584. [PMID: 37454793 DOI: 10.1016/j.envres.2023.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Freshwater microorganisms are an essential component of the global biogeochemical cycle and a significant contributory factor in water quality. Unraveling the mechanisms controlling microbial community spatial distribution is crucial for the assessment of water quality and health of aquatic ecosystems. This research provided a comprehensive analysis of microbial communities in Florida freshwater springs. The 16S rRNA gene sequencing and bioinformatics analyses revealed the bacterial compositional heterogeneity as well as numerous unique ASVs and biomarkers in different springs. Statistical analysis showed both geographic distance and environmental variables contributed to regional bacterial community variation, while nitrate was the dominant environmental stressor that shaped the bacterial communities. The phylogenetic bin-based null model characterized both deterministic and stochastic factors contributing to community assembly in Florida springs, with the majority of bins dominated by ecological drift. Mapping of predicted pathways to the MetaCyc database revealed the inconsistency between microbial taxonomic and functional profiles, implying the functional redundancy pattern. Collectively, our work sheds insights into the microbial spatial distribution, community assembly, and function traits in one of the world's most productive aquifers. Therefore, this work provides a unique view of the health of Florida's artesian springs and offers new perspectives for freshwater quality assessment and sustainable management.
Collapse
Affiliation(s)
- Lin Qi
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| | - Runwei Li
- Department of Civil Engineering, College of Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yudi Wu
- College of Engineering and Applied Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor Ibeanusi
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
9
|
Sadeghi J, Hashemi Shahraki A, Chaganti SR, Heath D. Functional gene transcription variation in bacterial metatranscriptomes in large freshwater Lake Ecosystems: Implications for ecosystem and human health. ENVIRONMENTAL RESEARCH 2023; 231:116298. [PMID: 37268212 DOI: 10.1016/j.envres.2023.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Little is known regarding the temporal and spatial functional variation of freshwater bacterial community (BC) under non-bloom conditions, especially in winter. To address this, we used metatranscriptomics to assess bacterial gene transcription variation among three sites across three seasons. Our metatranscriptome data for freshwater BCs at three public beaches (Ontario, Canada) sampled in the winter (no ice), summer and fall (2019) showed relatively little spatial, but a strong temporal variation. Our data showed high transcriptional activity in summer and fall but surprisingly, 89% of the KEGG pathway genes and 60% of the selected candidate genes (52 genes) associated with physiological and ecological activity were still active in freezing temperatures (winter). Our data also supported the possibility of an adaptively flexible gene expression response of the freshwater BC to low temperature conditions (winter). Only 32% of the bacterial genera detected in the samples were active, indicating that the majority of detected taxa were non-active (dormant). We also identified high seasonal variation in the abundance and activity of taxa associated with health risks (i.e., Cyanobacteria and waterborne bacterial pathogens). This study provides a baseline for further characterization of freshwater BCs, health-related microbial activity/dormancy and the main drivers of their functional variation (such as rapid human-induced environmental change and climate change).
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | | | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada; Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
10
|
Jiang X, Guo X, Lu H, Yang J, Li W, Hao Q. Distinct Community Assembly Mechanisms of Different Growth Stages in a Warm Temperate Forest. DIVERSITY 2023. [DOI: 10.3390/d15040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Community phylogenetic structure and diversity analysis are useful complements to species-centric approaches in biodiversity studies by providing new insights into the processes that drive community assembly. In this study, we aimed to understand the differences in the relative importance of abiotic filtering, biotic interactions, and dispersal limitation on community assembly of trees at different vegetation growth stages. We also examined the influence of geographical distance, elevation, terrain, and soil. Thus, we examined the phylogenetic structures and β-diversities of saplings and adults along different abiotic gradients. The results of the net relatedness index (NRI) showed that, instead of being random, the phylogenetic structure of saplings tended to be convergent, whereas that of adults tended to be divergent. This result implies that the relative forces of abiotic filtering and biotic interactions change throughout vegetation growth. The results of generalized dissimilarity modelling (GDM) showed that dispersal limitation (geographical distance) and abiotic filtering influenced the community assembly of both adults and saplings. This result confirmed our hypothesis that both deterministic and stochastic processes were prevalent. The explanatory rates of geographic distance and environmental factor distance to phylogenetic β-diversity were quite different between adults and saplings, which meant that the relative force of dispersal limitation and abiotic filtering had also changed.
Collapse
Affiliation(s)
- Xiaolei Jiang
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao Guo
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Huicui Lu
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinming Yang
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Li
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Hao
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
11
|
Wan W, Grossart H, He D, Liu W, Wang S, Yang Y. Differentiation strategies for planktonic bacteria and eukaryotes in response to aggravated algal blooms in urban lakes. IMETA 2023; 2:e84. [PMID: 38868338 PMCID: PMC10989909 DOI: 10.1002/imt2.84] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/14/2024]
Abstract
Aggravated algal blooms potentially decreased environmental heterogeneity. Different strategies of planktonic bacteria and eukaryotes in response to aggravated algal blooms. Environmental constraints of plankton showed different patterns over time.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanPeople's Republic of China
| | - Hans‐Peter Grossart
- Departent of Plankton and Microbial EcologyLeibniz‐Institute for Freshwater Ecology and Inland Fisheries (IGB)NeuglobsowGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Donglan He
- College of Life ScienceSouth‐Central Minzu UniversityWuhanPeople's Republic of China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanPeople's Republic of China
| | - Shuai Wang
- College of Life ScienceSouth‐Central Minzu UniversityWuhanPeople's Republic of China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanPeople's Republic of China
| |
Collapse
|
12
|
Pearman JK, Thomson-Laing G, Thompson L, Waters S, Vandergoes MJ, Howarth JD, Duggan IC, Hogg ID, Wood SA. Human access and deterministic processes play a major role in structuring planktonic and sedimentary bacterial and eukaryotic communities in lakes. PeerJ 2022; 10:e14378. [PMID: 36389411 PMCID: PMC9661969 DOI: 10.7717/peerj.14378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Lakes provide habitat for a diverse array of species and offer a wide range of ecosystem services for humanity. However, they are highly vulnerable as they are not only impacted by adverse actions directly affecting them, but also those on the surrounding environment. Improving knowledge on the processes responsible for community assembly in different biotic components will aid in the protection and restoration of lakes. Studies to date suggested a combination of deterministic (where biotic/abiotic factors act on fitness differences amongst taxa) and stochastic (where dispersal plays a larger factor in community assembly) processes are responsible for structuring biotic communities, but there is no consensus on the relative roles these processes play, and data is lacking for lakes. In the present study, we sampled different biotic components in 34 lakes located on the South Island of New Zealand. To obtain a holistic view of assembly processes in lakes we used metabarcoding to investigate bacteria in the sediment and surface waters, and eukaryotes in the sediment and two different size fractions of the water column. Physicochemical parameters were collected in parallel. Results showed that deterministic processes dominated the assembly of lake communities although the relative importance of variable and homogeneous selection differed among the biotic components. Variable selection was more important in the sediment (SSbact and SSeuks) and for the bacterioplankton (Pbact) while the assembly of the eukaryotic plankton (SPeuks, LPeuks) was driven more by homogeneous selection. The ease of human access to the lakes had a significant effect on lake communities. In particular, clade III of SAR11 and Daphnia pulex were only present in lakes with public access. This study provides insights into the distribution patterns of different biotic components and highlights the value in understanding the drivers of different biological communities within lakes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian D. Hogg
- University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Nunavut, Canada
| | | |
Collapse
|
13
|
Shang Y, Wu X, Wang X, Dou H, Wei Q, Ma S, Sun G, Wang L, Sha W, Zhang H. Environmental factors and stochasticity affect the fungal community structures in the water and sediments of Hulun Lake, China. Ecol Evol 2022; 12:e9510. [PMID: 36415879 PMCID: PMC9674472 DOI: 10.1002/ece3.9510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Aquatic fungi form both morphologically and ecologically diverse communities. However, lake ecosystems are frequently overlooked as fungal habitats, despite the potentially important role of fungi in matter cycling and energy flow. Hulun Lake is a typical example of a seasonal glacial lake; however, previous studies have only focused on bacteria in this ecosystem. Therefore, in the current study, internal transcribed spacer ribosomal RNA (ITS rRNA) gene high-throughput sequencing was used to investigate the fungal communities in paired water and sediment samples from the Hulun Lake Basin in China. A significant difference was found between the fungal communities of the two sample types. Across all samples, we identified nine phyla, 30 classes, 78 orders, 177 families, and 307 genera. The dominant phyla in the lake were Ascomycota, Basidiomycota and Chytridiomycota. Our results show that both water and sediments have very high connectivity, are dominated by positive interactions, and have similar interaction patterns. The fungal community structures were found to be significantly affected by environmental factors (temperature, chemical oxygen demand, electrical conductivity, total phosphorus, and pH). In addition, the dispersal limitations of the fungi affected the structure of the fungal communities, and it was revealed that stochasticity is more important than deterministic mechanisms in influencing the structure and function of fungal communities. This study provides unique theoretical support for the study of seasonally frozen lake fungal communities and a scientific basis for the future management and protection of Hulun Lake.
Collapse
Affiliation(s)
| | - Xiaoyang Wu
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Xibao Wang
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid AreasHulunbuirChina
| | - Qinguo Wei
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Shengchao Ma
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Guolei Sun
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Lidong Wang
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Weilai Sha
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Honghai Zhang
- College of Life SciencesQufu Normal UniversityQufuChina
| |
Collapse
|
14
|
Zheng F, Zhang T, Yin S, Qin G, Chen J, Zhang J, Zhao D, Leng X, An S, Xia L. Comparison and interpretation of freshwater bacterial structure and interactions with organic to nutrient imbalances in restored wetlands. Front Microbiol 2022; 13:946537. [PMID: 36212857 PMCID: PMC9533089 DOI: 10.3389/fmicb.2022.946537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023] Open
Abstract
Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Tiange Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ge Qin
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Chen
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jinghua Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Dehua Zhao
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Leng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Lu Xia
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Zhang J, He X, Zhang H, Liao Y, Wang Q, Li L, Yu J. Factors Driving Microbial Community Dynamics and Potential Health Effects of Bacterial Pathogen on Landscape Lakes with Reclaimed Water Replenishment in Beijing, PR China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5127. [PMID: 35564521 PMCID: PMC9106022 DOI: 10.3390/ijerph19095127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Assessing the bacteria pathogens in the lakes with reclaimed water as major influents are important for public health. This study investigated microbial communities of five landscape lakes replenished by reclaimed water, then analyzed driven factors and identified health effects of bacterial pathogens. 16S rRNA gene sequence analysis demonstrated that Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, and Verrucomicrobia were the most dominant phyla in five landscape lakes. The microbial community diversities were higher in June and July than that in other months. Temperature, total nitrogen and phosphorus were the main drivers of the dominant microbial from the Redundancy analysis (RDA) results. Various potential bacterial pathogens were identified, including Pseudomonas, GKS98_freshwater_group, Sporosarcina, Pseudochrobactrum, Streptomyces and Bacillus, etc, some of which are easily infectious to human. The microbial network analysis showed that some potential pathogens were nodes that had significant health effects. The work provides a basis for understanding the microbial community dynamics and safety issues for health effects in landscape lakes replenished by reclaimed water.
Collapse
Affiliation(s)
- Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Xiao He
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Huixin Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Yu Liao
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100019, China
| | - Luwei Li
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100019, China
| |
Collapse
|
16
|
Pearman JK, Thomson-Laing G, Thomson-Laing J, Thompson L, Waters S, Reyes L, Howarth JD, Vandergoes MJ, Wood SA. The Role of Environmental Processes and Geographic Distance in Regulating Local and Regionally Abundant and Rare Bacterioplankton in Lakes. Front Microbiol 2022; 12:793441. [PMID: 35250905 PMCID: PMC8888906 DOI: 10.3389/fmicb.2021.793441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria are vital components of lake systems, driving a variety of biogeochemical cycles and ecosystem services. Bacterial communities have been shown to have a skewed distribution with a few abundant species and a large number of rare species. The contribution of environmental processes or geographic distance in structuring these components is uncertain. The discrete nature of lakes provides an ideal test case to investigate microbial biogeographical patterns. In the present study, we used 16S rRNA gene metabarcoding to examine the distribution patterns on local and regional scales of abundant and rare planktonic bacteria across 167 New Zealand lakes covering broad environmental gradients. Only a few amplicon sequence variants (ASVs) were abundant with a higher proportion of rare ASVs. The proportion of locally abundant ASVs was negatively correlated with the percentage of high productivity grassland in the catchment and positively with altitude. Regionally rare ASVs had a restricted distribution and were only found in one or a few lakes. In general, regionally abundant ASVs had higher occupancy rates, although there were some with restricted occupancy. Environmental processes made a higher contribution to structuring the regionally abundant community, while geographic distances were more important for regionally rare ASVs. A better understanding of the processes structuring the abundance and distribution of bacterial communities within lakes will assist in understand microbial biogeography and in predicting how these communities might shift with environmental change.
Collapse
Affiliation(s)
- John K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | | | - Lucy Thompson
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Sean Waters
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | - Jamie D Howarth
- School of Geography, Environment and Earth Sciences, University of Victoria, Wellington, New Zealand
| | | | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
17
|
Shahraki AH, Chaganti SR, Heath D. Spatio-temporal dynamics of bacterial communities in the shoreline of Laurentian great Lake Erie and Lake St. Clair's large freshwater ecosystems. BMC Microbiol 2021; 21:253. [PMID: 34548037 PMCID: PMC8454060 DOI: 10.1186/s12866-021-02306-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background Long-term trends in freshwater bacterial community composition (BCC) and dynamics are not yet well characterized, particularly in large lake ecosystems. We addressed this gap by temporally (15 months) and spatially (6 sampling locations) characterizing BCC variation in lakes Erie and St. Clair; two connected ecosystems in the Laurentian Great Lakes. Results We found a spatial variation of the BCC between the two lakes and among the sampling locations (significant changes in the relative abundance of 16% of the identified OTUs at the sampling location level). We observed five distinct temporal clusters (UPGMA broad-scale temporal variation) corresponding to seasonal variation over the 15 months of sampling. Temporal variation among months was high, with significant variation in the relative abundance of 69% of the OTUs. We identified significant differences in taxonomic composition between summer months of 2016 and 2017, with a corresponding significant reduction in the diversity of BCC in summer 2017. Conclusions As bacteria play a key role in biogeochemical cycling, and hence in healthy ecosystem function our study defines the scope for temporal and spatial variation in large lake ecosystems. Our data also show that freshwater BCC could serve as an effective proxy and monitoring tool to access large lake health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02306-y.
Collapse
Affiliation(s)
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada. .,Present Address: Cooperative Institute for Great Lakes Research, School of Environmental and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada. .,Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|