1
|
Fang X, Zhao J, Wu S, Liao P, Guan G. The intestinal toxicity mechanisms of triclosan and triclocarban and their possible clinical nutritional intervention mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126396. [PMID: 40345375 DOI: 10.1016/j.envpol.2025.126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Triclosan (TCS) and triclocarban (TCC) are widely used as antimicrobial agents in personal care products. Their widespread use has become a potential environmental contaminant. This review reviews the mechanisms of intestinal toxicity of TCS and TCC and their potential nutritional intervention strategies. TCS and TCC can be metabolized to glucuronic acid conjugates in the host and subsequently uncoupled by microorganisms in the intestine to regenerate free forms of TCS and TCC. TCS and TCC are unique metabolic pathways that lead to accumulation in the gut, altering the structure of intestinal flora, increasing the relative abundance of pathogenic bacteria, while reducing the abundance of beneficial bacteria, thereby disrupting the balance of intestinal flora. In addition, they can interfere with the self-renewal and differentiation of ISCs, thereby weakening intestinal barrier function. TCS and TCC can also activate the TLR4-NFκB signaling pathway, inducing and exacerbating inflammatory responses. These mechanisms together lead to intestinal toxicity and have a significant negative impact on intestinal health. In order to cope with the intestinal toxicity caused by these mechanisms of action, this paper believes that prebiotics, probiotics, vitamins, minerals and herbal extracts can be used as potential nutritional interventions to reduce the intestinal toxicity of TCS and TCC by regulating intestinal microbiota, enhancing intestinal barrier function and inhibiting inflammatory response. Although preliminary studies have shown the potential benefits of these interventions, their specific efficacy and safety still need further study.
Collapse
Affiliation(s)
- Xinyu Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Jinfeng Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Simin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, 410219, China.
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
2
|
Wang W, Wang Y, Sanidad KZ, Wang Y, Zhang J, Yang W, Sun Q, Bayram I, Song R, Yang H, Johnson D, Sherman HL, Kim D, Minter LM, Wong JJL, Zeng MY, Decker EA, Zhang G. Oxidized Polyunsaturated Fatty Acid Promotes Colitis and Colitis-Associated Tumorigenesis in Mice. J Crohns Colitis 2025; 19:jjae148. [PMID: 39279209 DOI: 10.1093/ecco-jcc/jjae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND AND AIMS Human studies suggest that a high intake of polyunsaturated fatty acid (PUFA) is associated with an increased risk of inflammatory bowel disease (IBD). PUFA is highly prone to oxidation. To date, it is unclear whether unoxidized or oxidized PUFA is involved in the development of IBD. Here, we aim to compare the effects of unoxidized PUFA vs oxidized PUFA on the development of IBD and associated colorectal cancer. METHODS We evaluated the effects of unoxidized and oxidized PUFA on dextran sodium sulfate (DSS)-induced and IL-10 knockout-induced colitis, and azoxymethane/DSS-induced colon tumorigenesis in mice. Additionally, we studied the roles of gut microbiota and Toll-like receptor 4 (TLR4) signaling involved. RESULTS Administration of a diet containing oxidized PUFA, at human consumption-relevant levels, increases the severity of colitis and exacerbates the development of colitis-associated colon tumorigenesis in mice. Conversely, a diet rich in unoxidized PUFA does not promote colitis. Furthermore, oxidized PUFA worsens colitis-associated intestinal barrier dysfunction and leads to increased bacterial translocation, and it fails to promote colitis in TLR4 knockout mice. Finally, oxidized PUFA alters the diversity and composition of gut microbiota, and it fails to promote colitis in mice lacking the microbiota. CONCLUSIONS These results support that oxidized PUFA promotes the development of colitis and associated tumorigenesis in mouse models via TLR4- and gut microbiota-dependent mechanisms. Our findings highlight the potential need to update regulation policies and industrial standards for oxidized PUFA levels in food.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Yuxin Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yige Wang
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Wenqi Yang
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Ipek Bayram
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - David Johnson
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Heather L Sherman
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, MA, USA
| | - Lisa M Minter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Melody Y Zeng
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
3
|
Xie P, Chen J, Dan A, Lin Z, He Y, Cai Z. Long-term exposure to triclocarban induces splenic injuries in mice: Insights from spatial metabolomics and lipidomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136370. [PMID: 39486321 DOI: 10.1016/j.jhazmat.2024.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Triclocarban (TCC) is a widely used antimicrobial agent and known endocrine-disrupting chemical found in various products. While its potential toxicities on endocrine-related organs have been highlighted in previous studies, the effects of TCC on non-endocrine organs, particularly the spleen, remain largely unknown. Here, we employed a novel approach combining long-term TCC exposure in a mouse model with spatial metabolomics and lipidomics to investigate the effects of TCC on the spleen. Our results showed that TCC exposure significantly altered the splenic organ weight and coefficient and induced obvious pathological alterations. Omic analysis revealed that TCC exposure disrupted the splenic homeostasis, as indicated by the upregulation of glutathione metabolism, ceramide-to-sphingomyelin signaling and biosynthesis of glycerophospholipids. Notably, the data of mass spectrometry imaging (MSI) revealed that TCC accumulated in the red pulp of the mouse spleen, while its metabolites concentrated in the white pulp. Further MSI analyses identified region-specific metabolic disruptions, including upregulated ceramide signaling in the red pulp, indicating localized inflammation, and upregulated glutathione metabolism throughout the spleen, suggesting widespread oxidative damage. Our findings provide crucial insights into the spatial distribution and biochemical impact of TCC on mice spleens, highlighting the potential risks of long-term TCC exposure to immune function.
Collapse
Affiliation(s)
- Peisi Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Akang Dan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zongwei Cai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
4
|
Xie P, Chen J, Xia Y, Lin Z, He Y, Cai Z. Spatial metabolomics reveal metabolic alternations in the injured mice kidneys induced by triclocarban treatment. J Pharm Anal 2024; 14:101024. [PMID: 39717194 PMCID: PMC11664399 DOI: 10.1016/j.jpha.2024.101024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 12/25/2024] Open
Abstract
Triclocarban (TCC) is a common antimicrobial agent that has been widely used in medical care. Given the close association between TCC treatment and metabolic disorders, we assessed whether long-term treatment to TCC at a human-relevant concentration could induce nephrotoxicity by disrupting the metabolic levels in a mouse model. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was applied to investigate the alterations in the spatial distributions and abundances of TCC, endogenous and exogenous metabolites in the kidney after TCC treatment. The results showed that TCC treatment induced the changes in the organ weight, organ coefficient and histopathology of the mouse kidney. MSI data revealed that TCC accumulated in all regions of the kidney, while its five metabolites mainly distributed in the cortex regions. The abundances of 79 biomolecules associated with pathways of leukotriene E4 metabolism, biosynthesis and degradation of glycerophospholipids and glycerolipids, ceramide-to-sphingomyelin signaling were significantly altered in the kidney after TCC treatment. These biomolecules showed distinctive distributions in the kidney and displayed a favorable spatial correlation with the pathological damage. This work offers new insights into the related mechanisms of TCC-induced nephrotocicity and exhibits the potential of MALDI-MSI-based spatial metabolomics as a promising approach for the risk assessment of agents in medical care.
Collapse
Affiliation(s)
- Peisi Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yongjun Xia
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zongwei Cai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Zhang S, Hou R, Sun C, Huang Q, Lin L, Li H, Liu S, Cheng Y, Xu X. Metabolic activity of gut microbial enrichment cultures from different marine species and their transformation abilities to plastic additives. ENVIRONMENT INTERNATIONAL 2024; 190:108882. [PMID: 38996798 DOI: 10.1016/j.envint.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The role of the gut microbiota in host physiology has been previously elucidated for some marine organisms, but little information is available on their metabolic activity involved in transformation of environmental pollutants. This study assessed the metabolic profiles of the gut microbial cultures from grouper (Epinephelus coioides), green mussel (Perna viridis) and giant tiger prawn (Penaeus monodon) and investigated their transformation mechanisms to typical plastic additives. Community-level physiological profiling analysis confirmed the utilization profiles of the microbial cultures including carbon sources of carbohydrates, amines, carboxylic acids, phenolic compounds, polymers and amino acids, and the plastic additives of organophosphate flame retardants, tetrabromobisphenol A derivates and bisphenols. Using in vitro incubation, triphenyl phosphate (TPHP) was found to be rapidly metabolized into diphenyl phosphate by the gut microbiota as a representative ester-containing plastic additive, whereas the transformation of BPA (a representative phenol) was relatively slower. Interestingly, all three kinds of microbial cultures efficiently transformed the hepatic metabolite of BPA (BPA-G) back to BPA, thereby increasing its bioavailability in the body. The specific enzyme analysis confirmed the ability of the gut microbiota to perform the metabolic reactions. The results of 16S rRNA sequencing and network analysis revealed that the genera Escherichia-Shigella, Citrobacter, and Anaerospora were functional microbes, and their collaboration with fermentative microbes played pivotal roles in the transformation of the plastic additives. The structure-specific transformations by the gut microbiota and their distinct bioavailability deserve more attention in the future.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Chuansheng Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuanyue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Zhang H, Luo Q, Hu C, Song Q, Zhou Y, Su X, Li Y, Xia W, Zheng Y, Xu S, Cai Z. Trimester-specific exposure to triclocarban during pregnancy: Associations with oxidative stress and size at birth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168100. [PMID: 39491196 DOI: 10.1016/j.scitotenv.2023.168100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Triclocarban (TCC) is an extensively used antimicrobial agent that exhibits endocrine disrupt potential, but its effects on fetal growth remain largely unknown. Herein, we measured TCC, its four hydroxylated metabolites and two dechlorination products, as well as the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in maternal urine samples collected across three trimesters of pregnancy in Wuhan, China. Linear mixed-effect models and multiple linear regression models were applied for correlation analysis. TCC was detected in >97 % of urine samples after conjugate hydrolysis (geometric mean: 0.249-0.335 ng/mL). An interquartile range increase in TCC was associated with a 6.65 % increase in 8-OHdG (95 % confidence interval: 2.15-11.16 %). Urinary TCC in the first trimester was inversely associated with body weight in infant girls, with significant p-value for trend (ptrend = 0.011) across tertiles of TCC concentrations. Urinary 8-OHdG in the third trimester was associated with reduced ponderal index in infant boys (ptrend = 0.020). Urinary levels of TCC correlated well with its transformation products (2'-OH-TCC, 3'-OH-TCC, 6-OH-TCC, 4'-DHC, and DCC). No clear association was found between these metabolites and 8-OHdG, as well as size at birth. Our results revealed the potential exposure risks of TCC during the early life stage, future replications in other populations are needed.
Collapse
Affiliation(s)
- Hongna Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Qiong Luo
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chengchen Hu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Qian Song
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China; Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuli Su
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
7
|
Zhang J, Yang J, Duval CN, Edin ML, Williams A, Lei L, Tu M, Pourmand E, Song R, Graves JP, DeGraff LM, Wong JJL, Wang Y, Sun Q, Sanidad KZ, Wong S, Han Y, Zhang Z, Lee KSS, Park Y, Xiao H, Liu Z, Decker EA, Cui W, Zeldin DC, Zhang G. CYP eicosanoid pathway mediates colon cancer-promoting effects of dietary linoleic acid. FASEB J 2023; 37:e23009. [PMID: 37273180 PMCID: PMC10283155 DOI: 10.1096/fj.202300786r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Caroline N. Duval
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Lei Lei
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Elham Pourmand
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Joan P. Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M. DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Justin J.-L. Wong
- Epigenetics and RNA Biology Program Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Yige Wang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Katherine Z. Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Siu Wong
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenhua Liu
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Eric A. Decker
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Food Science and Technology, National University of Singapore, Singapore
| |
Collapse
|
8
|
Zhang D, Lu S. A holistic review on triclosan and triclocarban exposure: Epidemiological outcomes, antibiotic resistance, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162114. [PMID: 36764530 DOI: 10.1016/j.scitotenv.2023.162114] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) are antimicrobials that are widely applied in personal care products, textiles, and plastics. TCS and TCC exposure at low doses may disturb hormone levels and even facilitate bacterial resistance to antibiotics. In the post-coronavirus disease pandemic era, chronic health effects and the spread of antibiotic resistance genes associated with TCS and TCC exposure represent an increasing concern. This study sought to screen and review the exposure levels and sources and changes after the onset of the coronavirus disease (COVID-19) pandemic, potential health outcomes, bacterial resistance and cross-resistance, and health risk assessment tools associated with TCS and TCC exposure. Daily use of antimicrobial products accounts for most observed associations between internal exposure and diseases, while secondary exposure at trace levels mainly lead to the spread of antibiotic resistance genes. The roles of altered gut microbiota in multi-system toxicities warrant further attention. Sublethal dose of TCC selects ARGs without obviously increasing tolerance to TCC. But TCS induce persistent TCS resistance and reversibly select antibiotic resistance, which highlights the benefits of minimizing its use. To derive reference doses (RfDs) for humans, more sensitive endpoints observed in populational studies need to be confirmed using toxicological tests. Additionally, the human equivalent dose is recommended to be incorporated into the health risk assessment to reduce uncertainty of extrapolation.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
9
|
Li X, Zhang JD, Xiao H, He S, He TT, Ren XM, Yan BH, Luo L, Yin YL, Cao LY. Triclocarban and triclosan exacerbate high-fat diet-induced hepatic lipid accumulation at environmental related levels: The potential roles of estrogen-related receptors pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160079. [PMID: 36372182 DOI: 10.1016/j.scitotenv.2022.160079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) have become ubiquitous pollutants detected in human body with concentrations up to hundreds of nanomolar levels. Previous studies about the hepatic lipid accumulation induced by TCS and TCC were focused on pollutant itself, which showed weak or no effects. High-fat diet (HFD), as a known environmental factor contributing to lipid metabolism-related disorders, its synergistic action with environmental pollutants deserves concern. The present study aimed to demonstrate the combined effects and potential molecular mechanisms of TCS and TCC with HFD at cellular and animal levels. The in vitro studies showed that TCC and TCS alone had negligible impact on lipid accumulation in HepG2 cells but induced lipid deposition at nanomolar levels when co-exposure with fatty acid. TCC exhibited much higher induction effects than TCS, which was related to their differential regulatory roles in adipogenic-related genes expression. The in vivo studies showed that TCC had little influence on hepatic lipid accumulation in mice fed with normal diet (ND) but could exacerbate the lipid accumulation in mice fed with HFD. Meanwhile, TCC-induced dyslipidemia in mice fed with HFD was more significant than that fed with ND. Therefore, we speculated that TCC might increase the risk of nonalcoholic fatty liver disease (NAFLD) and atherosclerosis in HFD humans. Molecular mechanism studies showed that TCC and TCS could bind to and activate estrogen-related receptor α (ERRα) and ERRγ as well as regulate their expression. TCC had higher activity on ERRα and ERRγ than TCS, which explained partly the differential regulatory roles of two receptors in the lipid accumulation induced by TCC and TCS. This work revealed synergistic effects and molecular mechanisms of TCC and TCS with excessive fatty acid on the hepatic lipid metabolism, which provided a novel insight into the toxic mechanism of pollutants from the perspective of dietary habits.
Collapse
Affiliation(s)
- Xin Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Da Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Sen He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Ting-Ting He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Min Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bing-Hua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yu-Long Yin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
10
|
Wen Y, Kong Y, Peng Y, Cui X. Uptake, distribution, and depuration of emerging per- and polyfluoroalkyl substances in mice: Role of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158372. [PMID: 36041619 DOI: 10.1016/j.scitotenv.2022.158372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation and fate in mammals of hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA), as major alternatives for perfluorooctanoate (PFOA), have rarely been reported. In addition, the role of gut microbiota was greatly understudied. In this study, the uptake, distribution, and depuration of HFPO-TA, HFPO-DA, and PFOA were investigated by exposure to mice for 14 days, followed by a clearance period of 7 days. The patterns of tissue distribution and depuration kinetics of HFPO-TA and PFOA were similar, but different from HFPO-DA. Liver was the main deposition organ for HFPO-TA and PFOA, making contributions of 58.8 % and 59.1 % to the total mass recovered on day 14. Depuration of HFPO-DA was more rapid than HFPO-TA and PFOA. Approximately 95.3 % of HFPO-DA in liver was eliminated on day 21 compared with day 14. While the clearance rates of HPFO-TA and PFOA were only 6.1 % and 13.9 % on day 21. The comparison between normal and pseudo germ-free mice (GM) was also conducted to investigate the effect of gut microbial on in vivo absorption of the three per- and polyfluoroalkyl substances (PFASs). Significantly higher (p < 0.05) concentrations of all the three PFASs were observed in most organs and tissues of GM compared with NC group. An analysis of gut microbiota showed that the higher absorption of PFASs in GM group may be attributed to the increase of intestinal permeability (as indicated by the decrease of tight junction protein expression), which were induced by the change of lachnospiraceae abundance. The result highlighted the importance of gut microbiota in absorption and health risk evaluation of emerging PFASs.
Collapse
Affiliation(s)
- Yong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Sanidad KZ, Wang G, Panigrahy A, Zhang G. Triclosan and triclocarban as potential risk factors of colitis and colon cancer: Roles of gut microbiota involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156776. [PMID: 35724794 DOI: 10.1016/j.scitotenv.2022.156776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In recent decades there has been a dramatic increase in the incidence and prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disease of the intestinal tissues and a major risk factor of developing colon cancer. While accumulating evidence supports that the rapid increase of IBD is mainly caused by exposure to environmental risk factors, the identities of the risk factors, as well as the mechanisms connecting environmental exposure with IBD, remain largely unknown. Triclosan (TCS) and triclocarban (TCC) are high-volume chemicals that are used as antimicrobial ingredients in consumer and industrial products. They are ubiquitous contaminants in the environment and are frequently detected in human populations. Recent studies showed that exposure to TCS/TCC, at human exposure-relevant doses, increases the severity of colitis and exacerbates colon tumorigenesis in mice, suggesting that they could be risk factors of IBD and associated diseases. The gut toxicities of these compounds require the presence of gut microbiota, since they fail to induce colonic inflammation in mice lacking the microbiota. Regarding the functional roles of the microbiota involved, gut commensal microbes and specific microbial β-glucuronidase (GUS) enzymes mediate colonic metabolism of TCS, leading to metabolic reactivation of TCS in the colon and contributing to its subsequent gut toxicity. Overall, these results support that these commonly used compounds could be environmental risk factors of IBD and associated diseases through gut microbiota-dependent mechanisms.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Anand Panigrahy
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Food Science and Technology, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Song Y, Zhang C, Lei H, Qin M, Chen G, Wu F, Chen C, Cao Z, Zhang C, Wu M, Chen X, Zhang L. Characterization of triclosan-induced hepatotoxicity and triclocarban-triggered enterotoxicity in mice by multiple omics screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156570. [PMID: 35690209 DOI: 10.1016/j.scitotenv.2022.156570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether, TCS) and triclocarban (3,4,4'-trichloro-carbanilide, TCC) are two antimicrobial agents commonly used for personal care products. Previous studies primarily focused on respective harmful effects of TCS and TCC. In terms of their structural similarities and differences, however, the structure-toxicity relationships on health effects of TCS and TCC exposure remain unclear. Herein, global 1H NMR-based metabolomics was employed to screen the changes of metabolic profiling in various biological matrices including liver, serum, urine, feces and intestine of mice exposed to TCS and TCC at chronic and acute dosages. Metagenomics was also applied to analyze the gut microbiota modulation by TCS and TCC exposure. Targeted MS-based metabolites quantification, histopathological examination and biological assays were subsequently conducted to supply confirmatory information on respective toxicity of TCS and TCC. We found that oral administration of TCS mainly induced significant liver injuries accompanied with inflammation and dysfunction, hepatic steatosis fatty acids and bile acids metabolism disorders; while TCC exposure caused marked intestine injuries leading to striking disruption of colonic morphology, inflammatory status and intestinal barrier integrity, intestinal bile acids metabolism and microbial community. These comparative results provide novel insights into structure-dependent mechanisms of TCS-induced hepatotoxicity and TCC-triggered enterotoxicity in mice.
Collapse
Affiliation(s)
- Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China
| | - Mengyu Qin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mengjing Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xiaoyu Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region (Guangxi Academy of Medical Sciences), Nanning, Guangxi 530021, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Yan Z, Du J, Zhang T, Sun Q, Sun B, Zhang Y, Li S. Impairment of the gut health in Danio rerio exposed to triclocarban. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155025. [PMID: 35390376 DOI: 10.1016/j.scitotenv.2022.155025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Triclocarban (TCC) is the principal component in personal and health care products because it is a highly effective, broad-spectrum, and safe antibacterial agent. TCC has recently been discovered in aquatic creatures and has been shown to constitute a health danger to aquatic animals. Although several studies have looked into the toxicological effects of TCC on a variety of aquatic animals from algae to fish, the possible gut-toxicity molecular pathway in zebrafish has never been thoroughly explored. We investigated the gut-toxic effects of TCC on zebrafish by exposing them to different TCC concentrations (100 and 1000 μg/L) for 21 days. We discovered for the first time that the MAPK and TLR signaling pathways related to gut diseases were significantly altered, and inflammation (up-regulation of TNF-α, IL-6, and IL-1β) caused by TCC was confirmed to be largely mediated by the aryl hydrocarbon receptor (AHR) and its related cytokines. This was found using the results of qPCR, a transcriptome analysis, and molecular docking (AHR, AHRR, CYP1A1 and CYP1B1). Furthermore, high-throughput 16S rDNA sequencing demonstrated that TCC exposure reduced the bacterial diversity and changed the gut microbial composition, with the primary phyla Fusobacteria and Proteobacteria, as well as the genera Cetobacterium and Rhodobacteraceae, being the most affected. TCC exposure also caused damage to the gut tissue, including an increase in the number of goblet cells and a reduction in the height of the columnar epithelium and the thickness of the muscular layer, as shown by hematoxylin and eosin staining. Our findings will aid in understanding of the mechanism TCC-induced aquatic toxicity in aquatic species.
Collapse
Affiliation(s)
- Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jinzhe Du
- Marine Science and Technology College, Qingdao Agricultural University, Qingdao 266109, China Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China.
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Binbin Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China.
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
14
|
Li X, Lim JJ, Wang K, Prasad B, Bhatt DK, Cui JY, Lehmler HJ. The disposition of polychlorinated biphenyls (PCBs) differs between germ-free and conventional mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103854. [PMID: 35331926 PMCID: PMC9090986 DOI: 10.1016/j.etap.2022.103854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 05/03/2023]
Abstract
The disposition of toxicants, such as polychlorinated biphenyls (PCBs), in germ-free (GF) vs. conventional (CV) mice has received little attention to date. Here, we investigate PCB levels in three-month-old female CV and GF mice exposed orally daily for 3 days to 0, 6, or 30 mg/kg body weight of the Fox River Mixture (FRM), an environmental PCB mixture. We euthanized animals 24 h after the final dose. PCB profiles in tissues differed from the FRM profile but were similar in tissues across all 4 PCB exposure groups. PCB levels in CV but not GF mice followed the difference in PCB dose. Importantly, PCB levels were higher in CV than GF mice exposed to the same dose. Hepatic cytochrome P450 enzyme or lipid levels did not explain these trends in PCB tissue levels. Thus, toxicity studies with CV and GF animals need to assess the toxicokinetics of the toxicant investigated. CAPSULE: PCB levels are typically higher in conventional than germ-free mice exposed to the same dose of PCBs.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA 98105, USA
| | - Deepak K Bhatt
- Department of Pharmaceutics, University of Washington, Seattle, WA 98105, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|