1
|
Chen X, Hu S, Chen X, Cheng H, Wu C. Influence of different cyanobacterial treatment methods on phosphorus cycle in shallow lake microcosms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120245. [PMID: 38368799 DOI: 10.1016/j.jenvman.2024.120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Cyanobacterial bloom is a pressing issue affecting water supply security and ecosystem health. Phosphorus (P) released from cyanobacterial bloom during recession is one of the most important components involved in the lake P cycle. However, little is known about the consequences and mechanisms of the P cycle in overlying water and sediment due to the anthropogenic treatments of cyanobacterial blooms. In this study, treatment methods using hydrogen peroxide (H2O2), polyaluminum chloride (PAC), and the feces of silver carp were investigated for their influence on the P cycle using microcosm experiments. Results showed that H2O2 treatment significantly increased the internal cycle of sediment-related P, while PAC treatment showed minor effects. H2O2 and PAC treatment suppressed the release of P from sediment before day 10 but promoted the release of P on day 20, while silver carp treatment suppressed the release of P during the whole experiment. The reductive dissolution of iron oxide-hydroxide was the major factor affects the desorption of P. Path analyses further suggested that overlying water properties such as dissolved oxygen (DO) and oxidation-reduction potential (ORP) play critical roles in the treatment-induced sediment P release. Our results quantify the endogenous P diffusion fluxes across the sediment-water interface attributed to cyanobacterial treatments and provide useful guidance for the selection of controlling methods, with silver carp being the most recommended of the three methods studied.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shenghua Hu
- Wuhan Municipal Construction Group Co., Ltd., Wuhan, 430023, China
| | - Xiaofei Chen
- Hubei Academy of Environmental Sciences, Wuhan, 430072, China
| | - Huaqiang Cheng
- Wuhan Municipal Construction Group Co., Ltd., Wuhan, 430023, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Cao Y, Wu X, Li B, Tang X, Lin X, Li P, Chen H, Huang F, Wei C, Wei J, Qiu G. Ca-La layered double hydroxide (LDH) for selective and efficient removal of phosphate from wastewater. CHEMOSPHERE 2023; 325:138378. [PMID: 36906008 DOI: 10.1016/j.chemosphere.2023.138378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Adsorption showed advantages in removing phosphorus (P) at low concentrations. Desirable adsorbents should have sufficiently high adsorption capacity and selectivity. In this study, a Ca-La layered double hydroxide (LDH) was synthesized for the first time by using a simple hydrothermal coprecipitation method for phosphate removal from wastewater. A maximum adsorption capacity of 194.04 mgP/g was achieved, ranking on the top of known LDHs. Adsorption kinetic experiments showed that 0.02 g/L Ca-La LDH could effectively reduce PO43-P from 1.0 to <0.02 mg/L within 30 min. With the copresence of bicarbonate and sulfate at concentrations 17.1 and 35.7 times of that of PO43-P, the Ca-La LDH showed promising selectivity towards phosphate (with a reduction in the adsorption capacity of <13.6%). In addition, four other (Mg-La, Co-La, Ni-La, and Cu-La) LDHs containing different divalent metal ions were synthesized by using the same coprecipitation method. Results showed much higher P adsorption performance of the Ca-La LDH than those LDHs. Field Emission Electron Microscopy (FE-SEM)-Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and mesoporous analysis were performed to characterize and compare the adsorption mechanisms of different LDHs. The high adsorption capacity and selectivity of the Ca-La LDH were mainly explained by selective chemical adsorption, ion exchange, and inner sphere complexation.
Collapse
Affiliation(s)
- Yuhang Cao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuewei Wu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Pengfei Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Floc formation and growth during coagulation removing humic acid: Effect of stirring condition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Enhanced phosphate removal by coral reef-like flocs: Coagulation performance and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
He H, Xu H, Li L, Yang X, Fu Q, Yang X, Zhang W, Wang D. Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156547. [PMID: 35688238 DOI: 10.1016/j.scitotenv.2022.156547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matters (DOM) have important effects on the performance of surface water treatment processes and may convert into disinfection by-products (DBPs) during disinfection. In this work, the transformation of DOM and the chlorinated DBPs (Cl-DBPs) formation in two different full-scale surface water treatment processes (process 1: prechlorination-coagulation-precipitation-filtration; process 2: coagulation-precipitation-post-disinfection-filtration) were comparatively investigated at molecular scale. The results showed that coagulation preferentially removed unsaturated (H/C < 1.0 and DBE > 17) and oxidized (O/C > 0.5) compounds containing more carboxyl groups. Therefore, prechlorination produced more Cl-DBPs with H/C < 1.0 and O/C > 0.5 than post-disinfection. However, the algal in the influent produced many reduced molecules (O/C < 0.5) without prechlorination, and these compounds were more reactive with disinfectants. Sand filtration was ineffective in DOM removal, while microorganisms in the filter produced high molecular weight (MW) substances that were involved in the Cl-DBPs formation, causing the generation of higher MW Cl-DBPs under post-disinfection. Furthermore, the CHO molecules with high O atom number and the CHON molecules containing one N atom were the main Cl-DBPs precursors in both surface water treatment processes. In consideration of the putative Cl-DBPs precursors and their reaction pathways, the precursors with higher unsaturation degree and aromaticity were prone to produce Cl-DBPs through addition reactions, while that with higher saturation degree tended to form Cl-DBPs through substitution reactions. These findings are useful to optimize the treatment processes to ensure the safety of water quality.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaofang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaoyin Yang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China.
| | - Dongsheng Wang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China; Department of Environmental Engineering, Zhejiang university, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
6
|
Liu D, Huang J, Wu D, Liu Y, Zhang R, Chen S. Efficient removal of phosphate by nitrogen and oxygen-rich polyethyleneimine composite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Han J, Qiu Q, Gao M, Qiu L, Wang Y, Sun S, Song D, Ma J. Phosphorus removal from municipal wastewater through a novel Trichosporon asahii BZ: Performance and mechanism. CHEMOSPHERE 2022; 298:134329. [PMID: 35304214 DOI: 10.1016/j.chemosphere.2022.134329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
A yeast BZ was screened from a laboratory-scale anaerobic/aerobic reactor and designated as Trichosporon asahii through 26S rDNA gene sequence analysis. The screened BZ abated over 70% of phosphorus in municipal sewage with 2-10 mg/L phosphorus in the appropriate conditions. The yeast BZ had strong adaptability to pH and the dissolved oxygen, but the cultivation temperature, carbon source, the ratio of C/P and the ratio of N/P had a critical influence on the phosphorus abatement performance of yeast BZ. The analysis of phosphorus concentration in the wastewater, cells, and extracellular polymeric substances (EPS) suggested that about 55%-66% of the removed phosphorus was in the yeast cells and 34%-45% in the EPS. The proposed probable metabolic mechanism of phosphorus in yeast BZ showed that EPS acted as a dynamic phosphorous transfer station, and most of phosphorus was transferred into yeast cells through EPS transfer station. These findings have crucial implications for the development of a promising stable and easy-operation biological phosphorus abatement process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Junli Han
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mingchang Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Liping Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Yan Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Dan Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
8
|
Zhao L, Hu M, Muslim H, Hou T, Bian B, Yang Z, Yang W, Zhang L. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production. CHEMOSPHERE 2022; 287:132145. [PMID: 34500330 DOI: 10.1016/j.chemosphere.2021.132145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lake sediment and algal sludge with large output posed significant environmental risks. In this work, an idea of co-utilization of both solid wastes for the production of ceramsite (a sort of porous lightweight aggregates as building materials) was proposed and validated for the first time. The treatment process contained a dewatering step by a flocculation-pressure filtration method, and a sintered ceramsite preparation step. Effects of flocculant type and dosage on the dewatering performance were studied in the first step. An environmental-friendly amphoteric starch flocculant with a dosage of 12 mg/(g dried sample) was found to achieve the best dewatering performance. Effects of raw material mass ratio, sintering temperature and time in the second step were investigated. Under the optimal conditions (60 wt% of dewatered sediment; 20 wt% of dewatered algal sludge; 20 wt% of additives (fly ash: calcium oxide: kaolin = 2:1:2); sintering temperature: 1100 °C; time: 35 min), the obtained ceramsite met the Chinese National Standard as a qualified building material, with reliable environmental safety according to the leaching results for both heavy metals and microcystins. Both environmental and economic benefits of the proposed treatment were assessed. The process completely followed the rules of "reduction, harmlessness and resource utilization" for solid waste treatment and disposal; Meanwhile, the profit of the proposed ceramsite production could be more than 2.3 US dollar/m3. The co-utilization method in this work acted as a good example for the comprehensive management of solid wastes in water-rich areas.
Collapse
Affiliation(s)
- Lina Zhao
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Min Hu
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Halimi Muslim
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Tianyang Hou
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Bo Bian
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Zhen Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China.
| | - Weiben Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Limin Zhang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| |
Collapse
|