1
|
Guan H, Liu Q, Pan WP. An assessment of inorganic components in condensable particulate matter as a function of surface aggregation, spatial suspension state and particle size. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134537. [PMID: 38759279 DOI: 10.1016/j.jhazmat.2024.134537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Experimental studies assessed the removal efficiency and fine-size distribution of CPM coupled with compositional analysis across air pollution control device systems (APCDs) at an ultra-low emission (ULE) power plant. The findings indicated total CPM emissions were reduced to a minimum of 0.418 mg/m3 at the Wet Electrostatic Precipitator (WESP). The Wet Flue Gas Desulfurization (WFGD) showed the highest removal efficiency (98%) across all particle sizes, notably in the ultra-micron range. Selective Catalytic Reduction (SCR) demonstrated a mere 34% overall efficiency, with a negative removal rate in the ultra-fine particle range. The WESP effectively removed CPM only in sub-micron and ultra-micron sizes, but significantly increased water-soluble ions formation in ultra-fine spatially suspended CPM (CPMspa), leading to overall negative efficiency. Thus, the removal efficiency of the ultra-fine particle range was most affected among the three particle size ranges when the flue gas went through the APCDs. Major metal elements and water-soluble ions were more readily removed by APCDs due to their surface aggregation, while the removal of trace elements like Hg and Se was limited. Reducing SO42-/NH4+ formation in SCR, and optimizing WESP spray system operations based on flue gas components are essential steps in controlling CPM concentration in ULE power plants.
Collapse
Affiliation(s)
- Hongliang Guan
- Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
| | - Quanfeng Liu
- Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
| | - Wei-Ping Pan
- Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Zhao B, Liu W, Wang X, Lu J. Emission characteristics and removal of heavy metals in flue gas: a case study in waste incineration and coal-fired power plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8883-8897. [PMID: 38180667 DOI: 10.1007/s11356-023-31678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Heavy metal pollutants such as Hg, As, Pb, Cr, and Cd emitted from coal and waste combustion have received widespread attention. In this study, we systematically investigated the emission characteristics of heavy metals in waste incineration and coal-fired flue gases, focused on testing the removal effect of self-made cold electrode electrostatic precipitator (CE-ESP) on heavy metals in flue gas, and made a comparative analysis with the existing air pollution control devices (APCDs). Test results from waste incineration power plant showed that each APCD showed a certain effect on the removal of heavy metals in condensable particulate matter (CPM), with an average removal efficiency of bag filter was 86%, but its effect on Hg removal was slightly worse. Under the coupled field with electrified cold electrode plate operation mode, the average removal efficiency of CE-ESP on heavy metals in CPM was as high as 93%, including 76% for Hg. The removal efficiency of heavy metals (especially Hg) in CPM increased with the increase of flue gas temperature difference between inlet and outlet of CE-ESP. Test results from this coal-fired power plant showed that heavy metals were enriched in fly ash to a higher degree than in slag, the synergistic control of heavy metals in submicron particulate matter by the dust remover was not obvious, and there was a significant correlation between each heavy metal emission factor and its content in coal. Under the temperature field with non-electric cold electrode plate operation mode, the overall effect of CE-ESP on the removal of gaseous heavy metals was better than that of particulate heavy metals. Under the conventional electric field operation mode, CE-ESP was less effective in removing particulate Cr and gaseous Hg0. Under the coupled field with electrified cold electrode plate operation mode, the average removal efficiencies of CE-ESP for particulate and gaseous heavy metals were 82.37% and 76.16%, respectively.
Collapse
Affiliation(s)
- Bowen Zhao
- Hebei Key Lab of Power Plant Flue Gas Multipollutants Control, Department of Environental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Wenting Liu
- Hebei Key Lab of Power Plant Flue Gas Multipollutants Control, Department of Environental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Xin Wang
- Hebei Key Lab of Power Plant Flue Gas Multipollutants Control, Department of Environental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Jianyi Lu
- Hebei Key Lab of Power Plant Flue Gas Multipollutants Control, Department of Environental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China.
- College of Environmental Science and Engineering, MOE Key Laboratory of Resources & Environmental System Optimization, North China Electric Power University, Beijing, 102206, People's Republic of China.
| |
Collapse
|
3
|
Tong H, Wang Y, Tao S, Huang L, Jiang S, Bian J, Chen N, Kasemsan M, Yin H, Huang C, Chen H, Zhang K, Li L. Developed compositional source profile and estimated emissions of condensable particulate matter from coal-fired power plants: A case study of Yantai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161817. [PMID: 36708842 DOI: 10.1016/j.scitotenv.2023.161817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emission and environmental impact of condensable particulate matter (CPM) from coal-fired power plants (CFPPs) are of increasing concern worldwide. Many studies on the characteristics of CPM emission have been conducted in China, but its source profile remains unclear, and its emission inventory remains high uncertainty. In this work, the latest measurements reported in the latest 33 studies for CPM inorganic and organic species emitted from CFPPs in China were summarized, and then a compositional source profile of CPM for CFPPs was developed for the first time in China, which involved 10 inorganic species and 71 organic species. In addition, the CPM emission inventory of CFPPs in Yantai of China was developed based on surveyed activity data, continuous emission monitoring system (CEMS), and the latest measurement data. The results show that: (1) Inorganic species accounted for 77.64 % of CPM emitted from CFPPs in Yantai, among which SO42- had the highest content, accounting for 23.74 % of CPM, followed by Cl-, accounting for 11.95 %; (2) Organic matter accounted for 22.36 % of CPM, among which alkanes accounted for the largest proportion of organic fraction (72.7 %); (3) Emission concentration method (EC) and CEMS-based emission ratio method (ERFPM,CEMS) were recommended to estimate CPM emissions for CFPPs; (4) The estimated CPM emission inventories of Yantai CFPPs in 2020 by the EC method and the ERFPM,CEMS method were 1231 tons and 929 tons, respectively, with uncertainties of -34 % ∼ 33 % and -27 % ∼ 57 %, respectively; (5) CPM emissions were mainly distributed in the northern coastal areas of Yantai. This developed CPM source profile and emission inventory can provide basic data for assessing the impacts of CPM on air quality and health. In addition, this study can provide an important methodology for developing CPM emission inventories and CPM emission source profiles for stationary combustion sources in other regions.
Collapse
Affiliation(s)
- Huanhuan Tong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Yangjun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China.
| | - Shikang Tao
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Sen Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Jinting Bian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Nan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Manomaiphiboon Kasemsan
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand; Center of Excellence on Energy Technology and Environment, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10140, Thailand
| | - Haiyan Yin
- Yantai Environmental Engineering Consulting Design Institute Co., Ltd., Yantai, Shandong 264000, China
| | - Cheng Huang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hui Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Kun Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Malá Z, Loskot J, Bušovský D, Bezdíček Z, Komárek J, Ziembik Z. An extensive individual particle analysis of solid airborne particles collected in a moderately urbanized area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22950-22962. [PMID: 36308657 DOI: 10.1007/s11356-022-23862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Detailed individual particle characterization of PM10, in terms of particle size, morphology, and elemental composition, was done using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. The samples were collected in four localities in the Czech Republic (Central Europe), three of which are medium-sized cities, and one is a natural locality in the mountains. More than 1600 particles obtained from each locality were evaluated. During the sampling period (1.9.-8.9.2019), the atmospheric conditions were similar in the localities, which enabled the identification of PM10 characteristics common to all the sampling sites. Some differences in the particles' morphology and composition, arising from site-specific conditions, were observed too. The most abundant elements in the PM10 were C, O, Si, Fe, Al, Ca, Na, K, Mg, and S, but some toxic elements (Cr, Cu, and Ni) were also detected. The main component of the PM10 is carbon, whose multimodal distribution indicates that the particles contain different carbonaceous chemical compounds. The distribution of carbon in the natural locality was different compared to the other sites, suggesting a specific character of the sources of carbonaceous compounds in this region. Last but not least, a relationship between Al, Si, and O concentrations was found, which implies the presence of aluminosilicates and silicon dioxide (possibly sand) of crustal origin in the particles.
Collapse
Affiliation(s)
- Zuzana Malá
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Damián Bušovský
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Zdeněk Bezdíček
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Jan Komárek
- Czech Hydrometeorological Institute, Na Šabatce 2050/17, 143 06, Prague, Czech Republic
| | - Zbigniew Ziembik
- Institute of Environmental Engineering and Biotechnology, Faculty of Natural Sciences and Technology, University of Opole, Ul. Kard. B. Kominka 6, 45-032, Opole, Poland
| |
Collapse
|