1
|
Murray A, Hall A, Riveros-Iregui D. A machine learning approach to estimate domestic use of public and private water sources in the United States. WATER RESEARCH 2025; 276:123171. [PMID: 39923400 PMCID: PMC11938357 DOI: 10.1016/j.watres.2025.123171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
In the United States, people obtain water for household use from one of two sources. Public water systems, which are subject to rules and regulations under the Safe Drinking Water Act, or private sources such as domestic wells, which are not subject to federal regulation and are generally the responsibility of the homeowner or occupant. Public water systems are required to treat their drinking water and conduct regular testing to ensure the delivery of safe water to consumers. From a public health perspective, it is essential to know who is drinking what water to determine risk and impacts from water-borne disease and contamination. We present a new machine-learning approach to estimating water supply source (public or private) at the census block level for the year 2020. While previous studies have largely focused on spatially delineating either public or private water supply, our method incorporates data from both universes, resulting in more accurate modeling results. The utilization of machine learning and additional explanatory data that have not been considered in prior studies results in the most accurate and up-to-date estimate of the count and location of users supplying household water from either a private source or a public water supply. We estimate that 14.1 % of US housing units are supplied by private wells and 84.9 % of housing units are served by a public water system as of 2020.
Collapse
Affiliation(s)
- Andrew Murray
- United States Environmental Protection Agency, Andrew W Breidenbach Environmental Research Center, 26 Martin Luther King Dr W, Cincinnati 45220, OH, USA.
| | - Alexander Hall
- United States Environmental Protection Agency, Andrew W Breidenbach Environmental Research Center, 26 Martin Luther King Dr W, Cincinnati 45220, OH, USA.
| | - Diego Riveros-Iregui
- The University of North Carolina at Chapel Hill, Department of Geography and Environment, Carolina Hall, Campus Box 3220, Chapel Hill 27599-3220, NC , USA.
| |
Collapse
|
2
|
Rubilar P, Hirmas-Adauy M, Apablaza M, Awad C, Molina X, Muñoz MP, Delgado I, Zanetta-Colombo NC, Castillo-Laborde C, Matute MI, Retamal MA, Olea A, Pino P, González C, Carvajal C, Iglesias V. Arsenic Exposure During Pregnancy and Childhood: Factors Explaining Changes over a Decade. TOXICS 2025; 13:215. [PMID: 40137542 PMCID: PMC11945348 DOI: 10.3390/toxics13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Arsenic chronic exposure, particularly in its inorganic form, represents a significant public health concern. This study was conducted in Arica, the northernmost city in the country, whose inhabitants have been exposed to inorganic arsenic both naturally through drinking water and anthropogenically due to a toxic waste disposal site. We explored changes in inorganic arsenic levels in a cohort of pregnant women and their children over a decade, identifying exposure trends and their determinants. We used data on arsenic exposure through maternal urine samples during pregnancy, collected by the Health Authority between 2013 and 2016 (measurement 1), and followed up with assessments of their children in 2023 (measurement 2). Temporal changes in inorganic arsenic concentration were analyzed using the Wilcoxon Signed-Rank test, and a mixed linear regression model was employed to determine which factors contributed to urinary inorganic arsenic levels. We did not observe significant differences in mean arsenic concentrations between the two-time points (p = 0.4026). The mixed linear regression model revealed that children consuming bottled water had 8.3% lower urinary inorganic arsenic concentrations than those drinking tap water (95% CI: -15.36 to -0.54%). Additionally, children from ethnic groups had 8.64% higher inorganic arsenic concentrations (95% CI: 0.49 to 17.5%), while those with caregivers with higher education showed a 13.67% reduction (95% CI: -25.06 to -0.56%). Despite mitigation efforts, these findings underscore the ongoing risk of inorganic arsenic exposure among vulnerable populations. They further emphasize the importance of addressing natural arsenic contamination in water and implementing targeted interventions to reduce disparities associated with socioeconomic and demographic factors.
Collapse
Affiliation(s)
- Paola Rubilar
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - Macarena Hirmas-Adauy
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - Mauricio Apablaza
- Facultad de Gobierno, Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Camila Awad
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - Xaviera Molina
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - María Pía Muñoz
- Programa de Epidemiología, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (M.P.M.); (P.P.)
- Programa de Doctorado en Salud Pública, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Iris Delgado
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - Nicolás C. Zanetta-Colombo
- Department of Geography, South Asia Institute, Heidelberg University, 69120 Heidelberg, Germany;
- Heidelberg Center for the Environment (HCE), Heidelberg University, 69120 Heidelberg, Germany
| | - Carla Castillo-Laborde
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - María Isabel Matute
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Andrea Olea
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - Paulina Pino
- Programa de Epidemiología, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (M.P.M.); (P.P.)
| | - Claudia González
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (M.H.-A.); (C.A.); (X.M.); (I.D.); (C.C.-L.); (M.I.M.); (A.O.); (C.G.)
| | - Cristóbal Carvajal
- Centro de Informática Biomédica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Verónica Iglesias
- Programa de Epidemiología, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (M.P.M.); (P.P.)
| |
Collapse
|
3
|
Millner S, Malina N, Rogers SR, Henderson E, Ojeda AS. Drinking private well water: Groundwater quality and management of wells in southern Alabama. JOURNAL OF WATER AND HEALTH 2025; 23:260-275. [PMID: 40018966 DOI: 10.2166/wh.2025.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 03/01/2025]
Abstract
Private wells provide a source of household water for over 40 million people in the United States and an estimated 1 million people in the Coastal Lowlands Aquifer system along the Gulf of Mexico. Well water quality is dependent on the local geology and factors that contribute to anthropogenic contamination from the surface. Here, we evaluated groundwater quality and well management in southern Alabama, USA, to better understand factors that influence exposures through drinking water from private wells. The most common constituents that exceeded USEPA primary or secondary human health benchmarks were pH (92%), and total coliform (TC) (25%), followed by Fe (7%), Pb (6%), nitrate (1%), and As (1%). Most wells (68%) also displayed temporal changes in the number of exceedances, often showing positive for TC during one sampling campaign and negative in another, while the secondary standard for pH (6.5-8.5) was consistently not met. We also found that the common choices of water treatment did not protect against the most common water quality exceedances. Our results underscore the need to understand well water quality coupled with management practices when assessing potential exposures to the private well population through drinking water.
Collapse
Affiliation(s)
- Sidney Millner
- Department of Geosciences, Auburn University, 2050 Beard Eaves Memorial Coliseum, Auburn, AL 36830, USA
| | - Natalia Malina
- Department of Geosciences, Auburn University, 2050 Beard Eaves Memorial Coliseum, Auburn, AL 36830, USA; Department of Chemistry and Biochemistry, 777 Glades Road, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Stephanie R Rogers
- Department of Geosciences, Auburn University, 2050 Beard Eaves Memorial Coliseum, Auburn, AL 36830, USA
| | - Emma Henderson
- Department of Geosciences, Auburn University, 2050 Beard Eaves Memorial Coliseum, Auburn, AL 36830, USA
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, 2050 Beard Eaves Memorial Coliseum, Auburn, AL 36830, USA E-mail:
| |
Collapse
|
4
|
Peer K, Hubbard B, Monti M, Vander Kelen P, Werner AK. The private well water climate impact index: Characterization of community-level climate-related hazards and vulnerability in the continental United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177409. [PMID: 39510280 PMCID: PMC11988540 DOI: 10.1016/j.scitotenv.2024.177409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Private wells use groundwater as their source and their drinking water quality is unregulated in the United States at the federal level. Due to the lack of water quality regulations, those reliant on private wells have the responsibility of ensuring that the water is safe to drink. Where extreme weather is projected to increase with climate change, contamination due to climate-related hazards adds further layers of complexity for those relying on private wells. We sought to characterize community-level climate-related hazards and vulnerability for persons dependent on private wells in the continental United States (CONUS). Additional objectives of this work were to quantify the burden to private well water communities by climate region and demographic group. METHODS Grounded in the latest climate change framework and private well water literature, we created the Private Well Water Climate Impact Index (PWWCII). We searched the literature and identified nationally consistent, publicly available, sub-county data to build Overall, Drought, Flood, and Wildfire PWWCIIs at the national and state scales. We adapted the technical construction of this relative index from the California Communities Environmental Health Screening Tool (CalEnviroScreen 4.0). RESULTS The distribution of climate-related impact census tracts varied across CONUS by nationally-normed PWWCII type. Compared to the Southeast where the majority of the 2010 estimated U.S. private well water population lived, the estimated persons dependent upon private well water living in the West had an increased odds of living in higher impact census tracts for the Overall, Drought, and Wildfire PWWCIIs across CONUS. Compared to non-Hispanic White persons, non-Hispanic American Indian and Alaska Native (AI/AN) persons had an increased odds of living in higher impact census tracts for all four PWWCII types across CONUS. CONCLUSIONS The PWWCII fills a gap as it provides a baseline understanding of potential climate-related impacts to communities reliant on private well water across CONUS.
Collapse
Affiliation(s)
- Komal Peer
- National Environmental Public Health Tracking Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Brian Hubbard
- Environmental Health Services Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Michele Monti
- National Environmental Public Health Tracking Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Patrick Vander Kelen
- Environmental Health Services Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Angela K Werner
- National Environmental Public Health Tracking Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
5
|
Oladimeji T, Oyedemi M, Emetere M, Agboola O, Adeoye J, Odunlami O. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024; 10:e40370. [PMID: 39654720 PMCID: PMC11625160 DOI: 10.1016/j.heliyon.2024.e40370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The incidence of water pollution in developing countries is high due to the lack of regulatory policies and laws that protect water bodies from anthropogenic activities and industrial wastewater. Industrial wastewater contains significant amounts of heavy metals that are detrimental to human health, aquatic organisms, and the ecosystem. The focus of this review was to evaluate the sources and treatment methods of wastewater, with an emphasis on technologies, advantages, disadvantages, and innovation. It was observed that conventional methods of wastewater treatment (such as flotation, coagulation/flocculation, and adsorption) had shown promising results but posed certain limitations, such as the generation of high volumes of sludge, relatively low removal rates, inefficiency in treating low metal concentrations, and sensitivity to varying pH. Recent technologies like nanotechnology, photocatalysis, and electrochemical coagulation have significant advantages over conventional methods for removing heavy metals, including higher removal rates, improved energy efficiency, and greater selectivity for specific contaminants. However, the high costs associated with these advanced methods remain a major drawback. Therefore, we recommend that future developments in wastewater treatment technology focus on reducing both costs and waste generation.
Collapse
Affiliation(s)
- T.E. Oladimeji
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M. Oyedemi
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M.E. Emetere
- Department of Physics, Bowen University, Osun State, Nigeria
- Department of Mechanical Engineering Science, University of Johannesburg, South Africa
| | - O. Agboola
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - J.B. Adeoye
- Department of Chemical and Energy Engineering, Curtin University, Malaysia
| | - O.A. Odunlami
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| |
Collapse
|
6
|
Medgyesi DN, Bangia K, Spielfogel ES, Fisher JA, Madrigal JM, Jones RR, Ward MH, Lacey JV, Sanchez TR. Long-Term Exposure to Arsenic in Community Water Supplies and Risk of Cardiovascular Disease among Women in the California Teachers Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107006. [PMID: 39440943 PMCID: PMC11498017 DOI: 10.1289/ehp14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Inorganic arsenic in drinking water (wAs) is linked to atherosclerosis and cardiovascular disease. However, risk is uncertain at lower levels present in US community water supplies (CWS), currently regulated at the federal maximum contaminant level of 10 μ g / L . OBJECTIVES We evaluated the relationship between long-term wAs exposure from CWS and cardiovascular disease in the California Teachers Study cohort. METHODS Using statewide health care administrative records from enrollment through follow-up (1995-2018), we identified fatal and nonfatal cases of ischemic heart disease (IHD) and cardiovascular disease (CVD). Participants' residential addresses were linked to a network of CWS boundaries and annual wAs concentrations (1990-2020). Most participants resided in areas served by a CWS (92%). Exposure was calculated as a time-varying, 10-year moving average up to a participant's event, death, or end of follow-up. Using Cox models, we estimated hazard ratios (HRs) and 95% confidence intervals (95% CIs) for the risk of IHD or CVD. We evaluated wAs exposure categorized by concentration thresholds relevant to regulation standards (< 1.00 , 1.00-2.99, 3.00-4.99, 5.00-9.99, ≥ 10 μ g / L ) and continuously using a log2-transformation (i.e., per doubling). Models were adjusted for baseline age, neighborhood socioeconomic status, race/ethnicity, body mass index (BMI), and smoking status. We also stratified analyses by age, BMI, and smoking status. RESULTS Our analysis included 98,250 participants, 6,119 IHD cases, and 9,936 CVD cases. The HRs for IHD at concentration thresholds (reference, < 1 μ g / L ) were 1.06 (95% CI: 1.00, 1.12), 1.05 (95% CI: 0.94, 1.17), 1.20 (95% CI: 1.02, 1.41), and 1.42 (95% CI: 1.10, 1.84) for 1.00 - 2.99 μ g / L , 3.00 - 4.99 μ g / L , 5.00 - 9.99 μ g / L , and ≥ 10 μ g / L , respectively. HRs for every doubling of wAs exposure were 1.04 (95% CI: 1.02, 1.06) for IHD and 1.02 (95% CI: 1.01, 1.04) for CVD. We observed statistically stronger risk among those ≤ 55 vs. > 55 years of age at enrollment (p interaction = 0.006 and 0.012 for IHD and CVD, respectively). DISCUSSION Long-term wAs exposure from CWS, at and below the regulatory limit, may increase cardiovascular disease risk, particularly IHD. https://doi.org/10.1289/EHP14410.
Collapse
Affiliation(s)
- Danielle N. Medgyesi
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Komal Bangia
- Community and Environmental Epidemiology Research Branch, Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Emma S. Spielfogel
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jared A. Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jessica M. Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - James V. Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Tiffany R. Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Spaur M, Galvez-Fernandez M, Chen Q, Lombard MA, Bostick BC, Factor-Litvak P, Fretts AM, Shea SJ, Navas-Acien A, Nigra AE. Association of Water Arsenic With Incident Diabetes in U.S. Adults: The Multi-Ethnic Study of Atherosclerosis and the Strong Heart Study. Diabetes Care 2024; 47:1143-1151. [PMID: 38656975 PMCID: PMC11208750 DOI: 10.2337/dc23-2231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE We examined the association of arsenic in federally regulated community water systems (CWS) and unregulated private wells with type 2 diabetes (T2D) incidence in the Strong Heart Family Study (SHFS), a prospective study of American Indian communities, and the Multi-Ethnic Study of Atherosclerosis (MESA), a prospective study of racially and ethnically diverse urban U.S. communities. RESEARCH DESIGN AND METHODS We evaluated 1,791 participants from SHFS and 5,777 participants from MESA who had water arsenic estimates available and were free of T2D at baseline (2001-2003 and 2000-2002, respectively). Participants were followed for incident T2D until 2010 (SHFS cohort) or 2019 (MESA cohort). We used Cox proportional hazards mixed-effects models to account for clustering by family and residential zip code, with adjustment for sex, baseline age, BMI, smoking status, and education. RESULTS T2D incidence was 24.4 cases per 1,000 person-years (mean follow-up, 5.6 years) in SHFS and 11.2 per 1,000 person-years (mean follow-up, 14.0 years) in MESA. In a meta-analysis across the SHFS and MESA cohorts, the hazard ratio (95% CI) per doubling in CWS arsenic was 1.10 (1.02, 1.18). The corresponding hazard ratio was 1.09 (0.95, 1.26) in the SHFS group and 1.10 (1.01, 1.20) in the MESA group. The corresponding hazard ratio (95% CI) for arsenic in private wells and incident T2D in SHFS was 1.05 (0.95, 1.16). We observed statistical interaction and larger magnitude hazard ratios for participants with BMI <25 kg/m2 and female participants. CONCLUSIONS Low to moderate water arsenic levels (<10 µg/L) were associated with T2D incidence in the SHFS and MESA cohorts.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Qixuan Chen
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY
| | | | | | - Pam Factor-Litvak
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY
| | - Amanda M. Fretts
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Steven J. Shea
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Anne E. Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| |
Collapse
|
8
|
George CM, Zacher T, Endres K, Richards F, Bear Robe L, Harvey D, Best LG, Red Cloud R, Black Bear A, Skinner L, Cuny C, Rule A, Schwab KJ, Gittelsohn J, Glabonjat RA, Schilling K, O’Leary M, Thomas ED, Umans J, Zhu J, Moulton LH, Navas-Acien A. Effect of an Arsenic Mitigation Program on Arsenic Exposure in American Indian Communities: A Cluster Randomized Controlled Trial of the Community-Led Strong Heart Water Study Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37007. [PMID: 38534131 PMCID: PMC10967367 DOI: 10.1289/ehp12548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Chronic arsenic exposure has been associated with an increased risk of cardiovascular disease; diabetes; cancers of the lung, pancreas and prostate; and all-cause mortality in American Indian communities in the Strong Heart Study. OBJECTIVE The Strong Heart Water Study (SHWS) designed and evaluated a multilevel, community-led arsenic mitigation program to reduce arsenic exposure among private well users in partnership with Northern Great Plains American Indian Nations. METHODS A cluster randomized controlled trial (cRCT) was conducted to evaluate the effectiveness of the SHWS arsenic mitigation program over a 2-y period on a) urinary arsenic, and b) reported use of arsenic-safe water for drinking and cooking. The cRCT compared the installation of a point-of-use arsenic filter and a mobile Health (mHealth) program (3 phone calls; SHWS mHealth and Filter arm) to a more intensive program, which included this same program plus three home visits (3 phone calls and 3 home visits; SHWS Intensive arm). RESULTS A 47% reduction in urinary arsenic [geometric mean ( GM ) = 13.2 to 7.0 μ g / g creatinine] was observed from baseline to the final follow-up when both study arms were combined. By treatment arm, the reduction in urinary arsenic from baseline to the final follow-up visit was 55% in the mHealth and Filter arm (GM = 14.6 to 6.55 μ g / g creatinine) and 30% in the Intensive arm (GM = 11.2 to 7.82 μ g / g creatinine). There was no significant difference in urinary arsenic levels by treatment arm at the final follow-up visit comparing the Intensive vs. mHealth and Filter arms: GM ratio of 1.21 (95% confidence interval: 0.77, 1.90). In both arms combined, exclusive use of arsenic-safe water from baseline to the final follow-up visit significantly increased for water used for cooking (17% to 53%) and drinking (12% to 46%). DISCUSSION Delivery of the interventions for the community-led SHWS arsenic mitigation program, including the installation of a point-of-use arsenic filter and a mHealth program on the use of arsenic-safe water (calls only, no home visits), resulted in a significant reduction in urinary arsenic and increases in reported use of arsenic-safe water for drinking and cooking during the 2-y study period. These results demonstrate that the installation of an arsenic filter and phone calls from a mHealth program presents a promising approach to reduce water arsenic exposure among private well users. https://doi.org/10.1289/EHP12548.
Collapse
Affiliation(s)
- Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tracy Zacher
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Francine Richards
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Lisa Bear Robe
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | | | - Lyle G. Best
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, Pine Ridge, South Dakota, USA
| | | | - Leslie Skinner
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Christa Cuny
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kellogg J. Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Gittelsohn
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ronald Alexander Glabonjat
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathrin Schilling
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marcia O’Leary
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Elizabeth D. Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jason Umans
- Biomarker, Biochemistry, and Biorepository Core, Medstar Health, Washington, District of Columbia, USA
- Department of Medicine, School of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Jianhui Zhu
- Biomarker, Biochemistry, and Biorepository Core, Medstar Health, Washington, District of Columbia, USA
| | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
9
|
Erickson ML, Brown CJ, Tomaszewski EJ, Ayotte JD, Böhlke JK, Kent DB, Qi S. Prioritizing water availability study settings to address geogenic contaminants and related societal factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:303. [PMID: 38400911 PMCID: PMC10894127 DOI: 10.1007/s10661-024-12362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
Water availability for human and ecological uses depends on both water quantity and water quality. The U.S. Geological Survey (USGS) is developing strategies for prioritizing regional-scale and watershed basin-scale studies of water availability across the nation. Previous USGS ranking processes for basin-scale studies incorporated primarily water quantity factors but are now considering additional water quality factors. This study presents a ranking based on the potential impacts of geogenic constituents on water quality and consideration of societal factors related to water quality. High-concentration geogenic constituents, including trace elements and radionuclides, are among the most prevalent contaminants limiting water availability in the USA and globally. Geogenic constituents commonly occur in groundwater because of subsurface water-rock interactions, and their distributions are controlled by complex geochemical processes. Geogenic constituent mobility can also be affected by human activities (e.g., mining, energy production, irrigation, and pumping). Societal factors and relations to drinking water sources and water quality information are often overlooked when evaluating research priorities. Sociodemographic characteristics, data gaps resulting from historical data-collection disparities, and infrastructure condition/age are examples of factors to consider regarding environmental justice. This paper presents approaches for ranking and prioritizing potential basin-scale study areas across the contiguous USA by considering a suite of conventional physical and geochemical variables related to geogenic constituents, with and without considering variables related to societal factors. Simultaneous consideration of societal and conventional factors could provide decision makers with more diverse, interdisciplinary tools to increase equity and reduce bias in prioritizing focused research areas and future water availability studies.
Collapse
Affiliation(s)
- Melinda L Erickson
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN, 55112, USA.
| | - Craig J Brown
- U.S. Geological Survey, 101 Pitkin Street, East Hartford, CT, 06108, USA
| | | | - Joseph D Ayotte
- U.S. Geological Survey, 331 Commerce Way, Pembroke, NH, 03275, USA
| | - John K Böhlke
- U.S. Geological Survey, 12201 Sunrise Valley Dr, Reston, VA, 20192, USA
| | - Douglas B Kent
- U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, CA, 94025, USA
| | - Sharon Qi
- U.S. Geological Survey, 601 SW 2nd Ave. Suite 1950, Portland, OR, 97204, USA
| |
Collapse
|
10
|
Schmidt S. Marking Time: Epigenetic Aging May Partially Explain the Arsenic-Cardiovascular Disease Link. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:24001. [PMID: 38319882 PMCID: PMC10846676 DOI: 10.1289/ehp14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
New epigenetic clocks point to DNA methylation as a mechanism in the well-known link between arsenic exposure and cardiovascular disease risk. The results validate the use of these clocks in Native American populations.
Collapse
|
11
|
Spaur M, Glabonjat RA, Schilling K, Lombard MA, Galvez-Fernandez M, Lieberman-Cribbin W, Hayek C, Ilievski V, Balac O, Izuchukwu C, Patterson K, Basu A, Bostick BC, Chen Q, Sanchez T, Navas-Acien A, Nigra AE. Contribution of arsenic and uranium in private wells and community water systems to urinary biomarkers in US adults: The Strong Heart Study and the Multi-Ethnic Study of Atherosclerosis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:77-89. [PMID: 37558699 PMCID: PMC10853483 DOI: 10.1038/s41370-023-00586-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (As) and uranium (U) in the United States (US) occurs from unregulated private wells and federally regulated community water systems (CWSs). The contribution of water to total exposure is assumed to be low when water As and U concentrations are low. OBJECTIVE We examined the contribution of water As and U to urinary biomarkers in the Strong Heart Family Study (SHFS), a prospective study of American Indian communities, and the Multi-Ethnic Study of Atherosclerosis (MESA), a prospective study of racially/ethnically diverse urban U.S. communities. METHODS We assigned residential zip code-level estimates in CWSs (µg/L) and private wells (90th percentile probability of As >10 µg/L) to up to 1485 and 6722 participants with dietary information and urinary biomarkers in the SHFS (2001-2003) and MESA (2000-2002; 2010-2011), respectively. Urine As was estimated as the sum of inorganic and methylated species, and urine U was total uranium. We used linear mixed-effects models to account for participant clustering and removed the effect of dietary sources via regression adjustment. RESULTS The median (interquartile range) urine As was 5.32 (3.29, 8.53) and 6.32 (3.34, 12.48) µg/L for SHFS and MESA, respectively, and urine U was 0.037 (0.014, 0.071) and 0.007 (0.003, 0.018) µg/L. In a meta-analysis across both studies, urine As was 11% (95% CI: 3, 20%) higher and urine U was 35% (5, 73%) higher per twofold higher CWS As and U, respectively. In the SHFS, zip-code level factors such as private well and CWS As contributed 46% of variation in urine As, while in MESA, zip-code level factors, e.g., CWS As and U, contribute 30 and 49% of variation in urine As and U, respectively. IMPACT STATEMENT We found that water from unregulated private wells and regulated CWSs is a major contributor to urinary As and U (an estimated measure of internal dose) in both rural, American Indian populations and urban, racially/ethnically diverse populations nationwide, even at levels below the current regulatory standard. Our findings indicate that additional drinking water interventions, regulations, and policies can have a major impact on reducing total exposures to As and U, which are linked to adverse health effects even at low levels.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Melissa A Lombard
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Wil Lieberman-Cribbin
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Carolyn Hayek
- Columbia Water Center, Columbia Climate School, New York, NY, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Chiugo Izuchukwu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kevin Patterson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anirban Basu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Qixuan Chen
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tiffany Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
12
|
Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, Martinez-Morata I, Minovi D, Nigra AE, Olson ED, Schaider LA, Ward MH, Deziel NC. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:3-22. [PMID: 37739995 PMCID: PMC10907308 DOI: 10.1038/s41370-023-00597-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.
Collapse
Affiliation(s)
- Ronnie Levin
- Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- University of New Mexico Department of Geography & Environmental Studies, Albuquerque, NM, USA
| | | | - Carolina Donat-Vargas
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Darya Minovi
- Center for Science and Democracy, Union of Concerned Scientists, Washington, DC, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik D Olson
- Natural Resources Defense Council, Washington, DC, USA
| | | | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
13
|
Hefferon R, Goin DE, Sarnat JA, Nigra AE. Regional and racial/ethnic inequalities in public drinking water fluoride concentrations across the US. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:68-76. [PMID: 37391608 PMCID: PMC10756931 DOI: 10.1038/s41370-023-00570-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Although the US Centers for Disease Control and Prevention (CDC) considers fluoridation of community water systems (CWSs) to be a major public health achievement responsible for reducing dental disease, recent epidemiologic evidence suggests that chronic exposure to population-relevant levels of fluoride may also be associated with adverse child neurodevelopmental outcomes. To our knowledge, a nationally representative database of CWS fluoride concentration estimates that can be readily linked to US epidemiologic cohorts for further study is not publicly available. Our objectives were to evaluate broad regional and sociodemographic inequalities in CWS fluoride concentrations across the US, and to determine if county-level racial/ethnic composition was associated with county-level CWS fluoride. METHODS We generated CWS-level (N = 32,495) and population weighted county-level (N = 2152) fluoride concentration estimates using over 250,000 routine compliance monitoring records collected from the US Environmental Protection Agency's (EPA) Third Six Year Review (2006-2011). We compared CWS-level fluoride distributions across subgroups including region, population size served, and county sociodemographic characteristics. In county-level spatial error models, we also evaluated geometric mean ratios (GMRs) of CWS fluoride per 10% higher proportion of residents belonging to a given racial/ethnic subgroup. RESULTS 4.5% of CWSs (serving >2.9 million residents) reported mean 2006-2011 fluoride concentrations ≥1500 µg/L (the World Health Organization's guideline for drinking water quality). Arithmetic mean, 90th, and 95th percentile contaminant concentrations were greatest in CWSs reliant on groundwater, located in the Southwest and Eastern Midwest, and serving Semi-Urban, Hispanic communities. In fully adjusted spatial error models, the GMR (95% CI) of CWS fluoride per a 10% higher proportion of county residents that were Hispanic/Latino was 1.16 (1.10, 1.23). IMPACT STATEMENT We find that over 2.9 million US residents are served by public water systems with average fluoride concentrations exceeding the World Health Organization's guidance limit. We also find significant inequalities in community water system fluoride concentration estimates (2006-2011) across the US, especially for Hispanic/Latino communities who also experience elevated arsenic and uranium in regulated public drinking water systems. Our fluoride estimates can be leveraged in future epidemiologic studies to assess the potential association between chronic fluoride exposure and related adverse outcomes.
Collapse
Affiliation(s)
- Rose Hefferon
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana E Goin
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
14
|
Jiang EX, Domingo-Relloso A, Abuawad A, Haack K, Tellez-Plaza M, Fallin MD, Umans JG, Best LG, Zhang Y, Kupsco A, Belsky DW, Cole SA, Navas-Acien A. Arsenic Exposure and Epigenetic Aging: The Association with Cardiovascular Disease and All-Cause Mortality in the Strong Heart Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127016. [PMID: 38133959 PMCID: PMC10743589 DOI: 10.1289/ehp11981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Inorganic arsenic (As) may increase the risk of cardiovascular disease (CVD) and all-cause mortality through accelerated aging, which can be estimated using epigenetic-based measures. OBJECTIVES We evaluated three DNA methylation-based aging measures (PhenoAge, GrimAge, DunedinPACE) (epigenetic aging measures) as potential mediators of the previously reported association of As exposure with CVD incidence, CVD mortality, and all-cause mortality in the Strong Heart Study (SHS), an epidemiological cohort of American Indian adults. METHODS Blood DNA methylation and urinary As levels were measured in 2,323 SHS participants (41.5% men, mean age of 55 years old). PhenoAge and GrimAge values were calculated using a residual-based method. We tested the association of urinary As with epigenetic aging measures using linear regression, the association of epigenetic aging measures with the three health outcomes using additive hazards models, and the mediation of As-related CVD incidence, CVD mortality, and all-cause mortality by epigenetic aging measures using the product of coefficients method. RESULTS SHS participants with higher vs. lower urinary As levels had similar PhenoAge age, older GrimAge age, and faster DunedinPACE. An interquartile range increase in urinary As was associated with higher of PhenoAge age acceleration [mean difference ( 95 % confidence interval ) = 0.48 (0.17, 0.80) years], GrimAge age acceleration [0.80 (0.60, 1.00) years], and DunedinPACE [0.011 (0.005, 0.018)], after adjusting for age, sex, center location, genetic components, smoking status, and body mass index. Of the 347 incident CVD events per 100,000 person-years associated with a doubling in As exposure, 21.3% (9.1, 57.1) and 22.6% (9.5, 56.9), were attributable to differences in GrimAge and DunedinPACE, respectively. DISCUSSION Arsenic exposure was associated with older GrimAge and faster DunedinPACE measures of biological age. Furthermore, accelerated biological aging measured from DNA methylation accounted for a relevant fraction of As-associated risk for CVD, CVD mortality, and all-cause mortality in the SHS, supporting the role of As in accelerated aging. Research of the biological underpinnings can contribute to a better understanding of the role of aging in arsenic-related disease. https://doi.org/10.1289/EHP11981.
Collapse
Affiliation(s)
- Enoch X. Jiang
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - M. Danielle Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jason G. Umans
- MedStar Health Research Institute, Washington, DC, USA
- Center for Clinical and Translational Sciences, Georgetown/Howard Universities, Washington, DC, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Eagle Butte, South Dakota, USA
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Daniel W. Belsky
- Department of Epidemiology, Columbia University, New York, USA
- Butler Columbia Aging Center, Columbia University, New York, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
15
|
Spaur M, Bostick BC, Chillrud SN, Factor-Litvak P, Navas-Acien A, Nigra AE. Impact of lowering the US maximum contaminant level on arsenic exposure: Differences by race, region, and water arsenic in NHANES 2003-2014. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122047. [PMID: 37331581 PMCID: PMC10529840 DOI: 10.1016/j.envpol.2023.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Our objective was to evaluate regional and sociodemographic inequalities in water arsenic exposure reductions associated with the US Environmental Protection Agency's Final Arsenic Rule, which lowered the arsenic maximum contaminant level to 10 μg/L in public water systems. We analyzed 8544 participants from the 2003-14 National Health and Nutrition Examination Survey (NHANES) reliant on community water systems (CWSs). We estimated arsenic exposure from water by recalibrating urinary dimethylarsinate (rDMA) to remove smoking and dietary contributions. We evaluated mean differences and corresponding percent reductions of urinary rDMA comparing subsequent survey cycles to 2003-04 (baseline), stratified by region, race/ethnicity, educational attainment, and tertile of CWS arsenic assigned at the county level. The overall difference (percent reduction) in urine rDMA was 0.32 μg/L (9%) among participants with the highest tertile of CWS arsenic, comparing 2013-14 to 2003-04. Declines in urinary rDMA were largest in regions with the highest water arsenic: the South [0.57 μg/L (16%)] and West [0.46 μg/L, (14%)]. Declines in urinary rDMA levels were significant and largest among Mexican American [0.99 μg/L (26%)] and Non-Hispanic White [0.25 μg/L (10%)] participants. Reductions in rDMA following the Final Arsenic Rule were highest among participants with the highest CWS arsenic concentrations, supporting legislation can benefit those who need it the most, although additional efforts are still needed to address remaining inequalities in CWS arsenic exposure.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA.
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University. 61 Route 9W, Palisades, NY, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory of Columbia University. 61 Route 9W, Palisades, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| |
Collapse
|
16
|
Zhu Y, Yang Q, Wang H, Yang J, Zhang X, Li Z, Martín JD. A hydrochemical and isotopic approach for source identification and health risk assessment of groundwater arsenic pollution in the central Yinchuan basin. ENVIRONMENTAL RESEARCH 2023; 231:116153. [PMID: 37196693 DOI: 10.1016/j.envres.2023.116153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Arsenic contamination of groundwater is becoming a major global issue as it can severely affect the safety of drinking water and human health. In this paper, 448 water samples were investigated to study the spatiotemporal distribution, source identification and human health risk of groundwater arsenic pollution in the central Yinchuan basin by applying a hydrochemical and isotopic approach. The results showed that arsenic concentrations in groundwater ranged from 0.7 μg/L to 26 μg/L with a mean of 2.19 μg/L, and 5.9% of samples were above 5 μg/L, indicating the arsenic pollution of groundwater in the study area. High arsenic groundwater was mainly distributed in the northern and eastern areas along the Yellow river. The main hydrochemistry type of high arsenic groundwater was HCO3·SO4-Na·Mg, and the dissolution of arsenic-bearing minerals in sediment, irrigation water infiltration and aquifer recharge from the Yellow river were the main sources of arsenic in groundwater. The arsenic enrichment was dominantly controlled by the TMn redox reaction and the competitive adsorption of HCO3-, and the influence of anthropogenic activities was limited. The health risk assessment suggested that the carcinogenic risk of As for children and adults greatly exceeded the acceptable risk threshold of 1E-6, displaying a high carcer risk, while the non-carcinogenic risks of As, F-, TFe, TMn and NO3- in 2019 were largely higher than the acceptable risk threshold (HQ > 1). The present study provides insight into the occurrence, hydrochemical processes and potential health risk of arsenic pollution in groundwater.
Collapse
Affiliation(s)
- Yiwen Zhu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingchun Yang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Hao Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China
| | - Junwei Yang
- Key Laboratory of Shallow Geothermal Energy, Ministry of Natural Resources of the People's Republic of China, Beijing, 100195, China
| | - Xunyu Zhang
- Beijing Institute of Ecological Geology, Beijing, 100011, China
| | - Zijun Li
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jordi Delgado Martín
- Escuela de Ingenieros de Caminos, Universidad de A Coruña, A Coruña, 15192, Spain
| |
Collapse
|
17
|
Spaur M, Lombard MA, Ayotte JD, Bostick BC, Chillrud SN, Navas-Acien A, Nigra AE. Cross-sectional associations between drinking water arsenic and urinary inorganic arsenic in the United States: NHANES 2003-2014. ENVIRONMENTAL RESEARCH 2023; 227:115741. [PMID: 36963713 PMCID: PMC10165942 DOI: 10.1016/j.envres.2023.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Inorganic arsenic is a potent carcinogen and toxicant associated with numerous adverse health outcomes. The contribution of drinking water from private wells and regulated community water systems (CWSs) to total inorganic arsenic exposure is not clear. OBJECTIVES To determine the association between drinking water arsenic estimates and urinary arsenic concentrations in the 2003-2014 National Health and Nutrition Examination Survey (NHANES). METHODS We evaluated 11,088 participants from the 2003-2014 NHANES cycles. For each participant, we assigned private well and CWS arsenic levels according to county of residence using estimates previously derived by the U.S. Environmental Protection Agency and U.S. Geological Survey. We used recalibrated urinary dimethylarsinate (rDMA) to reflect the internal dose of estimated water arsenic by applying a previously validated, residual-based method that removes the contribution of dietary arsenic sources. We compared the adjusted geometric mean ratios and corresponding percent change of urinary rDMA across tertiles of private well and CWS arsenic levels, with the lowest tertile as the reference. Comparisons were made overall and stratified by census region and race/ethnicity. RESULTS Overall, the geometric mean of urinary rDMA was 2.52 (2.30, 2.77) μg/L among private well users and 2.64 (2.57, 2.72) μg/L among CWS users. Urinary rDMA was highest among participants in the West and South, and among Mexican American, Other Hispanic, and Non-Hispanic Other participants. Urinary rDMA levels were 25% (95% confidence interval (CI): 17-34%) and 20% (95% CI: 12-29%) higher comparing the highest to the lowest tertile of CWS and private well arsenic, respectively. The strongest associations between water arsenic and urinary rDMA were observed among participants in the South, West, and among Mexican American and Non-Hispanic White and Black participants. DISCUSSION Both private wells and regulated CWSs are associated with inorganic arsenic internal dose as reflected in urine in the general U.S. POPULATION
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Melissa A Lombard
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| | - Joseph D Ayotte
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
18
|
Khan MU, Rai N. Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2099-2115. [PMID: 35809199 DOI: 10.1007/s10653-022-01321-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The present study interprets the distribution and geochemical behavior of As in groundwaters of different regions along the floodplains of Ganga river (Varanasi, Ghazipur, Ballia), Ghaghara river (Lakhimpur Kheri, Gonda, Basti), and Rapti river (Balrampur, Shrawasti) in the middle Gangetic basin, India for risk assessment (non-carcinogenic and carcinogenic). The concentration of As in groundwaters of these floodplains ranged from 0.12 to 348 μg/L (mean 24 μg/L), with around ~ 37% of groundwater samples exceeding the WHO limit of 10 μg/L in drinking water. Highest As concentration (348 μg/L) was recorded in groundwater samples from Ballia (Ganga Floodplains), where 50% of the samples had As > 10 μg/L in groundwater. In the study area, a relatively higher mean concentration was recorded in deep wells (28.5 μg/L) compared to shallow wells (20 μg/L). Most of the high As-groundwaters were associated with the high Fe, bicarbonate and low nitrate and sulfate concentrations indicating the release of As via reductive dissolution of Fe oxyhydroxides. The saturation index values of the Fe minerals such as goethite, hematite, ferrihydrite, and siderite showed the oversaturation to near equilibrium in groundwater, suggesting that these mineral phases may act as source/sink of As in the aquifers of the study area. The health risk assessment results revealed that a large number of people in the study area were prone to carcinogenic and non-carcinogenic health risks due to daily consumption of As-polluted groundwater. The highest risks were estimated for the aquifers of Ganga floodplains, as indicated by their mean HQ (41.47) and CR (0.0142) values.
Collapse
Affiliation(s)
- M U Khan
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand, 247 667, India
| | - N Rai
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
19
|
Xu N, Zhang F, Xu N, Li L, Liu L. Chemical and mineralogical variability of sediment in a Quaternary aquifer from Huaihe River Basin, China: Implications for groundwater arsenic source and its mobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:160864. [PMID: 36526174 DOI: 10.1016/j.scitotenv.2022.160864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a conspicuous contaminant, and exposure to this element through contaminated drinking groundwater poses a significant challenge to public health. Geogenic groundwater arsenic is associated with sedimentary setting. This work concentrates on the investigation of lithology, elemental abundance and mineralogical compositions about the arsenic profile and its effect to the groundwater from Huaihe River Basin, China. There are 90 sediment samples from the borehole at the field monitoring sites were collected and analyzed. The results reveal that sedimentary concentrations of As, Fe, Mn, S, Al, N, organic carbon and mineralogical compositions vary across the Quaternary aquifer. Arsenic abundance of sediments is 10.63 ± 0.56 mg/kg, and peak As concentrations occur between 59.0 m and 64.8 m in fine particle sediments. The specific higher As concentrations in sedimentary aquifer are concordant with arsenic-rich groundwater around the investigated borehole. Fe, Mn, and Al depth profiles follow similar tendency to those of As. Sedimentary As concentrations are significantly correlated to Fe, Al, and Mn concentrations, but are not correlated to organic carbon and S concentrations. Arsenic probably exists in the form of non-crystalline colloids, and Fe, Al minerals are potential host minerals for arsenic. Under alkaline conditions, groundwater arsenic is released and enriched within the Quaternary aquifer by reductive dissolution of As-hosting Fe and Al minerals.
Collapse
Affiliation(s)
- Naizheng Xu
- China Geological Survey Nanjing Center, Nanjing 210016, China; Key Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing 210016, China.
| | - Fei Zhang
- China Geological Survey Nanjing Center, Nanjing 210016, China
| | - Naicen Xu
- China Geological Survey Nanjing Center, Nanjing 210016, China
| | - Liang Li
- China Geological Survey Nanjing Center, Nanjing 210016, China; Key Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing 210016, China
| | - Lin Liu
- China Geological Survey Nanjing Center, Nanjing 210016, China; Key Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing 210016, China
| |
Collapse
|
20
|
Warren-Vega WM, Campos-Rodríguez A, Zárate-Guzmán AI, Romero-Cano LA. A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4499. [PMID: 36901509 PMCID: PMC10001968 DOI: 10.3390/ijerph20054499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.
Collapse
Affiliation(s)
| | | | - Ana I. Zárate-Guzmán
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| | - Luis A. Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| |
Collapse
|
21
|
Aiken M, Pace CE, Ramachandran M, Schwabe KA, Ajami H, Link BG, Ying SC. Disparities in Drinking Water Manganese Concentrations in Domestic Wells and Community Water Systems in the Central Valley, CA, USA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1987-1996. [PMID: 36696271 PMCID: PMC9910038 DOI: 10.1021/acs.est.2c08548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Over 1.3 million Californians rely on unmonitored domestic wells. Existing probability estimates of groundwater Mn concentrations, population estimates, and sociodemographic data were integrated with spatial data delineating domestic well communities (DWCs) to predict the probability of high Mn concentrations in extracted groundwater within DWCs in California's Central Valley. Additional Mn concentration data of water delivered by community water systems (CWSs) were used to estimate Mn in public water supply. We estimate that 0.4% of the DWC population (2342 users) rely on groundwater with predicted Mn > 300 μg L-1. In CWSs, 2.4% of the population (904 users) served by small CWSs and 0.4% of the population (3072 users) served by medium CWS relied on drinking water with mean point-of-entry Mn concentration >300 μg L-1. Small CWSs were less likely to report Mn concentrations relative to large CWSs, yet a higher percentage of small CWSs exceed regulatory standards relative to larger systems. Modeled calculations do not reveal differences in estimated Mn concentration between groundwater from current regional domestic well depth and 33 m deeper. These analyses demonstrate the need for additional well-monitoring programs that evaluate Mn and increased access to point-of-use treatment for domestic well users disproportionately burdened by associated costs of water treatment.
Collapse
Affiliation(s)
- Miranda
L. Aiken
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
- Schmid
College of Science and Technology, Chapman
University, Orange, CA 92866, United
States
| | - Clare E. Pace
- Environmental
Science, Policy, and Management, University
of California, Berkeley, California 94704, United States
| | - Maithili Ramachandran
- School
of Public Policy, University of California, Riverside, California 92521, United States
| | - Kurt A. Schwabe
- School
of Public Policy, University of California, Riverside, California 92521, United States
| | - Hoori Ajami
- Environmental
Sciences Department, University of California, Riverside, California 92521, United States
| | - Bruce G. Link
- School
of Public Policy, University of California, Riverside, California 92521, United States
| | - Samantha C. Ying
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
- Environmental
Sciences Department, University of California, Riverside, California 92521, United States
- Health
Disparities Research Center, University
of California, Riverside, California 92521, United States
| |
Collapse
|
22
|
Anderson DM, Bear AB, Zacher T, Endres K, Saxton R, Richards F, Robe LB, Harvey D, Best LG, Cloud RR, Thomas ED, Gittelsohn J, O’Leary M, Navas-Acien A, George CM. Implementing a Community-Led Arsenic Mitigation Intervention for Private Well Users in American Indian Communities: A Qualitative Evaluation of the Strong Heart Water Study Program. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2681. [PMID: 36768048 PMCID: PMC9915175 DOI: 10.3390/ijerph20032681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Arsenic is a naturally occurring toxicant in groundwater, which increases cancer and cardiovascular disease risk. American Indian populations are disproportionately exposed to arsenic in drinking water. The Strong Heart Water Study (SHWS), through a community-centered approach for intervention development and implementation, delivered an arsenic mitigation program for private well users in American Indian communities. The SHWS program comprised community-led water arsenic testing, point-of-use arsenic filter installation, and a mobile health program to promote sustained filter use and maintenance (i.e., changing the filter cartridge). Half of enrolled households received additional in-person behavior change communication and videos. Our objectives for this study were to assess successes, barriers, and facilitators in the implementation, use, and maintenance of the program among implementers and recipients. We conducted 45 semi-structured interviews with implementers and SHWS program recipients. We analyzed barriers and facilitators using the Consolidated Framework for Implementation Research and the Risks, Attitudes, Norms, Abilities, and Self-regulation model. At the implementer level, facilitators included building rapport and trust between implementers and participating households. Barriers included the remoteness of households, coordinating with community plumbers for arsenic filter installation, and difficulty securing a local supplier for replacement filter cartridges. At the recipient level, facilitators included knowledge of the arsenic health risks, perceived effectiveness of the filter, and visual cues to promote habit formation. Barriers included attitudes towards water taste and temperature and inability to procure or install replacement filter cartridges. This study offers insights into the successes and challenges of implementing an arsenic mitigation program tailored to American Indian households, which can inform future programs in partnership with these and potentially similar affected communities. Our study suggests that building credibility and trust between implementers and participants is important for the success of arsenic mitigation programs.
Collapse
Affiliation(s)
- Darcy M. Anderson
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Annabelle Black Bear
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Tracy Zacher
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ronald Saxton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Francine Richards
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Lisa Bear Robe
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - David Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Indian Health Service, Rockville, MD 20857, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, Pine Ridge, SD 57770, USA
| | - Elizabeth D. Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joel Gittelsohn
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marcia O’Leary
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Villafañe G, Bazán V, Brandaleze E, López A, Pacheco P, Maratta A. Solid phase extraction of arsenic on modified MWCNT/Fe3O4 magnetic hybrid nanoparticles from copper ores samples with ETAAS determination. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Nigra AE, Cazacu-De Luca A, Navas-Acien A. Socioeconomic vulnerability and public water arsenic concentrations across the US. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120113. [PMID: 36084737 PMCID: PMC9811132 DOI: 10.1016/j.envpol.2022.120113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Inorganic arsenic is a known human carcinogen and is routinely detected in US community water systems (CWSs). Inequalities in CWS arsenic exist across broad sociodemographic subgroups. Our objective was to evaluate the county-level association between socioeconomic vulnerability and CWS arsenic concentrations across the US. We evaluated previously developed, population-weighted CWS arsenic concentrations (2006-2011) and three socioeconomic domains (the proportion of adults with a high school diploma, median household income, and the Centers for Disease Control and Prevention's overall socioeconomic vulnerability score) for 2,604 conterminous US counties. We used spatial lag models and evaluated the adjusted geometric mean ratio (GMR) of CWS arsenic concentrations per higher socioeconomic domain score corresponding to the interquartile range, and also evaluated flexible quadratic spline models. We also stratified by region and by United States Department of Agriculture Rural-Urban Continuum Codes to assess potential effect measure modification by region and rurality. Associations between socioeconomic vulnerability and CWS arsenic were modified by region and rurality and specific to socioeconomic domain. The fully adjusted GMR (95% CIs) of CWS arsenic per interquartile range higher proportion of adults with a high school education was 0.83 (0.71, 0.98) in the Southwest (corresponding to 17% lower arsenic with higher education), 0.82 (0.71, 0.94) in the Eastern Midwest (18% lower), and 0.65 (0.31, 1.36) in New England (35% lower). Associations between median household income and CWS arsenic were largely null. Higher overall socioeconomic vulnerability was significantly associated with lower CWS arsenic, but only in counties in the Central Midwest and those with total populations less than 20,000. Findings may reflect regional/local differences in both socioeconomic/socio-cultural context and public drinking water regulatory efforts. Across the US, individual domains of socioeconomic vulnerability (especially educational attainment) are more strongly associated with inequalities in CWS arsenic than the complex overall socioeconomic vulnerability index.
Collapse
Affiliation(s)
- Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11th Floor Rm 1107A, New York, 10032, NY, USA.
| | - Adina Cazacu-De Luca
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11th Floor Rm 1107A, New York, 10032, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11th Floor Rm 1107A, New York, 10032, NY, USA
| |
Collapse
|
25
|
Scanlon BR, Fakhreddine S, Reedy RC, Yang Q, Malito JG. Drivers of Spatiotemporal Variability in Drinking Water Quality in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12965-12974. [PMID: 36044676 DOI: 10.1021/acs.est.1c08697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Approximately 10% of community water systems in the United States experience a health-based violation of drinking water quality; however, recently allocated funds for improving United States water infrastructure ($50 billion) provide an opportunity to address these issues. The objective of this study was to examine environmental, operational, and sociodemographic drivers of spatiotemporal variability in drinking water quality violations using geospatial analysis and data analytics. Random forest modeling was used to evaluate drivers of these violations, including environmental (e.g., landcover, climate, geology), operational (e.g., water source, system size), and sociodemographic (social vulnerability, rurality) drivers. Results of random forest modeling show that drivers of violations vary by violation type. For example, arsenic and radionuclide violations are found mostly in the Southwest and Southcentral United States related to semiarid climate, whereas disinfection byproduct rule violations are found primarily in Southcentral United States related to system operations. Health-based violations are found primarily in small systems in rural and suburban settings. Understanding the drivers of water quality violations can help develop optimal approaches for addressing these issues to increase compliance in community water systems, particularly small systems in rural areas across the United States.
Collapse
Affiliation(s)
- Bridget R Scanlon
- Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78758, United States
| | - Sarah Fakhreddine
- Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78758, United States
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert C Reedy
- Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78758, United States
| | - Qian Yang
- Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78758, United States
| | - John G Malito
- Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
26
|
Bundschuh J, Niazi NK, Alam MA, Berg M, Herath I, Tomaszewska B, Maity JP, Ok YS. Global arsenic dilemma and sustainability. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129197. [PMID: 35739727 DOI: 10.1016/j.jhazmat.2022.129197] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is one of the most prolific natural contaminants in water resources, and hence, it has been recognized as an emerging global problem. Arsenic exposure through food exports and imports, such as As-contaminated rice and cereal-based baby food, is a potential risk worldwide. However, ensuring As-safe drinking water and food for the globe is still not stated explicitly as a right neither in the United Nations' Universal Declaration of Human Rights and the 2030 Sustainable Development Goals (SDGs) nor the global UNESCO priorities. Despite these omissions, addressing As contamination is crucial to ensure and achieve many of the declared human rights, SDGs, and global UNESCO priorities. An international platform for sharing knowledge, experience, and resources through an integrated global network of scientists, professionals, and early career researchers on multidisciplinary aspects of As research can act as an umbrella covering the activities of UN, UNESCO, and other UN organizations. This can deal with the mitigation of As contamination, thus contributing to global economic development and human health. This article provides a perspective on the global As problem for sustainable As mitigation on a global scale by 2030.
Collapse
Affiliation(s)
- Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi County, 62102, Taiwan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Mohammad Ayaz Alam
- Departamento de Geología, Facultad de Ingeniería, Universidad de Atacama, Avenida Copayapu 485, Copiapó, Región de Atacama, Chile
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Indika Herath
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia; Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Barbara Tomaszewska
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Bulka CM, Scannell Bryan M, Lombard MA, Bartell SM, Jones DK, Bradley PM, Vieira VM, Silverman DT, Focazio M, Toccalino PL, Daniel J, Backer LC, Ayotte JD, Gribble MO, Argos M. Arsenic in private well water and birth outcomes in the United States. ENVIRONMENT INTERNATIONAL 2022; 163:107176. [PMID: 35349912 PMCID: PMC9052362 DOI: 10.1016/j.envint.2022.107176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Prenatal exposure to drinking water with arsenic concentrations >50 μg/L is associated with adverse birth outcomes, with inconclusive evidence for concentrations ≤50 μg/L. In a collaborative effort by public health experts, hydrologists, and geologists, we used published machine learning model estimates to characterize arsenic concentrations in private wells-federally unregulated for drinking water contaminants-and evaluated associations with birth outcomes throughout the conterminous U.S. METHODS Using several machine learning models, including boosted regression trees (BRT) and random forest classification (RFC), developed from measured groundwater arsenic concentrations of ∼20,000 private wells, we characterized the probability that arsenic concentrations occurred within specific ranges in groundwater. Probabilistic model estimates and private well usage data were linked by county to all live birth certificates from 2016 (n = 3.6 million). We evaluated associations with gestational age and term birth weight using mixed-effects models, adjusted for potential confounders and incorporated random intercepts for spatial clustering. RESULTS We generally observed inverse associations with term birth weight. For instance, when using BRT estimates, a 10-percentage point increase in the probability that private well arsenic concentrations exceeded 5 μg/L was associated with a -1.83 g (95% CI: -3.30, -0.38) lower term birth weight after adjusting for covariates. Similarly, a 10-percentage point increase in the probability that private well arsenic concentrations exceeded 10 μg/L was associated with a -2.79 g (95% CI: -4.99, -0.58) lower term birth weight. Associations with gestational age were null. CONCLUSION In this largest epidemiologic study of arsenic and birth outcomes to date, we did not observe associations of modeled arsenic estimates in private wells with gestational age and found modest inverse associations with term birth weight. Study limitations may have obscured true associations, including measurement error stemming from a lack of individual-level information on primary water sources, water arsenic concentrations, and water consumption patterns.
Collapse
Affiliation(s)
- Catherine M Bulka
- Department of Environmental Sciences and Engineering, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, USA.
| | - Molly Scannell Bryan
- Institute for Minority Health Research, University of Illinois at Chicago, 1819 W. Polk Street, Chicago, IL 60612, USA.
| | - Melissa A Lombard
- U.S. Geological Survey, New England Water Science Center, 331 Commerce Way, Pembroke, NH 03275, USA.
| | - Scott M Bartell
- Department of Environmental and Occupational Health, University of California, 653 E. Peltason Drive, Irvine, CA 92697, USA; Department of Statistics, University of California, Bren Hall 2019, Irvine, CA 92697, USA.
| | - Daniel K Jones
- U.S. Geological Survey, Utah Water Science Center, 2329 West Orton Circle, West Valley City, UT 84119, USA.
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, 720 Gracern Rd, Columbia, SC 29210, USA.
| | - Veronica M Vieira
- Department of Environmental and Occupational Health, University of California, 653 E. Peltason Drive, Irvine, CA 92697, USA.
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Michael Focazio
- U.S. Geological Survey, National Center, 12201 Sunrise Valley Dr, Reston, VA 20192, USA.
| | - Patricia L Toccalino
- U.S. Geological Survey, Northwest-Pacific Region, 2130 SW 5th Ave, Portland, OR 97201, USA.
| | - Johnni Daniel
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA 30341, USA.
| | - Lorraine C Backer
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA 30341, USA.
| | - Joseph D Ayotte
- U.S. Geological Survey, New England Water Science Center, 331 Commerce Way, Pembroke, NH 03275, USA.
| | - Matthew O Gribble
- Department of Epidemiology, University of Alabama at Birmingham, 217G Ryals Public Health Building, 1665 University Boulevard, Birmingham AL 35294, USA.
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Office 878A, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Hydrogeochemical Processes and Potential Exposure Risk of Arsenic-Rich Groundwater from Huaihe River Plain, China. WATER 2022. [DOI: 10.3390/w14050693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Arsenic poses a danger to environmental health, and arsenic-rich groundwater is a key exposure risk for humans. The distribution, migration, and enrichment of arsenic in groundwater is an important environmental and public health problem. Currently, the Huaihe River Basin is identified as a region of arsenic-rich groundwater in China. This study aims to assess arsenic-rich groundwater potential pollution risk, analyze the hydrogeochemical processes, and trace the ion source based on an analysis of groundwater hydrogeochemical data. The results show that arsenic is the main inorganic chemical substances affecting the water quality in the study area, which presents a high exposure risk for public health. The arsenic concentration of groundwater was f 5.75 ± 5.42 μg/L, and 23% of the considered samples exceeded the drinking water standards of the World Health Organization. The groundwater in the study area underwent evaporation, halite dissolution, and ion exchange processes. The total alkalinity (HCO3−) of the arsenic-rich groundwater mainly ranged between 400–700 mg/L, and the chemical type was mainly of HCO3-Na. In an alkaline environment, the oxidative dissolution and reductive dissolution of arsenic bearing minerals might be the formation mechanism of arsenic-rich groundwater.
Collapse
|
29
|
Pace C, Balazs C, Bangia K, Depsky N, Renteria A, Morello-Frosch R, Cushing LJ. Inequities in Drinking Water Quality Among Domestic Well Communities and Community Water Systems, California, 2011‒2019. Am J Public Health 2022; 112:88-97. [PMID: 34936392 PMCID: PMC8713636 DOI: 10.2105/ajph.2021.306561] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
Objectives. To evaluate universal access to clean drinking water by characterizing relationships between community sociodemographics and water contaminants in California domestic well areas (DWAs) and community water systems (CWSs). Methods. We integrated domestic well locations, CWS service boundaries, residential parcels, building footprints, and 2013-2017 American Community Survey data to estimate sociodemographic characteristics for DWAs and CWSs statewide. We derived mean drinking and groundwater contaminant concentrations of arsenic, nitrate, and hexavalent chromium (Cr[VI]) between 2011 and 2019 and used multivariate models to estimate relationships between sociodemographic variables and contaminant concentrations. Results. We estimated that more than 1.3 million Californians (3.4%) use domestic wells and more than 370 000 Californians rely on drinking water with average contaminant concentrations at or above regulatory standards for 1 or more of the contaminants considered. Higher proportions of people of color were associated with greater drinking water contamination. Conclusions. Poor water quality disproportionately impacts communities of color in California, with the highest estimated arsenic, nitrate, and Cr(VI) concentrations in areas of domestic well use. Domestic well communities must be included in efforts to achieve California's Human Right to Water. (Am J Public Health. 2022;112(1):88-97. https://doi.org/10.2105/AJPH.2021.306561).
Collapse
Affiliation(s)
- Clare Pace
- Clare Pace and Rachel Morello-Frosch are with the Department of Environmental Science, Policy, and Management at the University of California, Berkeley. Carolina Balazs and Komal Bangia are with the Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland. Nicholas Depsky is with the Energy and Resources Group at the University of California, Berkeley. Adriana Renteria is with the Community Water Center, Visalia, CA. Lara J. Cushing is with the Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Carolina Balazs
- Clare Pace and Rachel Morello-Frosch are with the Department of Environmental Science, Policy, and Management at the University of California, Berkeley. Carolina Balazs and Komal Bangia are with the Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland. Nicholas Depsky is with the Energy and Resources Group at the University of California, Berkeley. Adriana Renteria is with the Community Water Center, Visalia, CA. Lara J. Cushing is with the Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Komal Bangia
- Clare Pace and Rachel Morello-Frosch are with the Department of Environmental Science, Policy, and Management at the University of California, Berkeley. Carolina Balazs and Komal Bangia are with the Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland. Nicholas Depsky is with the Energy and Resources Group at the University of California, Berkeley. Adriana Renteria is with the Community Water Center, Visalia, CA. Lara J. Cushing is with the Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Nicholas Depsky
- Clare Pace and Rachel Morello-Frosch are with the Department of Environmental Science, Policy, and Management at the University of California, Berkeley. Carolina Balazs and Komal Bangia are with the Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland. Nicholas Depsky is with the Energy and Resources Group at the University of California, Berkeley. Adriana Renteria is with the Community Water Center, Visalia, CA. Lara J. Cushing is with the Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Adriana Renteria
- Clare Pace and Rachel Morello-Frosch are with the Department of Environmental Science, Policy, and Management at the University of California, Berkeley. Carolina Balazs and Komal Bangia are with the Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland. Nicholas Depsky is with the Energy and Resources Group at the University of California, Berkeley. Adriana Renteria is with the Community Water Center, Visalia, CA. Lara J. Cushing is with the Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Rachel Morello-Frosch
- Clare Pace and Rachel Morello-Frosch are with the Department of Environmental Science, Policy, and Management at the University of California, Berkeley. Carolina Balazs and Komal Bangia are with the Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland. Nicholas Depsky is with the Energy and Resources Group at the University of California, Berkeley. Adriana Renteria is with the Community Water Center, Visalia, CA. Lara J. Cushing is with the Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Lara J Cushing
- Clare Pace and Rachel Morello-Frosch are with the Department of Environmental Science, Policy, and Management at the University of California, Berkeley. Carolina Balazs and Komal Bangia are with the Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland. Nicholas Depsky is with the Energy and Resources Group at the University of California, Berkeley. Adriana Renteria is with the Community Water Center, Visalia, CA. Lara J. Cushing is with the Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| |
Collapse
|