1
|
Shergujri DA, Khanday MA, Noor A, Adnan M, Arif I, Raza SN, Mir RH, Khan NA. Next-generation biopolymer gels: innovations in drug delivery and theranostics. J Mater Chem B 2025; 13:3222-3244. [PMID: 39903271 DOI: 10.1039/d4tb02068e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biopolymers or natural polymers like chitosan, cellulose, alginate, collagen, etc. have gained significant interest recently due to their remarkable tunable properties that make them appropriate for a variety of applications & play a crucial role in everyday life. The features of biopolymers which include biodegradability, biocompatibility, sustainability, affordability, & availability are vital for creating products for use in biomedical fields. Apart from these characteristics, smart or stimuli-responsive biopolymers also show a distinctive property of being susceptible to various factors like pH, temperature, light intensity, & electrical or magnetic fields. The current review would present a brief idea about smart biopolymer gels along with their biomedical applications. The use of smart biopolymers gels as theranostic agents are also discussed in the present review. This review also focuses on the application of biopolymers in the fields of drug delivery, cancer treatment, tissue engineering & wound healing. These areas demonstrate the development and utilization of different types of biopolymers in current biomedical applications.
Collapse
Affiliation(s)
- Danish Ahmad Shergujri
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Murtaza Ahmad Khanday
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Aisha Noor
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Iqra Arif
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Syed Naiem Raza
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Nisar Ahmad Khan
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| |
Collapse
|
2
|
Hassan RU, Abbas N, Ko J. Toward Customizable Smart Gels: A Comprehensive Review of Innovative Printing Techniques and Applications. Gels 2025; 11:32. [PMID: 39852003 PMCID: PMC11765241 DOI: 10.3390/gels11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
New production technologies have transformed modern engineering fields, including electronics, mechanics, robotics, and biomedicine. These advancements have led to the creation of smart materials such as alloys, polymers, and gels that respond to various stimuli. This review focuses on smart materials (SMs), including their variety and fabrication techniques, that can be used to construct three- or four-dimensional structures. The mechanisms and designs of smart materials, limitations of current printing technologies, and perspectives for their future uses are also discussed in this review. The printed smart materials are expected to have a major impact on the design of real-world applications.
Collapse
Affiliation(s)
- Rizwan Ul Hassan
- School of Chemical, Biological, and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Jongkuk Ko
- School of Chemical, Biological, and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
3
|
Wu KY, Qian SY, Faucher A, Tran SD. Advancements in Hydrogels for Corneal Healing and Tissue Engineering. Gels 2024; 10:662. [PMID: 39451315 PMCID: PMC11507397 DOI: 10.3390/gels10100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant attention for their versatile applications across various fields, including biomedical engineering. This review delves into the fundamentals of hydrogels, exploring their definition, properties, and classification. Hydrogels, as three-dimensional networks of crosslinked polymers, possess tunable properties such as biocompatibility, mechanical strength, and hydrophilicity, making them ideal for medical applications. Uniquely, this article offers original insights into the application of hydrogels specifically for corneal tissue engineering, bridging a gap in current research. The review further examines the anatomical and functional complexities of the cornea, highlighting the challenges associated with corneal pathologies and the current reliance on donor corneas for transplantation. Considering the global shortage of donor corneas, this review discusses the potential of hydrogel-based materials in corneal tissue engineering. Emphasis is placed on the synthesis processes, including physical and chemical crosslinking, and the integration of bioactive molecules. Stimuli-responsive hydrogels, which react to environmental triggers, are identified as promising tools for drug delivery and tissue repair. Additionally, clinical applications of hydrogels in corneal pathologies are explored, showcasing their efficacy in various trials. Finally, the review addresses the challenges of regulatory approval and the need for further research to fully realize the potential of hydrogels in corneal tissue engineering, offering a promising outlook for future developments in this field.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Shu Yu Qian
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
4
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
5
|
Guo J, Bao D, Zhang S, Zhang X, Ji X, Li M, Guan F. Sodium alginate-based high conductive, ultra-stretchable hydrogel fibers for electrolytes of flexible solid-state supercapacitors. Int J Biol Macromol 2024; 276:133894. [PMID: 39013509 DOI: 10.1016/j.ijbiomac.2024.133894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
The flexibility and safety of energy storage systems are crucial, and hydrogels as one of the most promising candidates for solid-state electrolytes. We present a conductive hydrogel based on sodium alginate that exhibits ultra-stretchable (4200 %) and high conductivity (16.3 S m-1). The mechanical properties of the conductive hydrogel are achieved by optimizing the topology of the sodium alginate and harnessing the synergistic effect of non-covalent interaction among different components. And a conductive structure within hydrogels was successfully established through the synergistic combination of ion and metal nanoparticles. The flexible supercapacitor (FSC) with conductive hydrogel as solid electrolytes demonstrated an area-specific capacitance of up to 274.28 mF cm-2 at a current density of 1 mA cm-2. And the energy density of the FSC is as high as 187 μWh cm-2 at a power density of 1.2 mW cm-2. The voltage range of the FSC is also extended to 1.4 V. The FSC also exhibited exceptional flexibility and stability, including insensitivity to bending angles and remarkable cycle durability (82.4 % after 10,000 cycles). The study presents a novel design for the development of solid-state electrolytes, with the aim of creating a new generation of FSC that exhibit superior safety and high energy density.
Collapse
Affiliation(s)
- Jing Guo
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| | - Da Bao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Sen Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| | - Xin Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Xinbin Ji
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Minghan Li
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Fucheng Guan
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| |
Collapse
|
6
|
Zhang R, Zhang Z, Xu P, Xu J, Gao Y, Gao G. Cellulose nanofiber hydrogel with high conductivity electrolytes for high voltage flexible supercapacitors. Carbohydr Polym 2024; 326:121654. [PMID: 38142084 DOI: 10.1016/j.carbpol.2023.121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Although flexible double layer capacitors based on hydrogels overcome the drawbacks of commercial double layer capacitors such as low safety and non-deformability, it is still considered as attractive challenges to achieve high conductivity for hydrogel electrolytes as well as high operating voltages for hydrogel flexible supercapacitors. In this paper, ion migration channels were engineered by immobilizing positive and negative charges on polymer skeleton and dispersing cellulose nanofibers in the polymerized polyelectrolyte network, providing ultra-high ionic conductivity (103 mS cm-1). In addition, K3[Fe(CN)6] was introduced through a soaking method, leading to redox reactions on the surface of carbon electrode during charging and discharging, supporting a relatively wide voltage window (1.8 V). Moreover, the specific capacitance at high current remained 55 % of the specific capacitance at low current, indicating excellent rate performance. In addition, the device displayed high cycling stability (80.05 % after 10,000 cycles). Notably, we successfully light up the red LED with only one device. Accordingly, this work provides a feasible design concept for the development of cellulose nanofibers (CNF) hydrogel-based solid-state electrolyte with high conductivity for flexible supercapacitors with wide potential window and high energy density.
Collapse
Affiliation(s)
- Rongda Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zhixin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Ping Xu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jinxin Xu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yiyan Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
7
|
Najjari Z, Sadri F, Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023; 18:100873. [PMID: 38173712 PMCID: PMC10762358 DOI: 10.1016/j.ajps.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The world has been dealing with a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019, which threatens the lives of many people worldwide. COVID-19 causes respiratory infection with different symptoms, from sneezing and coughing to pneumonia and sometimes gastric symptoms. Researchers worldwide are actively developing novel drug delivery systems (DDSs), such as stimuli-responsive DDSs. The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating "smart" DDS that can effectively control dosage, sustained release, individual variations, and targeted delivery. To conduct a comprehensive literature survey for this article, the terms "Stimuli-responsive", "COVID-19″ and "Drug delivery" were searched on databases/search engines like "Google Scholar", "NCBI", "PubMed", and "Science Direct". Many different types of DDSs have been proposed, including those responsive to various exogenous (light, heat, ultrasound and magnetic field) or endogenous (microenvironmental changes in pH, ROS and enzymes) stimuli. Despite significant progress in DDS research, several challenging issues must be addressed to fill the gaps in the literature. Therefore, this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
Collapse
Affiliation(s)
- Zeinab Najjari
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Sadri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Kirubaharan CJ, Wang JW, Abbas SZ, Shah SB, Zhang Y, Wang JX, Yong YC. Self-assembly of cell-embedding reduced graphene oxide/ polypyrrole hydrogel as efficient anode for high-performance microbial fuel cell. CHEMOSPHERE 2023; 326:138413. [PMID: 36925003 DOI: 10.1016/j.chemosphere.2023.138413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
A three-dimensional (3D) macroporous reduced graphene oxide/polypyrrole (rGO/Ppy) hydrogel assembled by bacterial cells was fabricated and applied for microbial fuel cells. By taking the advantage of electroactive cell-induced bioreduction of graphene oxide and in-situ polymerization of Ppy, a facile self-assembly by Shewanella oneidensis MR-1and in-situ polymerization approach for 3D rGO/Ppy hydrogel preparation was developed. This facile one-step self-assembly process enabled the embedding of living electroactive cells inside the hydrogel electrode, which showed an interconnected 3D macroporous structures with high conductivity and biocompatibility. Electrochemical analysis indicated that the self-assembly of cell-embedding rGO/Ppy hydrogel enhanced the electrochemical activity of the bioelectrode and reduced the electron charge transfer resistance between the cells and the electrode. Impressively, extremely high power output of 3366 ± 42 mW m-2 was achieved from the MFC with cell-embedding rGO/Ppy hydrogel rGO/Ppy, which was 8.6 times of that delivered from the MFC with bare electrode. Further analysis indicated that the increased cell loading by the hydrogel and improved electrochemical activity by the rGO/Ppy composite would be the underlying mechanism for this performance improvement. This study provided a facile approach to fabricate the biocompatible and electrochemical active 3D nanocomposites for MFC, which would also be promising for performance optimization of various bioelectrochemical systems.
Collapse
Affiliation(s)
- C Joseph Kirubaharan
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jian-Wei Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Syed Bilal Shah
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yafei Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jing-Xian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
9
|
Barbero CA. Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)-A Critical Review. Polymers (Basel) 2023; 15:2240. [PMID: 37242814 PMCID: PMC10221099 DOI: 10.3390/polym15102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.
Collapse
Affiliation(s)
- Cesar A Barbero
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto 5800, Argentina
| |
Collapse
|
10
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
11
|
Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, Olabi AG. Graphene Synthesis Techniques and Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7804. [PMID: 36363396 PMCID: PMC9658785 DOI: 10.3390/ma15217804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.
Collapse
Affiliation(s)
- Qaisar Abbas
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Pragati A. Shinde
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Chemical Engineering Department, Minia University, Minya 61519, Egypt
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mojtaba Mirzaeian
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty 050012, Kazakhstan
| | - Arti Yadav
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
12
|
Ali N, Funmilayo OR, Khan A, Ali F, Bilal M, Yang Y, Akhter MS, Zhou C, Wenjie Y, Iqbal HMN. Nanoarchitectonics: Porous Hydrogel as Bio-sorbent for Effective Remediation of Hazardous Contaminants. J Inorg Organomet Polym Mater 2022; 32:3301-3320. [DOI: 10.1007/s10904-022-02388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
|
13
|
Bordbar-Khiabani A, Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. Int J Mol Sci 2022; 23:3665. [PMID: 35409025 PMCID: PMC8998863 DOI: 10.3390/ijms23073665] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Since the last few decades, the development of smart hydrogels, which can respond to stimuli and adapt their responses based on external cues from their environments, has become a thriving research frontier in the biomedical engineering field. Nowadays, drug delivery systems have received great attention and smart hydrogels can be potentially used in these systems due to their high stability, physicochemical properties, and biocompatibility. Smart hydrogels can change their hydrophilicity, swelling ability, physical properties, and molecules permeability, influenced by external stimuli such as pH, temperature, electrical and magnetic fields, light, and the biomolecules' concentration, thus resulting in the controlled release of the loaded drugs. Herein, this review encompasses the latest investigations in the field of stimuli-responsive drug-loaded hydrogels and our contribution to this matter.
Collapse
Affiliation(s)
- Aydin Bordbar-Khiabani
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland;
| | | |
Collapse
|
14
|
Kedir CN, Salinas-Torres D, Quintero-Jaime A, Benyoucef A, Morallon E. Hydrogels obtained from aniline and piperazine: Synthesis, characterization and their application in hybrid supercapacitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
16
|
Fontana-Escartín A, Ruano G, Silva FM, Estrany F, Puiggalí J, Alemán C, Torras J. Poly(aspartic acid) Biohydrogel as the Base of a New Hybrid Conducting Material. Int J Mol Sci 2021; 22:ijms222313165. [PMID: 34884972 PMCID: PMC8658656 DOI: 10.3390/ijms222313165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/17/2022] Open
Abstract
In the present study, a composite made of conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), and a biodegradable hydrogel of poly(aspartic acid) (PASP) were electrochemically interpenetrated with poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT) to prepare a new interpenetrated polymer network (IPN). Different cross-linker and PEDOT MPs contents, as well as different electropolymerization times, were studied to optimize the structural and electrochemical properties. The properties of the new material, being electrically conductive, biocompatible, bioactive, and biodegradable, make it suitable for possible uses in biomedical applications.
Collapse
Affiliation(s)
- Adrián Fontana-Escartín
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; (A.F.-E.); (G.R.); (F.M.S.); (F.E.); (J.P.); (C.A.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Guillem Ruano
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; (A.F.-E.); (G.R.); (F.M.S.); (F.E.); (J.P.); (C.A.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Fiorella M. Silva
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; (A.F.-E.); (G.R.); (F.M.S.); (F.E.); (J.P.); (C.A.)
| | - Francesc Estrany
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; (A.F.-E.); (G.R.); (F.M.S.); (F.E.); (J.P.); (C.A.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; (A.F.-E.); (G.R.); (F.M.S.); (F.E.); (J.P.); (C.A.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; (A.F.-E.); (G.R.); (F.M.S.); (F.E.); (J.P.); (C.A.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Juan Torras
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; (A.F.-E.); (G.R.); (F.M.S.); (F.E.); (J.P.); (C.A.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Correspondence:
| |
Collapse
|
17
|
Dynamic Gelation of Conductive Polymer Nanocomposites Consisting of Poly(3-hexylthiophene) and ZnO Nanowires. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5080199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sol–gel transition of conductive nanocomposites consisting of poly(3-hexylthiophene) (P3HT) and ZnO nanowires in o-dichlorobenzene (o-DCB) has been investigated rheologically. The physical gelation of P3HT in o-DCB spontaneously occurs upon adding the small amount of ZnO nanowires. The rheological properties of the P3HT/ZnO nanocomposite gels have been systematically studied by varying factors such as polymer concentration, nanowire loading, and temperature. The nanocomposite gel exhibits shear-thinning in the low shear rate range and shear-thickening in the high shear rate range. The elastic storage modulus of the nanocomposite gel gradually increases with gelation time and is consistently independent of frequency at all investigated ranges. The isothermal gelation kinetics has been analyzed by monitoring the storage modulus with gelation time, and the data are well fitted with a first-order rate law. The structural analysis data reveal that the polymer forms the crystalline layer coated on ZnO nanowires. A fringed micelle model is proposed to explain the possible gelation mechanism.
Collapse
|