1
|
Jing F, Xu X, Lu W, Jin M, He X, Yu R. Design and Characterization of Concave Hollow Double-Layer Nanospheres for Efficient Cd(II) and Pb(II) Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10323-10331. [PMID: 40219979 DOI: 10.1021/acs.langmuir.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Polymer-based adsorbents have emerged as promising candidates for heavy-metal remediation due to their tailorable porosity and multifunctional surfaces, yet challenges persist in achieving both structural precision and adsorption efficiency. Here, we report a concave hollow double-layer nanosphere (CHDN) synthesized through a facile self-assembly strategy engineered for selective capture of Cd(II) and Pb(II) ions. Comprehensive characterization via transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and thermogravimetric analysis (TGA) confirmed the hierarchical architecture with abundant amino/hydroxyl moieties. The CHDN demonstrated exceptional adsorption capacities of 198.40 mg/g for Cd(II) and 60.34 mg/g for Pb(II), outperforming conventional adsorbents. Isotherm analysis revealed Cd(II) adsorption followed the Sips model (R2 > 0.99), while Pb(II) adhered to the Langmuir model, suggesting monolayer and heterogeneous binding mechanisms, respectively. Kinetic studies further corroborated chemisorption dominance through pseudo-second-order fitting for Cd(II) and Elovich compatibility for Pb(II). We propose a synergistic mechanism involving ligand complexation and ion exchange, facilitated by the dual functionality of surface groups and structural advantages of the concave architecture. This work provides a blueprint for designing spatially engineered polymers for environmental remediation.
Collapse
Affiliation(s)
- Fangfen Jing
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Xin Xu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Weiwei Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Mingzhu Jin
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Xinyang He
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Rongtai Yu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| |
Collapse
|
2
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Zhang J, Peng Y, Liu T, Wang Z. Na related nanowhisker-containing biochar obtained from self-catalyzation and functionalization of papermaking black liquor lignin with superior heavy metal immobilization capability. BIORESOURCE TECHNOLOGY 2025; 417:131866. [PMID: 39586478 DOI: 10.1016/j.biortech.2024.131866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
In this study, papermaking black liquor lignin (ULG) was directly used to produce biochar through pyrolysis. It was found that ULG has a high ash content (15.38 %), primarily consisting of Na-related minerals. During pyrolysis, the ash can reduce the activation energy of ULG (by over 6 kJ/mol), promote the development of pore structures, and enhance the graphitization of the resulting biochar through self-catalyzation. Additionally, the Na-related minerals form abundant nanowhiskers on the surface of biochar during pyrolysis, mainly composed of Na2CO3 and Na3PO3, achieving self-functionalization, particularly in biochar produced at 700 °C (ULG-700). In the adsorption process, these nanowhiskers on the surface of ULG-700 act as efficient active adsorption sites. The theoretical maximum adsorption capacity for Cd(II) and Zn(II) by ULG-700 at room temperature is 639.71 and 161.27 mg/g, respectively. This study suggests that ULG can be developed as a low-cost and high-efficient heavy metal adsorbent.
Collapse
Affiliation(s)
- Jianli Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yutong Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Taoze Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China; Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, PR China
| | - Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China; Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, PR China; Research Center of Solid Waste Pollution Control and Recycling, Guizhou Minzu University, Guiyang 550025, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
4
|
Chen X, Jin X, Zhang C, Jiao Z, Yang Z, Wang K, Li J, Zhang Q. Nitrogen-Doped Weathered Coal for the Efficient Adsorption of Lead: Adsorption Performance and Mechanisms. Molecules 2024; 29:5589. [PMID: 39683748 DOI: 10.3390/molecules29235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The development of widely sourced and efficient adsorbents is crucial for the adsorption of lead from wastewater. A novel adsorbent, N-doped weathered coal (NWC), was prepared in this study using weathered coal as the precursor and triethylenetetramine (TETA) as the N-source. The adsorption performance and behavior of Pb(II) on NWC were investigated using batch adsorption experiments. The results demonstrated that NWC has an efficient adsorption performance towards Pb(II), with a maximum monolayer adsorption capacity of 216.32 mg g-1 (25 °C). The adsorption process was spontaneous and endothermic, and the importance of chemisorption was observed. The adsorption mechanisms of NWC were also analyzed based on its physicochemical structure before and after the Pb(II) adsorption and desorption experiments. The N and O functional groups, acting as electron donors, promoted coordination with Pb(II), making complexation the dominant mechanism. Its contribution to the adsorption mechanism could reach 44.81%. NWC is a promising material for both wastewater treatment and the resource utilization of weathered coal.
Collapse
Affiliation(s)
- Xiaojing Chen
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xiaobing Jin
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chi Zhang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zile Jiao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhiping Yang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| | - Ke Wang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| | - Jianhua Li
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| | - Qiang Zhang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| |
Collapse
|
5
|
Chen T, Cao G, Qiang Y, Lu Y, Qin R, Xu W, Xie Y, Mao R. Effective removal of Pb (II) from wastewater by zinc-iron bimetallic oxide-modified walnut shell biochar: A combined experimental and DFT calculation approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122757. [PMID: 39383753 DOI: 10.1016/j.jenvman.2024.122757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The modified walnut shell biochar (WBC) was prepared through zinc-iron bimetallic oxide modification (ZF@WBC) at 600 °C under oxygen-limited conditions in this study. Through adsorption experiments, characterization analyses, and density functional theory (DFT) calculations, the adsorption properties of ZF@WBC to Pb (II) were investigated and the mechanism underlying such adsorption was elucidated. Characterization results showed that the surface area (375.9709 m2/g) and total pore volume (0.205319 cm3/g) of ZF@WBC were significantly greater than those of walnut shell biochar. The maximum adsorption capacity of ZF@WBC for Pb (II) was found to be 104.26 mg/g, which is 2.57 times higher than that of WBC according to the adsorption experiments conducted. The observed adsorption behavior followed both the pseudo-second-order (PSO) kinetic model and Langmuir isothermal adsorption model, suggesting that chemisorption plays a major role in the absorption process. Based on SEM, XRD, XPS, FTIR characterizations along with DFT calculations performed in this study, it can be concluded that surface complexation, ion exchange, electrostatic attraction, physical absorption are among the main mechanisms responsible for absorption of Pb (II) by ZF@WBC. Furthermore, even in the presence of interfering ions at different concentrations, ZF@WBC exhibited a removal rate above 70% for Pb (II). Therefore, ZF@WBC has great potential as an effective absorbent for removing Pb (II) from wastewater, while also offering opportunities for biomass waste resource utilization.
Collapse
Affiliation(s)
- Tao Chen
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Guangzhu Cao
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Kunming, Yunnan, 650228, China
| | - Yi Qiang
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Kunming, Yunnan, 650228, China
| | - Yanfeng Lu
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Kunming, Yunnan, 650228, China
| | - Ronggao Qin
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Kunming, Yunnan, 650228, China.
| | - Wan Xu
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Yiming Xie
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Ruoyu Mao
- School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Kunming, Yunnan, 650228, China
| |
Collapse
|
6
|
Escamilla P, Monteleone M, Percoco RM, Mastropietro TF, Longo M, Esposito E, Fuoco A, Jansen JC, Elliani R, Tagarelli A, Ferrando-Soria J, Amendola V, Pardo E, Armentano D. BioMOF@PAN Mixed Matrix Membranes as Fast and Efficient Adsorbing Materials for Multiple Heavy Metals' Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51182-51194. [PMID: 39269435 DOI: 10.1021/acsami.4c12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Heavy metal ions are a common source of water pollution. In this study, two novel membranes with biobased metal-organic frameworks (BioMOFs) embedded in a polyacrylonitrile matrix with tailored porosity were prepared via nonsolvent induced phase separation methods and designed to efficiently adsorb heavy metal ions from oligomineral water. Under optimized preparation conditions, stable membranes with high MOF loading up to 50 wt % and a cocontinuous sponge-like morphology and a high water permeability of 50-60 L m-2 h-1 bar-1 were obtained. The tortuous flow path in combination with a low water flow rate guarantees maximum contact time between the fluid and the MOFs, and thus a high heavy metal capture efficiency in a single pass. The performances of these BioMOF@PAN membranes were investigated in the dynamic regime for the simultaneous removal of Pb2+, Cd2+, and Hg2+ heavy metals from aqueous environments in the presence of common interfering ions. The new composite adsorbing membranes are capable of reducing the concentration of heavy metal pollutants in a single pass and at much higher efficiency than previously reported membranes. The enhanced performance of the mixed matrix membranes is attributed to the presence of multiple recognition sites which densely decorate the BioMOF channels: (i) the thioether groups, deriving from the S-methyl-l-cysteine and (S)-methionine amino acid residues, able to recognize and capture Pb2+ and Hg2+ ions and (ii) the oxygen atoms of the oxamate moieties, which preferentially interact with Cd2+ ions, as revealed by single crystal X-ray diffraction. The flexibility of the pore environments allows these sites to work synergically for the simultaneous capture of different metal ions. The stability of the membranes for a potential regeneration process, a key-factor for the effective feasibility of the process in real life applications, was also evaluated and confirmed less than 1% capacity loss in each cycle.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Marcello Monteleone
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rita Maria Percoco
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Teresa F Mastropietro
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Elisa Esposito
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Johannes C Jansen
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Valeria Amendola
- Dipartimento di Chimica Generale, Università di Pavia, via T. Taramelli, 12, Pavia 27100, Italy
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| |
Collapse
|
7
|
Zhang H, Ma X, Wang Z, Han B, Yang Z, He D. Highly selective removal of thallous ions from wastewater using Prussian Blue biochar composite. Sci Rep 2024; 14:21479. [PMID: 39277637 PMCID: PMC11401947 DOI: 10.1038/s41598-024-72245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Thallium, a highly toxic pollutant, shows greater toxicity to human than other common heavy metals such as mercury, lead, cadmium and its effective removal from wastewater gains great attention. The main restriction for the Tl+ removal is the interference of a high concentration of co-existing ions in wastewater. Therefore, the goal of the current work was to synthesis adsorbent with high selectivity for the Tl+ removal. Herein, the pore size sieving strategy was proposed and Prussian blue-impregnated biochar (BC@PB) particles was synthesized. More than 95% Tl+ can be removed even the concentrations of the coexistence ions (Na+, Cd2+, and Zn2+) 1,000 higher than the initial concentration of Tl+ (500 μg/L). BC@PB also showed large adsorption capacity (9365 μg/g) and more than 99% Tl+ (initial concentration, 500 μg/L) were removed in just 1 min. The BC@PB had excellent and stable Tl+ removal ability (> 99%) over a range of pH from 3 to 9, which covered the pH range of common thallium-containing wastewater. The density functional theory (DFT) calculation confirmed that not only hydrated volume but also the hydration free energy of ions, which governed the energy barrier for ions entering into narrow channels of BC@PB, played essential roles on the selectivity removal of Tl+. Overall, due to its high selectivity, high adsorption capacity and easy preparation process, the synthesized BC@PB particles based on the pore sizing sieving strategy, can be a promising candidate for the removal of thallium from wastewater.
Collapse
Affiliation(s)
- Hailong Zhang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Xiaoming Ma
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, China
| | - Zhangxin Wang
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Bin Han
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Zhengheng Yang
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Di He
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Li J, Liu T, Wang Z. One-Pot Synthesis of Biochar from Industrial Alkali Lignin with Superior Pb(II) Immobilization Capability. Molecules 2024; 29:4310. [PMID: 39339305 PMCID: PMC11434554 DOI: 10.3390/molecules29184310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
This study synthesized biochar through a one-pot pyrolysis process using IALG as the raw material. The physicochemical properties of the resulting biochar (IALG-BC) were characterized and compared with those of biochar derived from acid-treated lignin with the ash component removed (A-IALG-BC). This study further investigated the adsorption performances and mechanisms of these two lignin-based biochars for Pb(II). The results revealed that the high ash content in IALG, primarily composed of Na, acts as an effective catalyst during pyrolysis, reducing the activation energy and promoting the development of the pore structure in the resulting biochar (IALG-BC). Moreover, after pyrolysis, Na-related minerals transformed into particulate matter sized between 80 and 150 nm, which served as active adsorption sites for the efficient immobilization of Pb(II). Adsorption results demonstrated that IALG-BC exhibited a significantly superior adsorption performance for Pb(II) compared to that of A-IALG-BC. The theoretical maximum adsorption capacity of IALG-BC for Pb(II), derived from the Langmuir model, was determined to be 809.09 mg/g, approximately 40 times that of A-IALG-BC. Additionally, the adsorption equilibrium for Pb(II) with IALG-BC was reached within approximately 0.5 h, whereas A-IALG-BC required more than 2 h. These findings demonstrate that the presence of inorganic mineral components in IALG plays a crucial role in its resource utilization.
Collapse
Affiliation(s)
- Jiale Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;
| | - Taoze Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;
- Engineering Research Center of Green and Low-Carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, China
| | - Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;
- Engineering Research Center of Green and Low-Carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Núñez-Delgado A. Research on environmental aspects of retention/release of pollutants in soils and sorbents. What should be next? ENVIRONMENTAL RESEARCH 2024; 251:118593. [PMID: 38447607 DOI: 10.1016/j.envres.2024.118593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Although studies dealing with adsorption/desorption (and/or retention/release) of pollutants present in environmental compartments is a classical field of research, recent papers are focusing on some weak points of investigations and publications within the area. In addition, an increasing number of works are being published related to new possibilities and alternatives in this kind of research works, many of them in relation to the use of artificial intelligence (AI). Considering the existence of eventual controversies, eventual mistakes, and the convenience of suggesting alternatives to go ahead in the future, in this work, after taking into account some relevant publications in the previous literature, a simple workflow is proposed as a kind of protocol to revise successive steps that could guide the direction to follow when programing research dealing with the retention/release of pollutants in soils and sorbent materials.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Spain.
| |
Collapse
|
10
|
Ghandali MV, Safarzadeh S, Ghasemi-Fasaei R, Zeinali S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO 2 nanoparticle-modified biochar. Sci Rep 2024; 14:10684. [PMID: 38724636 PMCID: PMC11082237 DOI: 10.1038/s41598-024-61270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.
Collapse
Affiliation(s)
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
11
|
Shukla S, Khan R, Srivastava MM, Zahmatkesh S. Valorization of Waste Watermelon Rinds as a Bio-adsorbent for Efficient Removal of Methylene Blue Dye from Aqueous Solutions. Appl Biochem Biotechnol 2024; 196:2534-2548. [PMID: 37043124 DOI: 10.1007/s12010-023-04448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/13/2023]
Abstract
Nature-based solutions (NBSs) for remediation of various emerging contaminants have gained impetus during the last few decades. In the current study, watermelon (citrullus lanatus), a highly consumed seasonal fruit, was used as a feedstock waste biomass for biochar synthesis through valorization of watermelon rinds. The watermelon biochar (WM-BC) was synthesized through slow pyrolysis at 550°C under anoxic conditions. Langmuir model with R2>99, was found to best fit the adsorption isotherm, and the adsorption kinetics was best described by the pseudo-second-order model. Various characterization tools including FTIR, SEM, BET, XRD, and TEM were used to evaluate the surface morphology of the biochar. The removal efficiency increased from 35% (dosage = 0.4 g), to 81% at WM-BC dosage of 2 g. A maximum adsorption capacity of 115.61 mg/g was found. The results from kinetic and isotherm model model suggested that the adsorption was favorable and multilayer adsorption can be considered. The adsorption mechanism was found to be governed by the co-existing factors such as hydrogen bonding, electrostatic interactions, and aromatic interactions. Results suggest that WM-BC has high potential to be employed as an adsorbent for efficient remediation of methylene blue dyes from aqueous solutions.
Collapse
Affiliation(s)
- Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| | - Mahendra Mohan Srivastava
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India
| | - Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| |
Collapse
|
12
|
Wang A, Wu M, Li Z, Zhou Y, Zhu F, Huang Z. Utilizing different types of biomass materials to modify steel slag for the preparation of composite materials used in the adsorption and solidification of Pb in solutions and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170023. [PMID: 38218480 DOI: 10.1016/j.scitotenv.2024.170023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
This study utilized discarded steel slag (SS) as raw material and prepared modified steel slag materials (SS-SBC, SS-NBC, SS-BHA) through modification with biomass materials such as straw biochar (SBC), nutshell biochar (NBC), and biochemical humic acid (BHA). These materials were then applied for the removal of Pb from both solution and soil. The physical and chemical properties of the materials were analyzed using characterization techniques such as SEM, EDS, XRD, and BET. The specific surface area of the modified materials increased from the original 3.8584 m2/g to 34.7133 m2/g, 181.7329 m2/g, and 7.7384 m2/g, respectively. The study then explored the influence of different adsorption conditions on the adsorption capacity of Pb in solution, determining the optimal conditions as follows: initial concentration of 200 mg/L, adsorbent mass of 0.04 g, temperature of 15 °C, and pH = 2. To further investigate the adsorption process, kinetic and isotherm models were established. The results indicated that the adsorption process for all three materials followed a pseudo-second-order kinetic model and Freundlich isotherm model, suggesting a multi-layer chemical adsorption. Thermodynamic analysis revealed that the adsorption process was an exothermic spontaneous reaction. Soil cultivation experiments were conducted to explore the effects of different material addition amounts and cultivation times on the passivation of Pb-polluted soil. Analysis of heavy metal forms in the soil revealed that the addition of modified materials reduced the acid-extractable form of Pb in the soil and increased the residual form, which is beneficial for reducing the migration of Pb in the soil. FT-IR and XPS analyses were employed to study the functional groups, element composition, and valence states before and after adsorption passivation of Pb by the three materials. The results confirmed that the adsorption mechanisms of SS-SBC, SS-NBC, and SS-BHA mainly involved electrostatic adsorption, ion and ligand exchange, and surface precipitation. This study not only provides a new material for adsorbing and immobilizing heavy metals in soil and water but also offers a new approach for the resource utilization of steel slag waste.
Collapse
Affiliation(s)
- An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Meiling Wu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Zhongyuan Li
- CSCEC 8TH Division Environmental Technology Co., Ltd, Shanghai 200444, China
| | - Yuqiang Zhou
- CSCEC 8TH Division Environmental Technology Co., Ltd, Shanghai 200444, China
| | - Fanmin Zhu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China.
| |
Collapse
|
13
|
Kim HS, Lee YK, Park BJ, Lee JE, Jeong SS, Kim KR, Kim SC, Kirkham MB, Yang JE, Kim KH, Yoon JH. Alginate-encapsulated biochar as an effective soil ameliorant for reducing Pb phytoavailability to lettuce (Lactuca sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22802-22813. [PMID: 38411914 DOI: 10.1007/s11356-024-32594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The alginate-biochar formulation for metal removal from aquatic environments has been widely tried but its use for lowering phytoavailability of metals in the soil-crop continuum is limited. Biochar has been increasingly used as a soil amendment due to its potential for soil carbon sequestration and sorption capacity. Handling of powdery biochar as a soil top-dressing material is, however, cumbersome and vulnerable to loss by water and wind. In this experiment, biochar powder, which was pyrolyzed from oak trees, was encapsulated into beads with alginate, which is a naturally occurring polysaccharide found in brown algae. Both batch and pot experiments were conducted to examine the effects of the alginate-encapsulated biochar beads (BB), as compared to its original biochar powdery form (BP), on the Pb adsorption capacity and phytoavailability of soil Pb to lettuce (Lactuca sativa L.). The BB treatment improved reactivity about six times due to a higher surface area (287 m2 g-1) and five times due to a higher cation exchange capacity (50 cmolc kg-1) as compared to the BP treatment. The maximum sorption capacity of Pb was increased to 152 from 81 mg g-1 because of surface chemosorption. Adsorption of Pb onto BB followed multiple first-order kinetics and comprised fast and slow steps. More than 60% of the Pb was adsorbed in the fast step, i.e., within 3 h. Also, the BB treatment, up to the 5% level (w/w), increased soil pH from 5.4 to 6.5 and lowered the phytoavailable fraction of Pb in soil from 5.7 to 0.3 mg kg-1. The Pb concentrations in lettuce cultivated at 5% for the BP and BB treatments were similar but 63 and 66% lower, respectively, than those of the control soil. The results showed that the encapsulation of biochar with alginate enhanced adsorption by the biochar.
Collapse
Affiliation(s)
- Hyuck Soo Kim
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yeon Kyu Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byung Jun Park
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ji Eun Lee
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seok Soon Jeong
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwon Rae Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Sung Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506-0110, USA
| | - Jae E Yang
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kye-Hoon Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Mahmoud ME, Ibrahim GAA. Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@TiO 2 incorporated with watermelon biochar and chitosan hydrogel. Int J Biol Macromol 2023; 253:126489. [PMID: 37625740 DOI: 10.1016/j.ijbiomac.2023.126489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Biodegradable polymers, biochars and metal organic frameworks (MOFs) have manifested as top prospects for elimination of harmful pollutants. In the current study, Ti-MOF was synthesized and decorated with TiO2 nanoparticles, then embedded into watermelon peel biochar and functionalized with chitosan hydrogel to produce Ti-MOF@TiO2@WMPB@CTH. Various instruments were employed to assure the effective production of the bionanocomposite. The HR-TEM and SEM studies referred to excellent surface porosity and homogeneity of Ti-MOF@TiO2@WMPB@CTH bionanocomposite, with 51.02-74.23 nm. Based on the BET analysis, the mesoporous structure has a significant surface area of 366.04 m2 g-1 and a considerable total pore volume of 11.38 × 10-2 cm3 g-1, with a mean pore size of 12.434 nm. Removal of doxorubicin (DOX) and hexavalent chromium (Cr(VI)) was examined under various experimentations. Pseudo-second order kinetic models in addition to Langmuir isotherm offered the best fitting. Thermodynamic experiments of the two contaminants demonstrated spontaneous and endothermic interactions. After five subsequent adsorption and desorption cycles, Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated an exceptional recyclability for the elimination of DOX and Cr(VI) ions, reaching 97.96 % and 95.28 %, respectively. Finally, the newly designed Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated a high removing efficiency of Cr(VI) ions and DOX from samples of real water.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt.
| | - Ghada A A Ibrahim
- Faculty of Education, Physics and Chemistry Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Cui Y, Bai L, Li C, Du R. Source and migration patterns of heavy metals and human health risk assessment of heavy metals in soil-corn straw-flue gas system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8043-8061. [PMID: 37528187 DOI: 10.1007/s10653-023-01703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
The process of rapid urbanization in Northeast China has resulted in severe heavy metal pollution in the environment. In this study, we investigated the characteristics of heavy metal pollution in soil-corn straw and its combustion flue gas system, and the health risks of heavy metal pollution. The results showed that Cu and Zn in soil were more easily absorbed by corn straw roots. Heavy metals in soil, corn straw and flue gas from corn straw burning all pose some health risk to humans, and are more harmful to children than adults. The concentrations of heavy metals in both soil and flue gas from corn straw burning have reached extremely high ecological risk. The main sources of heavy metal elements in soils are, in order, industrial production, agricultural production activities and metallurgical production. This study highlights the key issues of heavy metal contamination in soil-corn straw and its combustion flue gas system, provides an auxiliary guide for the next step in analyzing the transfer mechanisms, and suggests a rational approach to mitigate heavy metal contamination.
Collapse
Affiliation(s)
- Yongbo Cui
- Guangdong Provincial Key Laboratory of Building Energy Efficiency and Application Technologies, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Li Bai
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| | - Chunhui Li
- School of Mechanical Engineering, Tongji University, Shanghai, 201804, China
| | - Rui Du
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
16
|
Duan Q, Yang T, Chen J, Liu J, Gao L, Zhang J, Lin S. Ba-modified peanut shell biochar (PSB): preparation and adsorption of Pb(II) from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1795-1820. [PMID: 37830997 PMCID: wst_2023_305 DOI: 10.2166/wst.2023.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The impact of Ba-modified peanut shell biochar (Ba-PSB) on Pb(II) removal was studied and BaCl2 was used as a modifier. It was shown that the PSB obtained at 750 °C had the best adsorption effect, and the Ba-PSB had a larger specific surface area and a good adsorption effect on Pb(II). At pH = 5, concentration was 400 mg/L, time was 14 h, and temperature was 55 °C, the loading amount of black peanut shell biochar (BPSB), red peanut shell biochar (RPSB), Ba-BPSB, and Ba-RPSB reached 128.050, 98.217, 379.330, and 364.910 mg/g, respectively. In addition, based on the non-linear fitting, it was found that the quasi-second-order kinetic model, and isothermal model could be applied to describe Pb(II) adsorption on PSB and Ba-PSB. The adsorption behavior of PSB unmodified and modified was a spontaneous process. Moreover, chemical modification of BPSB, RPSB, Ba-BPSB, and Ba-RPSB for hindering of -COOH and -OH groups revealed 81.81, 77.08, 86.90, and 83.65% removal of Pb(II), respectively, which was due to the participation of -COOH, while 17.61, 21.70, 12.77, and 15.06% was from -OH group, respectively. The increase of cation strength (Na+, K+, Ca2+, and Mg2+) will reduce the adsorption capacity of PSB for Pb(II).
Collapse
Affiliation(s)
- Qianqian Duan
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China E-mail:
| | - Tianrui Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Jingyi Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Liping Gao
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Junfei Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Shitao Lin
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| |
Collapse
|
17
|
Dechapanya W, Khamwichit A. Biosorption of aqueous Pb(II) by H 3PO 4-activated biochar prepared from palm kernel shells (PKS). Heliyon 2023; 9:e17250. [PMID: 37539182 PMCID: PMC10394918 DOI: 10.1016/j.heliyon.2023.e17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023] Open
Abstract
The conversion of palm kernel shells (PKS), a major agricultural waste from the palm oil sector, into a potentially high-value biosorbent for heavy metals-contaminated wastewater treatments was explored in this work. Following carbonization, the activated PKS was chemically activated by soaking the biochar in a phosphoric acid (H3PO4) solution at 25 °C. The low-temperature approach benefits from less dangerous acid fume production and operational challenges when compared to the high-temperature procedure. The properties of the biochar were characterized by BET, FTIR, and SEM. The effects of H3PO4 dosage, initial Pb(II) concentration, and adsorbent dosage on removing Pb(II) from synthetic wastewater were investigated in the adsorption study. The activation of PKS biochar with high H3PO4 concentrations led to enhanced removal efficiency. The pseudo-second-order (PSO) kinetic model fitted the experimental data well (R2 0.99), indicating that chemisorption was likely involved in the adsorption of Pb(II) onto activated PKS. Pb(II) sorption was possibly promoted by the presence of phosphate moieties on the adsorbent surface. The Langmuir isotherm best described the sorption of Pb(II) onto the activated PKS (R2 0.97), giving the calculated maximum adsorption capacity (qm) of 171.1 μg/g. In addition to physical sorption, possible adsorption mechanisms included functional group complexation and surface precipitation. Overall, activating PKS biochar with H3PO4 at room temperature could be a promising technique to improve the adsorbent's adsorption efficiency for Pb(II) removal from wastewater.
Collapse
Affiliation(s)
- Wipawee Dechapanya
- School of Engineering and Technology, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160 Thailand
- Biomass and Oil Palm Center of Excellence, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160 Thailand
| | - Attaso Khamwichit
- School of Engineering and Technology, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160 Thailand
- Biomass and Oil Palm Center of Excellence, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160 Thailand
| |
Collapse
|
18
|
Wang Z, Guo J, Jia J, Liu W, Yao X, Feng J, Dong S, Sun J. Magnetic Biochar Derived from Fenton Sludge/CMC for High-Efficiency Removal of Pb(II): Synthesis, Application, and Mechanism. Molecules 2023; 28:4983. [PMID: 37446645 DOI: 10.3390/molecules28134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Magnetic biochar composites (MBC) were developed by a simple one-step pyrolysis method using Fenton sludge waste solid and carboxymethyl cellulose sodium. Detailed morphological, chemical, and magnetic characterizations corroborate the successful fabrication of MBC. Batch adsorption experiments show that the synthesized MBC owns high-efficiency removal of Pb(II), accompanied by ease-of-separation from aqueous solution using magnetic field. The experiment shows that the equilibrium adsorption capacity of MBC for Pb(II) can reach 199.9 mg g-1, corresponding to a removal rate of 99.9%, and the maximum adsorption capacity (qm) reaches 570.7 mg g-1, which is significantly better than that of the recently reported magnetic similar materials. The adsorption of Pb(II) by MBC complies with the pseudo second-order equation and Langmuir isotherm model, and the adsorption is a spontaneous, endothermic chemical process. Investigations on the adsorption mechanism show that the combination of Pb(II) with the oxygen-containing functional groups (carboxyl, hydroxyl, etc.) on biochar with a higher specific surface area are the decisive factors. The merits of reusing solid waste resource, namely excellent selectivity, easy separation, and simple preparation make the MBC a promising candidate of Pb(II) purifier.
Collapse
Affiliation(s)
- Zongwu Wang
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Juan Guo
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Junwei Jia
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Wei Liu
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Xinding Yao
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Jinglan Feng
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Shuying Dong
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jianhui Sun
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
Ahmed W, Mehmood S, Mahmood M, Ali S, Shakoor A, Núñez-Delgado A, Asghar RMA, Zhao H, Liu W, Li W. Adsorption of Pb(II) from wastewater using a red mud modified rice-straw biochar: Influencing factors and reusability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121405. [PMID: 36893974 DOI: 10.1016/j.envpol.2023.121405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Efficient environmental remediation of toxic chemicals using effective sorbents has received considerable attention recently. For the present study, the synthesis of a red mud/biochar (RM/BC) composite was performed from rice straw with the aim of achieving Pb(II) removal from wastewater. Characterization was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), Zeta potential analysis, elemental mapping, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results showed that RM/BC had higher specific surface area (SBET = 75.37 m2 g-1) than raw biochar (SBET = 35.38 m2 g-1). The Pb(II) removal capacity (qe) of RM/BC was 426.84 mg g-1 at pH 5.0, and the adsorption data well fitted pseudo second order kinetics (R2 = 0.93 and R2 = 0.98), as well as the Langmuir isotherm model (R2 = 0.97 and R2 = 0.98) for both BC and RM/BC. Pb(II) removal was slightly hindered with the increasing strength of co-existing cations (Na+, Cu2+, Fe3+, Ni2+, Cd2+). The increase in temperatures (298 K, 308 K, 318 K) favored Pb(II) removal by RM/BC. Thermodynamic study indicated that Pb(II) adsorption onto BC and RM/BC was spontaneous and primarily governed by chemisorption and surface complexation. A regeneration study revealed the high reusability (>90%) and acceptable stability of RM/BC even after five successive cycles. These findings indicate that RM/BC evidenced special combined characteristics of red mud and biochar, hence its use for Pb removal from wastewater offers a green and environmentally sustainable approach fitting the "waste treating waste" concept.
Collapse
Affiliation(s)
- Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co. Wexford, Y35 Y521, Ireland
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | | | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Wenjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
20
|
Ding Z, Ge Y, Gowd SC, Singh E, Kumar V, Chaurasia D, Kumar V, Rajendran K, Bhargava PC, Wu P, Lin F, Harirchi S, Ashok Kumar V, Sirohi R, Sindhu R, Binod P, Taherzadeh MJ, Awasthi MK. Production of biochar from tropical fruit tree residues and ecofriendly applications - A review. BIORESOURCE TECHNOLOGY 2023; 376:128903. [PMID: 36931447 DOI: 10.1016/j.biortech.2023.128903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Environmental contamination is considered a major issue with the growing urbanization and industrialization. In this context, the scientific society is engaged in searching for a sustainable, safe, and eco-friendly solution. Sustainable materials such as biochar play an important role in environmental contamination. It has some specific properties such as micropores which increase the surface area to bind the pollutants. This review endeavors to analyze the potential of fruit wastes especially tropical fruit tree residues as potential candidates for producing highly efficient biochar materials. The review discusses various aspects of biochar production viz. pyrolysis, torrefaction, hydrothermal carbonization, and gasification. In addition, it discusses biochar use as an adsorbent, wastewater treatment, catalyst, energy storage, carbon sequestration and animal feed. The review put forward a critical discussion about key aspects of applying biochar to the environment.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Yu Ge
- School of Tropical Crops, Yunnan Agricultural University, Pu'er, Yunnan 665000, China
| | - Sarath C Gowd
- Department of Environmental Science & Engineering, School of Engineering and Sciences, SRM University - Andhra Pradesh, India
| | - Ekta Singh
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Deepshi Chaurasia
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Vikas Kumar
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Karthik Rajendran
- Department of Environmental Science & Engineering, School of Engineering and Sciences, SRM University - Andhra Pradesh, India
| | - Preeti Chaturvedi Bhargava
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Peicong Wu
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Fei Lin
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Veeramuthu Ashok Kumar
- Biorefineries for Biofuels & Bioproducts Laboratory, Center for Transdisciplinary Research, Department of Pharmacology, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies Dehradun, 248001 Uttarakhand, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
21
|
Li H, Ding S, Yuan J. Extraction of Humic Acids from Lignite and Its Use as a Biochar Activator. ACS OMEGA 2023; 8:12206-12216. [PMID: 37033863 PMCID: PMC10077559 DOI: 10.1021/acsomega.2c08192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Current research focuses on extracting humic acid (HA) compounds from low-rank coals to obtain high value-added products. In this study, HAs with high purity and low heavy metal content were obtained from lignite by combining acid pretreatment with hydrothermal treatment. Scanning electron microscopy, elemental analysis (EA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze raw lignite and HAs. The effects of acid and hydrothermal treatments on the inorganic elements, functional groups, and yield of HAs were examined. The results showed that acid treatment reduced the ash content of lignite from 20 to 9%, and hydrothermal treatment increased the yield of HAs from 36 to 68%. The chemical properties of HAs exhibited an increase in molecular weight and improved aromaticity after acid and hydrothermal treatments. The results of ICP-OES analysis suggested that the combined method of acid and hydrothermal treatments resulted in a significant reduction of heavy metal elements in HAs. FTIR analysis confirmed the results and demonstrated that the extracted HA from nitric acid pretreated and hydrothermal generation of lignite PHA was rich in carboxyl and phenolic functional groups. PHA was applied to biochar as an activator for the adsorption of heavy metal ions. The experimental results showed that PHA was successfully loaded onto biochar and introduced a large number of functional groups, and the adsorption capacity of the modified biochar for Pb2+ was effectively improved.
Collapse
Affiliation(s)
- Huijin Li
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| | - Shuang Ding
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| | - Jie Yuan
- School
of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, Guizhou, China
| |
Collapse
|
22
|
Zhao P, Wang A, Wang P, Huang Z, Fu Z, Huang Z. Two recyclable and complementary adsorbents of coal-based and bio-based humic acids: High efficient adsorption and immobilization remediation for Pb(II) contaminated water and soil. CHEMOSPHERE 2023; 318:137963. [PMID: 36708780 DOI: 10.1016/j.chemosphere.2023.137963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humic acid can effectively bind heavy metals and is a promising remediation agent for heavy metals-contaminated water and soil. Many successful applications of humic acid have been reported, but rarely studied the specific process and mechanism of heavy metal removal by humic acids from water and soil, especially the simultaneous application of coal-based and bio-based humic acids. In this work, two kinds of coal-based and bio-based humic acid materials (CHA and BHA) from weathered coal and rice husk were industrially produced and studied their Pb(II) adsorption and immobilization characteristics and mechanisms in water and soil. The batch adsorption experiments obtained the Pb(II) adsorption by CHA and BHA both were spontaneous and endothermic monolayer chemisorption and controlled by three rate-limiting steps (bulk, film, and pore) in the adsorption process. CHA and BHA had highly efficient Pb(II) adsorption capacities, obtained their maximum adsorption capacity was 201 and 188 mg g-1, respectively. In addition to the two main adsorption mechanisms of ion exchange and surface complexation, electrostatic interaction, precipitation reaction, and π-π interaction were also involved. Soil culture experiments showed that CHA and BHA both exhibited a highly efficient immobilization effect on Pb(II)-contaminated soil, and CHA and BHA had a better synergistic promotion effect. Compared with the CK soil, the content of DTPA-Pb(II) decreased by 10.2-13.2% and the content of RES-Pb(II) increased by 14-22% in soils treated with different humic acids. Ion exchange, complexation, precipitation, and electrostatic attraction promote the transformation of unstable Pb(II) to stable Pb(II), which was of great significance for the immobilization of Pb(II) in soil. Overall, CHA and BHA have the potential to be used as green, efficient, and promising adsorbents to remove and immobilize Pb(II) from wastewater and soil.
Collapse
Affiliation(s)
- Peng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Ping Wang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhen Huang
- China Quality Certification Center, Beijing , 100070, China
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Li H, Li N, Zuo P, Qu S, Qin F, Shen W. Utilization of nitrogen, sulfur co-doped porous carbon micron spheres as bifunctional electrocatalysts for electrochemical detection of cadmium, lead and mercury ions and oxygen evolution reaction. J Colloid Interface Sci 2023; 640:391-404. [PMID: 36867936 DOI: 10.1016/j.jcis.2023.02.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
The development of high-performance bifunctional electrocatalysts for oxygen evolution reaction and heavy metal ion (HMI) detection is significant and challenging. Here, a novel nitrogen, sulfur co-doped porous carbon sphere bifunctional catalyst was designed and fabricated by hydrothermal followed by carbonization using starch as carbon source and thiourea as nitrogen, sulfur source for HMI detection and oxygen evolution reactions. Under the synergistic effect of pore structure, active sites and nitrogen, sulfur functional groups, C-S0.75-HT-C800 demonstrated excellent HMI detection performance and oxygen evolution reaction activity. Under optimized conditions, the detection limits (LODs) of C-S0.75-HT-C800 sensor were 3.90, 3.86 and 4.91 nM for Cd2+, Pb2+ and Hg2+ when detected individually; and the sensitivities were 13.12, 19.50 and 21.19 μA/μM. The sensor also obtained high recoveries of Cd2+, Hg2+ and Pb2+ in river water samples. During the oxygen evolution reaction, a Tafel slope of 70.1 mV/dec and a low overpotential of 277 mV were obtained for C-S0.75-HT-C800 electrocatalyst with a current density of 10 mA/cm2 in basic electrolyte. This research offers a neoteric and simple strategy in the design as well as fabrication of bifunctional carbon-based electrocatalysts.
Collapse
Affiliation(s)
- Huiyu Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Na Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Energy Industry, Shanxi College of Technology, Shuozhou, 036000, PR China.
| | - Pingping Zuo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Shijie Qu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Fangfang Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| |
Collapse
|
24
|
Wang Z, Wang H, Nie Q, Ding Y, Lei Z, Zhang Z, Shimizu K, Yuan T. Pb(II) bioremediation using fresh algal-bacterial aerobic granular sludge and its underlying mechanisms highlighting the role of extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130452. [PMID: 36435038 DOI: 10.1016/j.jhazmat.2022.130452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) discharged from rural industries poses a significant threat to the environment and human health. Algal-bacterial aerobic granular sludge (A-B AGS) is a promising alternative for sewage treatment with high efficiency and good settleability. In this study, Pb(II) biosorption using fresh A-B AGS was investigated for the first time. The important role of extracellular polymeric substances (EPS) was revealed with the involved mechanisms being clarified. The desorbents for Pb recovery from Pb-loaded A-B AGS were also screened. Results showed that A-B AGS has an excellent maximum Pb adsorption capacity of 72.4 mg·g-1 at pH 6.0. EPS plays an important role in keeping microbial activity, Pb bonding, and providing metal ions (Ca, Na and Mg) for Pb ion exchanges. Electrostatic interaction, ion exchange, and bonding to functional groups may occur orderly in the Pb biosorption process and the formation of pyromorphite (Pb5(PO4)3Cl) contributes to Pb biosorption. About 66 % of the adsorbed Pb was accumulated in the A-B AGS microbial cells. Na2EDTA (0.05 M) can recover 60.3 % of the loaded Pb with the highest microbial activity of granules being remained. All the findings will provide the theoretical basis for the large-scale application of A-B AGS to bioremediate Pb(II)-containing wastewater.
Collapse
Affiliation(s)
- Zhiwei Wang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hanxiao Wang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qi Nie
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yi Ding
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
25
|
Wang W, Wang Z, Li K, Liu Y, Xie D, Shan S, He L, Mei Y. Enhanced adsorption of aqueous chlorinated aromatic compounds by nitrogen auto-doped biochar produced through pyrolysis of rubber-seed shell. ENVIRONMENTAL TECHNOLOGY 2023; 44:631-646. [PMID: 34516358 DOI: 10.1080/09593330.2021.1980829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The adsorption of chlorinated aromatic compounds (CACs) on pristine biochar was often limited. Surface modification can greatly improve the adsorption capacity of biochar. In this work, by pyrolysis activation of rubber-seed shell wastes, nitrogen auto-doped biochar (RSS-NBC) was synthesized and used for purifying CACs-containing wastewater. Systematic characterization results showed that after proper treatment, the as-prepared RSS-NBC had high specific surface area, abundant surface oxygen- and nitrogen-containing functional groups, and nano-scale pore structure. Batch adsorption experiments were conducted with using three typical CACs probing pollutants, i.e. 1,2-dichlorobenzene (1,2-DCB), 2,4-dichlorophenol (2,4-DCP) and 2,4-dichlorobenzoic acid (2,4-DCBA). The adsorption experiments results showed that the maximum adsorption amounts of 1, 2-DCB, 2,4-DCP, and 2,4-DCBA could reach 2284, 1921, and 1142 mg/g at 298.15 K. Moreover, 90% of the equilibrium adsorption amount can be reached within 0.5 h. The adsorption kinetic results showed that the adsorption processes of the three CACs followed the pseudo-second-order rate model and were dominated by chemisorption. Also, the adsorption isotherms of 1, 2-DCB and 2, 4-DCP belonged to the Freundlich model and were valid for multilayer adsorption, while the adsorption of 2,4-DCBA followed Langmuir model and single-layer adsorption. The thermodynamics data indicated that the spontaneous adsorption process of 1, 2-DCB and 2, 4-DCP was endothermic while that of 2,4-DCBA was exothermic. After 5 cycles of adsorption-regeneration, the removal efficiency of RSS-NBC particles still remained more than 80% for the three typical CACs, indicating that it could be reused as an effective and retrievable adsorbent in the treatment of CACs-containing effluents.
Collapse
Affiliation(s)
- Wei Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Zhijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yuxin Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Delong Xie
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yi Mei
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming, People's Republic of China
- Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
26
|
Arenas-Lago D, Race M, Zhang Z, Núñez-Delgado A. Removal of emerging pollutants from the environment: From bioadsorbents to nanoparticle-based systems. ENVIRONMENTAL RESEARCH 2023; 216:114692. [PMID: 36374794 DOI: 10.1016/j.envres.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the Call for Papers corresponding to this Virtual Special Issue (VSI), the Editors indicated that, as is well known, emerging pollutants include a variety of substances that pose remarkable risks for the environment and public health. In fact, emerging pollutants are considered a matter of concern deserving increasing efforts to elucidate their occurrence, fate, repercussions, and alternatives to their removal from the various environmental compartments where they can be found after spreading as contaminants. Also, the Editors commented that, among the various alternatives that can be considered for achieving their successful removal, some of them are based on the use of sorbent materials, and, specifically, bioadsorbents, which are attractive due to the efficacy and low cost associated with some of them. Another alternative is related to the utilization of nanoparticle-based systems, which may be considered a promising field of research in this way. In both cases, obtaining new research results, as well as designing and programming new ways of going steps ahead in the investigation of both kinds of materials, would be key objectives. According to the previous considerations, the Editors of the VSI invited researchers having new data concerning these aspects to submit manuscripts with experimental results, discussion, reflections and prospective related to their work. With the Special Issue closed, the number of submissions received was 83, with 40 high-quality works being accepted for publication, increasing the overall knowledge on this topic by providing results that we are sure will be of value for the scientific community and the society.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Soil Science and Agricultural Chemistry, Univ. of Vigo, Fac. Sciences, Campus Univ., 32004 Ourense, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, Univ. of Cassino and Southern Lazio 03043 Cassino, Italy
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia Univ., Morgantown, WV, USA
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. of Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002 Lugo, Spain.
| |
Collapse
|
27
|
Ahmed W, Xu T, Mahmood M, Núñez-Delgado A, Ali S, Shakoor A, Qaswar M, Zhao H, Liu W, Li W, Mehmood S. Nano-hydroxyapatite modified biochar: Insights into the dynamic adsorption and performance of lead (II) removal from aqueous solution. ENVIRONMENTAL RESEARCH 2022; 214:113827. [PMID: 35863445 DOI: 10.1016/j.envres.2022.113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Adsorption of lead as Pb(II) using biochar is an environmentally sustainable approach to remediate this kind of pollution affecting wastewater. In this study, rice straw biochar (BC) was modified by combination with nano-hydroxy-apatite (HAP), resulting in a material designated as BC@nHAP, with enhanced adsorption performance. Based on Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses, it was evidenced that, after modification, HAP greatly enhanced surface functional groups (i.e., -COOH and/or -OH) of raw biochar's surface. Batch tests showed that the maximum sorption capacity of BC (63.03 mg g-1) was improved due to the modification, reaching 335.88 mg g-1 in BC@nHAP. Pseudo-second order (PSO) kinetics fitted well the adsorption data (R2 = 0.99), as well as the Langmuir isotherm model (showing an adsorption value of 335.88 mg g-1 for qe). The results of thermodynamic calculations showed that the adsorption was primarily governed by chemisorption process. FTIR spectroscopy and XPS spectrum after adsorption further confirmed that the adsorption mechanisms were ion exchange with Pb2+ and surface complexation by -OH and -COOH. In addition, BC@nHAP revealed a brilliant regeneration capability. The maximum adsorption capacity by BC@nHAP was higher than that of raw biochar or other previously reported adsorbents. Therefore, BC@nHAP could be seen as a new sorbent material with high potential for real-scale heavy metal removal from wastewater, and specifically as a capable candidate new sorbent for Pb(II) removal from wastewater, which has clear implications as regard preservation of environmental quality and public health.
Collapse
Affiliation(s)
- Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Tianwei Xu
- College of Science, Qiongtai Normal University, Haikou, 571127, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198, Lleida, Spain
| | - Muhammad Qaswar
- Department of Environment, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Wenjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China.
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China.
| |
Collapse
|
28
|
Zhao P, Huang Z, Wang P, Wang A. Comparative study on high-efficiency Pb(II) removal from aqueous solutions using coal and rice husk based Humic acids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Ma H, Zhao Y, Li X, Liao Q, Li Y, Xu D, Pan YX. Efficient Removal of Pb 2+ from Water by Bamboo-Derived Thin-Walled Hollow Ellipsoidal Carbon-Based Adsorbent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12179-12188. [PMID: 36170049 DOI: 10.1021/acs.langmuir.2c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead ion (Pb2+) is one of the most common water pollutants. Herein, with bamboo as the raw material, we fabricate a thin-walled hollow ellipsoidal carbon-based adsorbent (CPCs900) containing abundant O-containing groups and carbon defects and having a specific surface area as large as 730.87 m2 g-1. CPCs900 shows a capacity of 37.26 mg g-1 for adsorbing Pb2+ in water and an efficiency of 98.13% for removing Pb2+ from water. This is much better than the activated carbon commonly used for removing Pb2+ from water (12.19 mg g-1, 30.48%). The bond interaction of Pb2+ with the O-containing groups on CPCs900 and the electrostatic interaction of Pb2+ with the electron-rich carbon defects on CPCs900 could be the main forces to drive Pb2+ adsorption on CPCs900. The outstanding adsorption performance of CPCs900 could be due to the abundant O-containing groups and carbon defects as well as the large specific surface area of CPCs900. Bamboo has a large reserve and a low price. The present work successfully converts bamboo into adsorbents with outstanding performances in removing Pb2+ from water. This is of great significance for meeting the huge industrial demand on highly efficient adsorbents for removing toxic metal ions from water.
Collapse
Affiliation(s)
- Hongmin Ma
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yiyi Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xingxing Li
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Qiang Liao
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yibao Li
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Dingfeng Xu
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
30
|
Du T, Bogush A, Mašek O, Purton S, Campos LC. Algae, biochar and bacteria for acid mine drainage (AMD) remediation: A review. CHEMOSPHERE 2022; 304:135284. [PMID: 35691393 DOI: 10.1016/j.chemosphere.2022.135284] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) is a global issue and causes harmful environmental impacts. AMD has high acidity and contains a high concentration of heavy metals and metalloids, making it toxic to plants, animals, and humans. Traditional treatments for AMD have been widely used for a long time. Nevertheless, some limitations, such as low efficacy and secondary contamination, have led them to be replaced by other methods such as bio-based AMD treatments. This study reviewed three bio-based treatment methods using algae, biochar, and bacteria that can be used separately and potentially in combination for effective and sustainable AMD treatment to identify the removal mechanisms and essential parameters affecting AMD treatment. All bio-based methods, when applied as a single process and in combination (e.g. algae-biochar and algae-bacteria), were identified as effective treatments for AMD. Also, all these bio-based methods were found to be affected by some parameters (e.g. pH, temperature, biomass concentration and initial metal concentration) when removing heavy metals from AMD. However, we did not identify any research focusing on the combination of algae-biochar-bacteria as a consortium for AMD treatment. Therefore, due to the excellent performance in AMD treatment of algae, biochar and bacteria and the potential synergism among them, this review provides new insight and discusses the feasibility of a combination of algae-biochar-bacteria for AMD treatment.
Collapse
Affiliation(s)
- Tianhao Du
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London, WC1E 6BT, United Kingdom
| | - Anna Bogush
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, CV8 3LG, United Kingdom
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geoscience, The University of Edinburgh, Edinburgh, EH8 9YL, United Kingdom
| | - Saul Purton
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
31
|
Yu D, Niu J, Zhong L, Chen K, Wang G, Yan M, Li D, Yao Z. Biochar raw material selection and application in the food chain: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155571. [PMID: 35490824 DOI: 10.1016/j.scitotenv.2022.155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jinjia Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Longchun Zhong
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaiyu Chen
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Guanyi Wang
- State Grid UHV Engineering Construction Company, Beijing 100052, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
32
|
Yang X, Chen L, Ren D, Wang S, Ren Z. Adsorption of Pb(II) from water by treatment with an O-hydroxyphenyl thiourea-modified chitosan. Int J Biol Macromol 2022; 220:280-290. [PMID: 35981675 DOI: 10.1016/j.ijbiomac.2022.08.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
An O-hydroxyphenyl thiourea-modified chitosan (OTCS) with excellent Pb(II) adsorption performance and selectivity was prepared as an adsorbent. The structure and morphology of the adsorbent were systematically investigated by SEM, BET, FTIR, EDX, zeta-potential measurements, XPS and XRD. The impacts of the initial Pb(II) concentration, reaction time, temperature, pH value, and coexisting ions were explored. At pH 7 and 303 K, the maximal adsorption capacity of OTCS for Pb(II) was 208.33 mg/g, which was greater than those of other adsorbing materials reported in the literature. The metal ion adsorption kinetics and isotherm models were found to obey pseudo-second-order kinetics and the Langmuir isothermal model, indicating that the adsorption process was monolayer chemisorption. The adsorption process could proceed spontaneously, and the thermodynamic results revealed that the adsorption mechanism was an endothermic reaction. The ion exchange and chelation between the sulfur, nitrogen and oxygen groups on the adsorbent and lead ions endowed the material with excellent adsorption properties. Significantly, OTCS showed excellent selectivity toward Pb(II). Therefore, the adsorbent OTCS is expected to promote the wider application of chitosan in the adsorption of Pb(II).
Collapse
Affiliation(s)
- Xiya Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Lingyuan Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
33
|
Zhao Y, Li J. Effect of varying pH and co-existing microcystin-LR on time- and concentration-dependent cadmium sorption by goethite-modified biochar derived from distillers' grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119490. [PMID: 35595000 DOI: 10.1016/j.envpol.2022.119490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one dangerous and widespread heavy metal that of great environmental concern. To cost-efficiently adsorb aqueous Cd under influence of various factors, this study succeeded in fabricating goethite-modified biochar (GBC) derived from distillers' grains (DGs) for Cd sorption of different concentrations (10-100 mg L-1) at pH of 3, 6 and 8 with and without microcystin-LR (MC-LR). Sorption kinetics and isotherms data revealed that Cd sorption capacity of GBC and unmodified BC increased as pH elevated from 3 to 6 but stabilized when pH further elevated to 8. Pseudo-second-order and Langmuir models more accurately fitted to sorption data for both BCs, implying monolayer chemisorption of Cd onto BCs. GBC exhibited more robust sorption for each Cd concentration than unmodified BC, with the maximum sorption capacity of around 28 mg g-1 at neutral and weak alkaline pH. Notably, goethite-modification obviously increased bulk polarity, specific surface area, porosity and surface oxygenic group abundance of BC, thus strongly enhancing Cd sorption by creating more sorption sites mainly via pore-filling, electrostatic attraction, and also via complexation and cation exchange. Co-existing MC-LR of 100 μg L-1 did not obviously affect Cd sorption by both BCs for most Cd levels at each pH, mostly because sorption mechanisms diverged between MC-LR and Cd to largely avoid their competition for sorption sties. Thus, goethite could modify DG-BC as promising and cost-efficient sorbent for Cd even with co-existing MC-LR, especially at neutral and weak alkaline pH that common in the nature. This study was greatly implicated in modifying and applying DG-BC for Cd immobilization in MC-LR laden waters with various pH circumstances.
Collapse
Affiliation(s)
- Yu Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar. SUSTAINABILITY 2022. [DOI: 10.3390/su14159022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pyrolysis temperature significantly affects the properties of biochar, which in turn can affect the removal of heavy metal ions and the underlying mechanism. In this work, biochars from the pyrolysis of maize straw at 300, 400, and 500 °C (BC300, BC400, and BC500, respectively) and wheat straw at 400 °C (WBC400) were investigated. The influence of production temperature on the adsorption of Hg2+, Cd2+, and Pb2+ by maize straw biochar was investigated by the characterization of the biochars and by adsorption tests. The adsorption capacities of maize and wheat straw biochar were compared in an adsorption experiment. Biochar BC400 showed the best physical and chemical properties and had the largest number of surface functional groups. The pseudo-second-order kinetic model was more suitable for describing the adsorption behavior of metal ions to biochar. The Langmuir model better fit the experimental data. Biochar BC400 had a higher adsorption speed and a stronger adsorption capacity than WBC400. The sorption of Pb2+ and Hg2+ to maize straw biochar followed the mechanisms of surface precipitation of carbonates and phosphates and complexation with oxygenated functional groups and delocalized π electrons. The adsorption mechanism for Cd2+ was similar to those of Hg2+ and Pb2+, but precipitation mainly occurred through the formation of phosphate. In the multi-heavy-metal system, the adsorption of Cd2+ by BC400 was inhibited by Pb2+ and Hg2+. In summary, BC400 biochar was most suitable for the adsorption effect of heavy metals in aqueous solution.
Collapse
|
35
|
Adsorption Characteristics and Mechanisms of Fe-Mn Oxide Modified Biochar for Pb(II) in Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148420. [PMID: 35886272 PMCID: PMC9316531 DOI: 10.3390/ijerph19148420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022]
Abstract
This study prepared iron-manganese oxide-modified biochar (FM-BC) by impregnating rice straw biochar (BC) with a mixed solution of ferric nitrate and potassium permanganate. The effects of pH, FM-BC dosage, interference of coexisting ions, adsorption time, incipient Pb(II) concentration, and temperature on the adsorption of Pb(II) by FM-BC were investigated. Moreover, the Pb(II) adsorption mechanism of FM-BC was analyzed using a series of characterization techniques. The results showed that the Fe-Mn oxide composite modification significantly promoted the physical and chemical functions of the biochar surface and the adsorption capacity of Pb(II). The specific surface area of FM-BC was 18.20 times larger than that of BC, and the maximum Pb(II) adsorption capacity reached 165.88 mg/g. Adsorption kinetic tests showed that the adsorption of Pb(II) by FM-BC was based on the pseudo-second-order kinetic model, which indicated that the adsorption process was mainly governed by chemical adsorption. The isothermal adsorption of Pb(II) by FM-BC conformed to the Langmuir model, indicating that the adsorption process was spontaneous and endothermic. Characterization analyses (Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy) showed that the adsorption mechanism of Pb(II) by FM-BC was mainly via electrostatic adsorption, chemical precipitation, complexation, ion exchange, and the transformation of Mn2O3 into MnO2. Therefore, FM-BC is a promising adsorbent for Pb(II) removal from wastewater.
Collapse
|
36
|
Dai X, Thi Hong Nhung N, Hamza MF, Guo Y, Chen L, He C, Ning S, Wei Y, Dodbiba G, Fujita T. Selective adsorption and recovery of scandium from red mud leachate by using phosphoric acid pre-treated pitaya peel biochar. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Su X, Chen Y, Li Y, Li J, Song W, Li X, Yan L. Enhanced adsorption of aqueous Pb(II) and Cu(II) by biochar loaded with layered double hydroxide: Crucial role of mineral precipitation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Yang C, Yang HR, Li SS, An QD, Zhai SR, Xiao ZY. Rationally designed carboxymethylcellulose-based sorbents crosslinked by targeted ions for static and dynamic capture of heavy metals: Easy recovery and affinity mechanism. J Colloid Interface Sci 2022; 625:651-663. [PMID: 35764045 DOI: 10.1016/j.jcis.2022.06.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
A separable spherical bio-adsorbent (CMC-Cr) was prepared for capturing heavy metal ions by simple coordination and cross-linking between targeted ions of Cr3+ and carboxymethyl cellulose (CMC). A simple alternation of the CMC incorporation allowed the interconnected networks within the microspheres of preformed solid CMC to be adjusted. The excellent network structure could achieve the maximum collision between the adsorbent and the heavy metal cations in the wastewater. Through investigations, CMC-Cr-2 beads were determined as the optimal adsorbent. The adsorption performance of novel materials was evaluated by examining their adsorption behavior on Pb(II) and Co(II) under both static and dynamic conditions. The results showed that the adsorption behavior of CMC-Cr-2 beads on both two heavy metal cations could be fully reflected by the Freundlich model. Under the theoretical conditions, the maximum adsorption capacities were 97.26 and 144.74 mg/g. The kinetic results for the adsorption of two heavy metal cations on CMC-Cr-2 beads were consistent with the Pseudo-second-order kinetic model. Moreover, the correlation coefficient of the Thomas model was significant in the dynamic adsorption performance tests. Five regeneration cycle studies were successfully carried out on CMC-Cr-2 beads to evaluate reusability and stability. The applicability of CMC-Cr-2 beads in authentic aqueous solutions (both the single and binary pollutant systems) was also studied, and the results indicated that CMC-Cr-2 beads had a high potential for practical implementation. Furthermore, by analyzing the surface interactions of two heavy metal cations with the CMC-Cr-2 beads based on FTIR and XPS characterization, a basic understanding of the interaction between bio-sorbents and pollutants in wastewater can be obtained.
Collapse
Affiliation(s)
- Chen Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hua-Rong Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan-Shan Li
- Jinxi Research Institute of Chemical Industry Company Limited, Huludao 125000, China
| | - Qing-Da An
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shang-Ru Zhai
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Zuo-Yi Xiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
39
|
Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Imtiaz M, Ditta A, Ali EF, Abdelrahman H, Slaný M, Antoniadis V, Rinklebe J, Shaheen SM, Li W. Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154043. [PMID: 35202685 DOI: 10.1016/j.scitotenv.2022.154043] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Fishpond sediments are rich in organic carbon and nutrients; thus, they can be used as potential fertilizers and soil conditioners. However, sediments can be contaminated with toxic elements (TEs), which have to be immobilized to allow sediment reutilization. Addition of biochars (BCs) to contaminated sediments may enhance their nutrient content and stabilize TEs, which valorize its reutilization. Consequently, this study evaluated the performance of BCs derived from Taraxacum mongolicum Hand-Mazz (TMBC), Tribulus terrestris (TTBC), and rice straw (RSBC) for Cu, Cr, and Zn stabilization and for the enhancement of nutrient content in the fishpond sediments from San Jiang (SJ) and Tan Niu (TN), China. All BCs, particularly TMBC, reduced significantly the average concentrations of Cr, Cu, and Zn in the overlying water (up to 51% for Cr, 71% for Cu, and 68% for Zn) and in the sediments pore water (up to 77% for Cr, 76% for Cu, and 50% for Zn), and also reduced metal leachability (up to 47% for Cr, 60% for Cu, and 62% for Zn), as compared to the control. The acid soluble fraction accounted for the highest portion of the total content of Cr (43-44%), Cu (38-43%), and Zn (42-45%), followed by the reducible, oxidizable, and the residual fraction; this indicates the high potential risk. As compared with the control, TMBC was more effective in reducing the average concentrations of the acid soluble Cr (15-22%), Cu (35-53%), and Zn (21-39%). Added BCs altered the metals acid soluble fraction by shifting it to the oxidizable and residual fractions. Moreover, TMBC improved the macronutrient status in both sediments. This work provides a pathway for TEs remediation of sediments and gives novel insights into the utilization of BC-treated fishpond sediments as fertilizers for crop production.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa 18000, Pakistan
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03 Bratislava, Slovakia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China.
| |
Collapse
|
40
|
Liu J, Zhou J, Wu Z, Tian X, An X, Zhang Y, Zhang G, Deng F, Meng X, Qu J. Concurrent elimination and stepwise recovery of Pb(II) and bisphenol A from water using β-cyclodextrin modified magnetic cellulose: adsorption performance and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128758. [PMID: 35395706 DOI: 10.1016/j.jhazmat.2022.128758] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Coexistence of heavy metals and endocrine disrupting compounds in polluted water with competitive adsorption behavior necessitates design of tailored adsorbents. In this work, β-cyclodextrin modified magnetic rice husk-derived cellulose (β-CD@MRHC) which can provide independent functional sites for effectively binding the above two types of contaminants was synthesized and used for Pb(II) and BPA elimination in both unit and multivariate systems. Characterizations results confirmed successful β-CD grafting and Fe3O4 loading, and the β-CD@MRHC had excellent magnetic property for its effectively recovery from water, which was not affected by the adsorption of pollutants. The β-CD@MRHC possessed superior adsorption performance with maximal Pb(II)/BPA uptake of 266.2 or 412.8 mg/g, severally, and the adsorption equilibrium was fleetly reached in 30 and 7.5 min. Moreover, the β-CD@MRHC could accomplish synergetic Pb(II) and BPA elimination through averting their competitive behaviors owing to diverse capture mechanisms for Pb(II) (ion exchange, complexation and electrostatic attraction) and BPA (hydrogen bonding and host-guest inclusion). Furthermore, after three cycles of step-wise desorption, the binding of Pb(II) as well as BPA byβ-CD@MRHC dropped slightly in dualistic condition. In summary, β-CD@MRHC was a promising tailored adsorbent to practical application for simultaneously removing heavy metals and organic matters from wastewater with high-performance magnetic recovery.
Collapse
Affiliation(s)
- Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jun Zhou
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xue Tian
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianlin Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianhua Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
41
|
Özer Ç, İmamoğlu M. Isolation of Nickel(II) and Lead(II) from Aqueous Solution by Sulfuric Acid Prepared Pumpkin Peel Biochar. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2078981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Çiğdem Özer
- Faculty of Arts and Sciences, Chemistry Department, Bitlis Eren University, Bitlis, Turkey
| | - Mustafa İmamoğlu
- Faculty of Arts and Sciences, Chemistry Department, Sakarya University, Sakarya, Turkey
| |
Collapse
|
42
|
Jin X, Liu R, Wang H, Han L, Qiu M, Hu B. Functionalized porous nanoscale Fe 3O 4 particles supported biochar from peanut shell for Pb(II) ions removal from landscape wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37159-37169. [PMID: 35032000 DOI: 10.1007/s11356-021-18432-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The large amounts ofheavy metal from landscape wastewater have become serious problems of environmental pollution and risks for human health. The development of efficient novel adsorbent is a very important for treatment of heavy metal. The functionalized porous nanoscale Fe3O4 particles supported biochar from peanut shell (PS-Fe3O4) for removal of Pb(II) ions from aqueous solution was investigated. The characterization of PS-Fe3O4 composites showed that biochar was successfully coated with porous nanoscale Fe3O4 particles. The pseudo second-order kinetic model and Langmuir model were more fitted for describing the adsorption process of Pb(II) ions in solution. The adsorption process of Pb(II) ions removal by PS-Fe3O4 composites was a spontaneous and endothermic process. The adsorption mechanisms of Pb(II) ions by PS-Fe3O4 composites were mainly controlled by the chemical adsorption process. The maximum adsorption capacity of Pb(II) ions removal in solution by PS-Fe3O4 composites reached 188.68 mg/g. The removal mechanism included Fe-O coordination reaction, co-precipitation, complexation reaction, and ion exchange. PS-Fe3O4 composites were thought as a low-cost, good regeneration performance, and high efficiency adsorption material for removal of Pb(II) ions in solution.
Collapse
Affiliation(s)
- Xiaojun Jin
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
- Tongchuang Engineering Design Co. LTD., Shaoxing, 312000, People's Republic of China
| | - Renrong Liu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Huifang Wang
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Li Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| |
Collapse
|
43
|
Wang Q, Wang B, Ma Y, Zhang X, Lyu W, Chen M. Stabilization of heavy metals in biochar derived from plants in antimony mining area and its environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118902. [PMID: 35104556 DOI: 10.1016/j.envpol.2022.118902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals pollution in mining soils seriously threatens the ecological environment and human health worldwide. Phytoremediation is considered to be an ideal method to reduce the toxicity, mobility, and bioavailability of heavy metals in the soils. However, the disposal of plant-enriched heavy metals has become a thorny problem. To estimate the effect of pyrolysis on the stabilization of heavy metals in post-phytoremediation plant residues, different biochars were prepared from Conyza canadensis (CC), Gahnia tristis (GT), and Betula luminifera (BL) at different pyrolysis temperatures (300, 450, and 600 °C). Results indicated that pyrolysis was effective in the stabilization of heavy metals (Cr, Ni, As, Sb, Hg, and Pb) in plants and significantly (P < 0.05) decreased the bioavailability of most heavy metals. Among them, GT600 prepared by pyrolysis of GT at 600 °C has the best stabilization effect on Sb, which increases the residual fraction by 7.32 times, up to 82.05%. The results of environmental risk assessment show that pyrolysis of biomass at high temperature (600 °C) can effectively mitigate the environmental impact of As, Sb, and Hg. Additionally, the reutilization potential of biochar produced by post-phytoremediation plant residues as adsorbents was investigated. The results of adsorption experiments revealed that all biochars have an excellent performance to adsorb Pb(II), and the maximum adsorption capacity is 139.16 mg g-1 for CC450. The adsorption mechanism could be attributed to complexation, electrostatic attraction, and cation exchange. This study demonstrates that pyrolysis is an effective and environment-friendly alternative method to stabilize heavy metals in plants, and their pyrolysis products can be reused for heavy metal adsorption.
Collapse
Affiliation(s)
- Qian Wang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China; School of Geography and Resources, Guizhou Education University, Guiyang, 550018, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, Guizhou, China.
| | - Yuena Ma
- Pu'er Research Institute of Eco-environmental Sciences, Pu'er, 665000, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Wenqiang Lyu
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China; School of Geography and Resources, Guizhou Education University, Guiyang, 550018, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
44
|
Li A, Zhang Y, Ge W, Zhang Y, Liu L, Qiu G. Removal of heavy metals from wastewaters with biochar pyrolyzed from MgAl-layered double hydroxide-coated rice husk: Mechanism and application. BIORESOURCE TECHNOLOGY 2022; 347:126425. [PMID: 34838973 DOI: 10.1016/j.biortech.2021.126425] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
This study reports a MgAl-LDH rice husk biochar composite (MgAl-LDH@RHB) with a regular hydrotalcite structure synthesized by a simple hydrothermal method, which was then used to remove Cd(II) and Cu(II) from water. The influencing factors on the adsorption performance were determined through batch adsorption experiments, and the adsorption characteristics and cycling capacity were evaluated with eight models and adsorption-desorption experiments. The results showed that the adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB conformed to the Langmuir-Freundlich model and PSO kinetics model, indicating single-layer chemical adsorption. In addition, the experimental maximum adsorption capacities for Cd(II) and Cu(II) were 125.34 and 104.34 mg g-1, respectively. The adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB was dominated by surface precipitation and ion exchange. The findings reveal the mechanism for the heavy metal removal by MgAl-LDH@RHB and provide a theoretical reference for agricultural waste disposal and water pollution control.
Collapse
Affiliation(s)
- Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yue Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yutong Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
45
|
Hussin F, Aroua MK, Szlachta M. Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review. CHEMOSPHERE 2022; 287:132250. [PMID: 34547565 DOI: 10.1016/j.chemosphere.2021.132250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Water pollution is one of the most concerning global environmental problems in this century with the severity and complexity of the issue increases every day. One of the major contributors to water pollution is the discharge of harmful heavy metal wastes into the rivers and water bodies. Without proper treatment, the release of these harmful inorganic waste would endanger the environment by contaminating the food chains of living organisms, hence, leading to potential health risks to humans. The adsorption method has become one of the cost-effective alternative treatments to eliminate heavy metal ions. Since the type of adsorbent material is the most vital factor that determines the effectiveness of the adsorption, continuous efforts have been made in search of cheap adsorbents derived from a variety of waste materials. Fruit waste can be transformed into valuable products, such as biochar, as they are composed of many functional groups, including carboxylic groups and lignin, which is effective in metal binding. The main objective of this study was to review the potential of various types of fruit wastes as an alternative adsorbent for Pb(II) removal. Following a brief overview of the properties and effects of Pb(II), this study discussed the equilibrium isotherms and adsorption kinetic by various adsorption models. The possible adsorption mechanisms and regeneration study for Pb(II) removal were also elaborated in detail to provide a clear understanding of biochar produced using the pyrolysis technique. The future prospects of fruit waste as an adsorbent for the removal of Pb(II) was also highlighted.
Collapse
Affiliation(s)
- Farihahusnah Hussin
- Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Mohamed Kheireddine Aroua
- Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Małgorzata Szlachta
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland; Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| |
Collapse
|
46
|
Liu H, Tian D, Ouyang M, Qian Z, Wang X. Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat. J Colloid Interface Sci 2021; 608:1497-1513. [PMID: 34742069 DOI: 10.1016/j.jcis.2021.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022]
Abstract
Contamination and waste heat are major issues in water pollution. Aiming at efficient synchronous recovery wastewater and waste heat, we designed a novel CaCO3-based phase-change microcapsule system with an n-docosane core and a CaCO3/Fe3O4 composite shell. The system was fabricated through an emulsion-templated in situ precipitation approach in a structure-directing mode, resulting in a controllable morphology for the resultant microcapsules, varying from a peanut hull through ellipsoid to dumbbell shapes. The system has a significantly enlarged specific surface area of approximately 55 m2·g-1 with the CaCO3 phase transition from vaterite to calcite. As a result, the microcapsule system exhibits improved adsorption capacities of 497.6 and 79.1 mg/g for Pb2+ and Rhodamine B removal, respectively, from wastewater. Moreover, increase in the specific surface area of the microcapsule system with a sufficient latent heat capacity of approximately 130 J·g-1 also resulted in an enhanced heat energy-storage capability and thermal conductance for waste-heat recovery. The microcapsule system also exhibits a good leakage-prevention capability and good multicycle reusability owing to the tight magnetic CaCO3/Fe3O4 composite shell. This study provides a promising approach for developing CaCO3-based phase-change microcapsules with enhanced thermal energy storage and adsorption capabilities for efficient synchronous recovery of wastewater and waste heat.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Donglin Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mize Ouyang
- State Key Laboratory for Metallic Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqiang Qian
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|